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Abstract: The intended objective of this study is to define and investigate a new class of q-generalized
tangent-based Appell polynomials by combining the families of 2-variable q-generalized tangent
polynomials and q-Appell polynomials. The investigation includes derivations of generating
functions, series definitions, and several important properties and identities of the hybrid q-special
polynomials. Further, the analogous study for the members of this q-hybrid family are illustrated.
The graphical representation of its members is shown, and the distributions of zeros are displayed.
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1. Introduction and Preliminaries

The area of q-calculus in the last three decades act as a bridge between engineering sciences
and mathematics. Recently, research in the area of q-calculus has shown worthy of attention due to
its applicative diversification in various fields such as mathematics, physics, and engineering. The
q-analogues of many orthogonal polynomials and functions expect a pleasant structure, and help one
to remember their classical counterpart. The q-standard notations and definitions reviewed here are
taken from [1].

The q-analogue of a number a ∈ C and factorial function are specified as

[a]q =
1− qa

1− q
, q ∈ C \ {1}, (1)

[n]q! =
n

∏
m=1

[m]q = [1]q[2]q[3]q · · · [n]q, [0]q! = 1, n ∈ N, 0 < q < 1. (2)

The q-binomial coefficient [nk]q is specified as

[
n
k

]
q
=

[n]q!
[k]q![n− k]q!

, k = 0, 1, 2, · · · , n, n ∈ N0. (3)

The q-power basis is specified as

(u + v)n
q =

n

∑
k=0

[
n
k

]
q
qk(k−1)/2un−kvk, n ∈ N0. (4)
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The q-exponential functions are specified by

eq(u) =
∞

∑
k=0

uk

[k]q!
, 0 < |q| < 1, |u| < |1− q|−1, (5)

Eq(u) =
∞

∑
k=0

qk(k−1)/2 uk

[k]q!
, 0 < |q| < 1, u ∈ C (6)

and satisfy the following relation

eq(t)Eq(−t) = Eq(t)eq(−t) = 1. (7)

The q-derivative Dq of functions eq(u) and Eq(u) are given by

Dqeq(ut) = teq(ut), DqEq(ut) = tEq(qut). (8)

The q-derivative operator Dq for any two arbitrary functions f (u) and g(u) satisfies the following
product and quotient relations:

Dq( f (u)g(u)) = f (qu)Dqg(u) + g(u)Dq f (u) = f (u)Dqg(u) + g(qu)Dq f (u), (9)

Dq

(
f (u)
g(u)

)
=

g(qu)Dq f (u)− f (qu)Dqg(u)
g(u)g(qu)

=
g(u)Dq f (u)− f (u)Dqg(u)

g(u)g(qu)
. (10)

The tangent numbers and polynomials and their q-analogue have enormous applications in
analytic number theory, physics, and other related areas. Various properties of these polynomials
are studied and investigated by many mathematicians, see, for example, [2–4]. Very recently,
Yasmin et al. [5] introduced the 2-variable q-generalized tangent polynomials Cn,m,q(u) and established
certain interesting results for them. We recall the following definition.

Definition 1. The 2-variable q-generalized tangent polynomials (qGTP) Cn,m,q(u) is defined as [5]:(
2

eq(mt) + 1

)
eq(ut)Eq(vt) =

∞

∑
n=0

Cn,m,q(u, v)
tn

[n]q!
,
(
|mt| < π, m ∈ R+

)
. (11)

We have
lim
m→1

Cn,m,q(u, v) = En,q(u, v), (2-variable q-Euler polynomials (qEP) [6])

lim
m→2

Cn,m,q(u, v) = Tn,q(u, v), (2-variable q-tangent polynomials (qTP) [7])

Cn,m,q(0, 0) := Cn,m,q (q-generalized tangent numbers (qGTN) [5])

The series representation of qGTP Cn,m,q(u, v) is given by

Cn,m,q(u, v) =
n

∑
r=0

r

∑
k=0

[
n
r

]
q

[
r
k

]
q
Cn−r,m,qqk(k−1)/2ur−kvk. (12)

A vital class of polynomial sequences known as the Appell polynomials is introduced by
Appell [8]. Later, the class of q-Appell polynomials {An,q(u)}∞

n=0 was introduced by Al-Salam [9] and
studied some of its properties. These polynomials arise in chemistry, theoretical physics, and different
branches of mathematics such as numerical analysis, number theory, and in the study of polynomial
expansion of analytic function.
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Definition 2. The q-Appell polynomials An,q(u) are defined by the following generating function [9]:

Aq(t)eq(ut) =
∞

∑
n=0

An,q(u)
tn

[n]q!
, 0 < q < 1, (13)

where

Aq(t) :=
∞

∑
n=0

An,q
tn

[n]q!
, A0,q = 1; Aq(t) 6= 0 (14)

is an analytic function at t = 0 and An,q := An,q(0) are q-Appell numbers.

The series representation of q-Appell polynomials is given by

An,q(u) =
n

∑
k=0

[
n
k

]
q
Ak,qun−k. (15)

A significant part of the investigation of any polynomials is to discover its determinant
definition. Recently, Keleshteri et al. [10] gave the determinant definition of the q-Appell polynomials,
according to which the q-Appell polynomials An,q(u) of degree n can be expressed in the following
determinant form:

A0,q(u) =
1

β0,q
,

An,q(u) =
(−1)n

(β0,q)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 u u2 . . . un−1 un

β0,q β1,q β2,q . . . βn−1,q βn.q

0 β0,q [21]qβ1,q . . . [n−1
1 ]qβn−2,q [n1]qβn−1,q

0 0 β0 . . . [n−1
2 ]qβn−3,q [n2]qβn−2,q

. . . . . . . .

. . . . . . . .
0 0 0 . . . β0,q [ n

n−1]qβ1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (16)

where n = 1, 2, 3, · · · ; β0,q 6= 0 and

β0,q =
1

A0,q
,

βn,q = − 1
A0,q

(
n

∑
k=1

[
n
k

]
q
Ak,qβn−k,q

)
, n = 1, 2, 3, · · · . (17)

Various members of the q-Appell family can be obtained by choosing a suitable function Aq(t)
in the generating function expressed in Equation (13). Some of its members along with their name,
generating function, and series definition, are mentioned in Table 1.

The hybrid type q-special polynomials are a subject of recent interest. In the present work, we
introduce and investigate the properties of q-generalized tangent-based Appell polynomials. Their
series expansion, determinant form, summation formulae, and differential recurrence relations are
obtained in Section 2. In Section 3, some identities and relations involving q-generalized tangent-based
Appell numbers and polynomials are derived. In the last section, the graphical representation of its
members are shown for different values of indices using Matlab. Further, the distributions of zeros of
these members are displayed.
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Table 1. Certainmembers belonging to the q-Appell family.

Name of q-Special
S. No. Aq(t) Polynomials and Its Generating Function Series Definition

Associated Numbers

I t
eq(t)−1 q-Bernoulli polynomials; t

eq(t)−1 eq(ut) = ∑∞
n=0 Bn,q(u) tn

[n]q ! Bn,q(u) = ∑n
k=0 [

n
k]qBk,qun−k

q-Bernoulli numbers t
eq(t)−1 = ∑∞

n=0 Bn,q
tn

[n]q !
[11,12] Bn,q := Bn,q(0)

II 2
eq(t)+1 q-Euler polynomials; 2

eq(t)+1 eq(ut) = ∑∞
n=0 En,q(u) tn

[n]q ! En,q(u) = ∑n
k=0 [

n
k]qEk,qun−k

q-Euler numbers 2
eq(t)+1 = ∑∞

n=0 En,q
tn

[n]q !
[6,12] En,q := En,q(0)

2. q-Generalized Tangent-Appell Polynomials

In this section, we introduce the q-generalized tangent-based Appell polynomials (qGTAP) by
means of a generating function. Further, some properties of these polynomials are also obtained.

Using the expansion expressed in Equation (5) in the generating function expressed in
Equation (13) of q-Appell polynomials and then replacing powers of u ie u0, u1, u2, · · · , un by the
corresponding qGTP C0,m,q(u, v), C1,m,q(u, v), C2,m,q(u, v), · · · , Cn,m,q(u, v) and thereafter using the
generating function expressed in Equation (11) of qGTP Cn,m,q(u, v) and denoting the resultant

q-generalized tangent-based Appell polynomials by C A(m)
n,q (u, v), the following definition is obtained:

Definition 3. The q-generalized tangent-Appell polynomials (qGTAP) C A(m)
n,q (u, v)

(
q ∈ C, 0 < |q| < 1,

|mt| < π, m ∈ R+
)

are defined by means of the following generating function:(
2

eq(mt) + 1

)
Aq(t)eq(ut)Eq(vt) =

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
. (18)

When u = v = 0, C A(m)
n,q (0, 0) := C A(m)

n,q are the corresponding q-generalized tangent-Appell
numbers and are defined as (

2
eq(mt) + 1

)
Aq(t) =

∞

∑
n=0

C A(m)
n,q

tn

[n]q!
. (19)

Selecting suitable function Aq(t) and appropriate values of m in the generating function expressed

in Equation (18), several members belonging to the family of qGTAP C A(m)
n,q (u, v) are obtained. These

members are listed in Table 2.

Table 2. Certain members belonging to the qGTAP C A(m)
n,q (u, v).

S. No. Aq(t) Name of the Generating Function Generating Function
Resultant Member of Resultant Polynomial of Resultant Number

I Aq(t) = t
eq(t)−1 q-generalized tangent

(
2

eq(mt)+1

) (
t

eq(t)−1

)
eq(ut)Eq(vt)

(
2

eq(mt)+1

) (
t

eq(t)−1

)
-Bernoulli polynomials (qGTBP) = ∑∞

n=0 C B(m)
n,q (u, v) tn

[n]q ! = ∑∞
n=0 C B(m)

n,q
tn

[n]q !

II Aq(t) = 2
eq(t)+1 q-generalized tangent

(
2

eq(mt)+1

) (
2

eq(t)+1

)
eq(ut)Eq(vt)

(
2

eq(mt)+1

) (
2

eq(t)+1

)
-Euler polynomials (qGTEP) = ∑∞

n=0 CE
(m)
n,q (u, v) tn

[n]q ! = ∑∞
n=0 CE

(m)
n,q

tn

[n]q !

Remark 1. As for m = 2, the qGTP Cn,m,q(u) reduces to the qTP Tn,q(u, v). Thus, for the same choice of m,

the results of qGTBP CB(m)
n,q (u, v) and qGTEP CE

(m)
n,q (u, v) (Table 2) reduces to the corresponding results of the

q-tangent Bernoulli and q-tangent Euler polynomials.
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Remark 2. As for m = 1, the qGTP Cn,m,q(u) reduces to the qEP E (m)
n,q (u, v). Thus, for the same choice of m,

the results of qGTBP CB(m)
n,q (u, v) and qGTEP CE

(m)
n,q (u, v) (Table 2) reduces to the corresponding results of the

q-Euler Bernoulli and 2-iterated q-Euler polynomials.

The determinant definitions are helpful in finding solutions to general linear interpolation
problems and can likewise be valuable for calculation purposes. The recent establishment of
determinant definitions for various hybrid polynomials (see, for instance, [10,13]) offers inspiration to
establish the determinant definition for qGTAP C A(m)

n,q (u, v) is characterized as follows:

Definition 4. The following determinant form for the qGTAP C A(m)
n,q (u, v) of degree n holds true:

C A(m)
0,q (u, v) =

1
β0,q

,

C A(m)
n,q (u, v) =

(−1)n

(β0,q)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 C1,m,q(u, v) C2,m,q(u, v) . . . Cn−1,m,q(u, v) Cn,m,q(u, v)
β0,q β1,q β2,q . . . βn−1,q βn,q

0 β0,q [21]qβ1,q . . . [n−1
1 ]qβn−2,q [n1]qβn−1,q

0 0 β0,q . . . [n−1
2 ]qβn−3,q [n2]qβn−2,q

. . . . . . . .

. . . . . . . .
0 0 0 . . . β0,q [ n

n−1]qβ1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (20)

where n = 1, 2, 3, · · · ; β0,q 6= 0 and

β0,q =
1

C A(m)
0,q

,

βn,q = − 1

C A(m)
0,q

(
n

∑
k=1

[
n
k

]
q

C A(m)
k,q βn−k,q

)
, n = 1, 2, 3, · · · . (21)

Remark 3. The qGTBP CB(m)
n,q (u, v) and qGTEP CE

(m)
n,q (u, v) mentioned in Table 2 are particular members of

qGTAP C A(m)
n,q (u, v). Thus, by making appropriate choices for the coefficients β0,q and βk,q (k = 1, 2, · · · , n)

in the determinant definition of qGTAP C A(m)
n,q (u, v), the determinant definitions of qGTBP CB(m)

n,q (u, v) and

qGTEP CE
(m)
n,q (u, v) can be obtained.

For instance, taking β0,q = 1 and βk,q = 1
[k+1]q

(k = 1, 2, · · · , n) in Equation (20), the following

determinant form of qGTBP CB(m)
n,q (u, v) is obtained:

Definition 5. The following determinant form for the qGTBP CB(m)
n,q (u, v) of degree n holds true:

CB(m)
0,q (u, v) = 1,

CB(m)
n,q (u, v) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 C1,m,q(u, v) C2,m,q(u, v) . . . Cn−1,m,q(u, v) Cn,m,q(u, v)
1 1

[2]q
1

[3]q
. . . 1

[n]q
1

[n+1]q
0 1 [21]q

1
[2]q

. . . [n−1
1 ]q

1
[n−1]q

[n1]q
1

[n]q
0 0 1 . . . [n−1

2 ]q
1

[n−2]q
[n2]q

1
[n−1]q

. . . . . . . .

. . . . . . . .
0 0 0 . . . 1 [ n

n−1]q
1

[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (22)

n = 1, 2, 3, · · · .
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Next, taking β0,q = 1 and βk,q = 1
2 (k = 1, 2, · · · , n) in Equation (20), the following determinant

definition of qGTEP CE
(m)
n,q (u, v) is obtained:

Definition 6. The following determinant form for the qGTEP CE
(m)
n,q (u, v) of degree n holds true:

CE
(m)
0,q (u, v) = 1,

CE
(m)
n,q (u, v) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 C1,m,q(u, v) C2,m,q(u, v) . . . Cn−1,m,q(u, v) Cn,m,q(u, v)
1 1

2
1
2 . . . 1

2
1
2

0 1 [21]q
1
2 . . . [n−1

1 ]q
1
2 [n1]q

1
2

0 0 1 . . . [n−1
2 ]q

1
2 [n2]q

1
2

. . . . . . . .

. . . . . . . .
0 0 0 . . . 1 [ n

n−1]q
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (23)

n = 1, 2, 3, · · · .

Utilizing generating function of q-Appell numbers and the relation expressed in Equation (11) in
the generating function expressed in Equation (18) and then employing the Cauchy product rule in the
resultant expression and thereafter simplifying and comparing the coefficients of similar powers of t in
the resultant equation, we obtain the following series expansion of qGTAP C A(m)

n,q (u, v):

Theorem 1. The series representation for the qGTAP C A(m)
n,q (u, v) is given by

C A(m)
n,q (u, v) =

n

∑
k=0

[
n
k

]
q
An−k,qCk,m,q(u, v). (24)

Another form of series representation of qGTAP is obtained by utilizing a generating function for
qGTN, the expansion expressed in Equation (6), and the generating function expressed in Equation (13)
in the relation expressed in Equation (18) and then employing the Cauchy product rule in the resultant
expression and thereafter comparing the coefficients of similar powers of t in the resultant equation.
We then obtain the following series expansion of qGTAP C A(m)

n,q (u, v):

Theorem 2. The series representation for the qGTAP C A(m)
n,q (u, v) is given by

C A(m)
n,q (u, v) =

n

∑
k=0

k

∑
r=0

[
n
k

]
q

[
k
r

]
q
qr(r−1)/2Ck−r,m,qvr An−k,q(u). (25)

Also, utilizing the expansions expressed in Equations(5) and (6) and the generating function
expressed in Equation (19) in the generating function expressed in Equation (18) and then employing
the Cauchy product rule in the resultant expression and thereafter comparing the coefficients of similar
powers of t in the resultant equation gives the following form of series representation of qGTAP

C A(m)
n,q (u, v):

Theorem 3. The series representation for the qGTAP C A(m)
n,q (u, v) is given by

C A(m)
n,q (u, v) =

n

∑
k=0

k

∑
r=0

[
n
k

]
q

[
k
r

]
q

C A(m)
n−k,qvruk−r. (26)

Next, we establish the following summation formulae.
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Theorem 4. The qGTAP C A(m)
n,q (u, v) satisfies the following summation formulae:

C A(m)
n,q (u, v) =

n

∑
k=0

[
n
k

]
q

C A(m)
n−k,q(u + v)k

q, (27)

C A(m)
n,q (u, v) =

n

∑
k=0

[
n
k

]
q

C A(m)
n−k,q(0, v)uk, (28)

C A(m)
n,q (u, v) =

n

∑
k=0

[
n
k

]
q
qk(k−1)/2

C A(m)
n−k,q(u, 0)vk. (29)

Proof. Using the expansions expressed in Equations (5) and (6) and Equation (19) in the generating
function expressed in Equation (18), we obtain

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

∞

∑
n=0

C A(m)
n,q

tn

[n]q!

∞

∑
k=0

uk tk

[k]q!

∞

∑
r=0

qr(r−1)/2vr tr

[r]q!
. (30)

Now, applying the Cauchy product rule and the expansion expressed in Equation (4) in Equation (30)
and then comparing the coefficients of similar powers of t in the resultant equation, we are led to
the assertion expressed in Equation (27). Using the generating function expressed in Equation (18)
(taking u = 0) and the expansion expressed in Equation (5) in the generating function expressed in
Equation (18), we obtain

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

∞

∑
n=0

C A(m)
n,q (0, v)

tn

[n]q!

∞

∑
k=0

uk tk

[k]q!
, (31)

which, upon employing the Cauchy product rule and the expansion expressed in Equation (3) and
then comparing the coefficients of similar powers of t in the resultant equation, yields the assertion
expressed in Equation (28). Using the generating function expressed in Equation (18) (taking v = 0)
and the expansion expressed in Equation (6) in the generating function expressed in Equation (18),
we obtain

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

∞

∑
n=0

C A(m)
n,q (u, 0)

tn

[n]q!

∞

∑
k=0

qk(k−1)/2vk tk

[k]q!
. (32)

Further, employing the Cauchy product rule and the expansion expressed in Equation (3) and then
comparing the coefficients of similar powers of t in the resultant equation, we are led to the assertion
expressed in Equation (29).

Theorem 5. The following differential recurrence relations of qGTAP C A(m)
n,q (u, v) hold true:

Dq,uC A(m)
n,q (u, v) = [n]qC A(m)

n−1,q(u, v), (33)

D(r)
q,uC A(m)

n,q (u, v) =
[n]q!

[n− r]q! C A(m)
n−r,q(u, v), (34)

Dq,vC A(m)
n,q (u, v) = [n]qC A(m)

n−1,q(u, qv), (35)

D(r)
q,v C A(m)

n,q (u, v) =
[n]q!

[n− r]q! C A(m)
n−r,q(u, qrv). (36)

Proof. By q-differentiating the generating function expressed in Equation (18) with respect to u, using
Equation (8) and then comparing the coefficients of both sides of the resultant equation, we are led to
the assertion expressed in Equation (33). Further, differentiating the generating function expressed in
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Equation (18) r times with respect to u and proceeding on similar lines using Equation (8), we are led to
the assertion expressed in Equation (34). Similarly q-differentiating the generating function expressed
in Equation (18) with respect to v and using Equation (8) yield the assertion expressed in Equation (35).
Again, differentiating the generating function expressed in Equation (18) r times with respect to v and
using Equation (8) yield the assertion expressed in Equation (36).

The series definitions and other results for the qGTBP CB(m)
n,q (u, v) and qGTEP CE

(m)
n,q (u, v) are

given in Table 3.

Table 3. Results for qGTBP CB(m)
n,q (u, v) and qGTEP CE

(m)
n,q (u, v).

S. No. Results qGTBP C B(m)
n,q (u, v) qGTEP CE (m)

n,q (u, v)

I Series C B(m)
n,q (u, v) = ∑n

k=0 [
n
k]qBn−k,qCk,m,q(u, v) CE

(m)
n,q (u, v) = ∑n

k=0 [
n
k]qEn−k,qCk,m,q(u, v)

Expansions C B(m)
n,q (u, v) = ∑n

k=0 ∑k
r=0 [

n
k]q[

k
r]qqr(r−1)/2

CE
(m)
n,q (u, v) = ∑n

k=0 ∑k
r=0 [

n
k]q[

k
r]qqr(r−1)/2

Ck−r,m,qvr Bn−k,q(u) Ck−r,m,qvrEn−k,q(u)

C B(m)
n,q (u, v) = ∑n

k=0 ∑k
r=0 [

n
k]q[

k
r]qC B(m)

n−k,qvruk−r
CE

(m)
n,q (u, v) = ∑n

k=0 ∑k
r=0 [

n
k]q[

k
r]qCE

(m)
n−k,qvruk−r

II Summation C B(m)
n,q (u, v) = ∑n

k=0 [
n
k]qC B(m)

n−k,q(u + v)k
q CE

(m)
n,q (u, v) = ∑n

k=0 [
n
k]qCE

(m)
n−k,q(u + v)k

q

Formulae C B(m)
n,q (u, v) = ∑n

k=0 [
n
k]qC B(m)

n−k,q(0, v)uk
CE

(m)
n,q (u, v) = ∑n

k=0 [
n
k]qCE

(m)
n−k,q(0, v)uk

C B(m)
n,q (u, v) = ∑n

k=0 [
n
k]qqk(k−1)/2

C B(m)
n−k,q(u, 0)vk

CE
(m)
n,q (u, v) = ∑n

k=0 [
n
k]qqk(k−1)/2

CE
(m)
n−k,q(u, 0)vk

III Differential Dq,uC B(m)
n,q (u, v) = [n]qC B(m)

n−1,q(u, v) Dq,uCE
(m)
n,q (u, v) = [n]qCE

(m)
n−1,q(u, v)

Recurrence D(r)
q,uC B(m)

n,q (u, v) = [n]q !
[n−r]q ! C B(m)

n−r,q(u, v) D(r)
q,uCE

(m)
n,q (u, v) = [n]q !

[n−r]q ! CE
(m)
n−r,q(u, v)

Relations Dq,vC B(m)
n,q (u, v) = [n]qC B(m)

n−1,q(u, qv) Dq,vCE
(m)
n,q (u, v) = [n]qCE

(m)
n−1,q(u, qv)

D(r)
q,v C B(m)

n,q (u, v) = [n]q !
[n−r]q ! C B(m)

n−r,q(u, qrv) D(r)
q,v CE

(m)
n,q (u, v) = [n]q !

[n−r]q ! CE
(m)
n−r,q(u, qrv)

3. Identities Involving q-Generalized Tangent-Appell Polynomials

In this section, we derive some identities involving qGTAP C A(m)
n,q (u, v).

Theorem 6. The following identities of qGTAP C A(m)
n,q (u, v) hold true:

Dq,uC A(m)
n,q (u, v) = [n]qC A(m)

n−1,q(u, v) (37)

∫ 1

0
C A(m)

n−1,q(u, v)dq(u) =
C A(m)

n,q (1, v)− C A(m)
n,q (0, v)

[n]q
. (38)

Proof. By q-differentiating the generating function expressed in Equation (18) with respect to u,
we obtain

t
(

2
eq(mt) + 1

)
Aq(t)eq(ut)Eq(vt) = Dq,u

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
, (39)

which, upon using Equation (18) on the left hand side and then comparing the coefficients of similar
powers of t in the resultant equation, we obtain the assertion expressed in Equation (37).
Now, taking the definite q-integral of Equation (37), we obtain

[n]q
∫ 1

0
C A(m)

n−1,q(u, v)dqu = C A(m)
n,q (1, v)− C A(m)

n,q (0, v), (40)

which gives the assertion expressed in Equation (38).

Similarly q-differentiating the generating function expressed in Equation (18) with respect to v,
we obtain the following result.
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Theorem 7. The following identities of qGTAP C A(m)
n,q (u, v) hold true:

Dq,vC A(m)
n,q (u, v) = [n]qC A(m)

n−1,q(u, qv) (41)

∫ 1

0
C A(m)

n−1,q(u, v)dq(v) =
C A(m)

n,q

(
u, 1

q

)
− C A(m)

n,q (u)

[n]q
. (42)

In order to derive our next result, we first recall the 2D q-Appell polynomials An,q(u, v).

Definition 7. The 2D q-Appell polynomials An,q(u, v) are defined by the following generating function [10]:

Aq(t)eq(ut)Eq(vt) =
∞

∑
n=0

An,q(u, v)
tn

n!
, 0 < q < 1, (43)

where Aq(t) is an analytic function at t = 0 given by Equation (14) and An,q := An,q(0, 0) are
q-Appell numbers.

Theorem 8. The following identity of qGTAP C A(m)
n,q (u, v) holds true:

∞

∑
k=0

[
n
k

]
q
mk

C A(m)
n−k,q(u, v) + C A(m)

n,q (u, v) = 2An,q(u, v). (44)

Proof. Consider the identity (
2

eq(mt) + 1

)
eq(mt) +

2
eq(mt) + 1

= 2. (45)

Multiplying both side of the above identity by Aq(t)eq(ut)Eq(vt), we obtain(
2

eq(mt)+1

)
Aq(t)eq(ut)Eq(vt)eq(mt) +

(
2

eq(mt)+1

)
Aq(t)eq(ut)Eq(vt) = 2Aq(t)eq(ut)Eq(vt). (46)

Now, using Equations (5), (18), and (43), we obtain

∞

∑
n=0

C A(m)
n,q (u, v)

tn

n!

∞

∑
k=0

(mt)k

k!
+

∞

∑
n=0

C A(m)
n,q (u, v)

tn

n!
= 2

∞

∑
n=0

An,q(u, v)
tn

n!
, (47)

which on employing the Cauchy product rule and comparing the coefficients of similar powers of t
gives the assertion expressed in Equation (44).

Putting v = 0 in Theorem 8, we have the following corollary.

Corollary 1. The following identity of one variable qGTAP C A(m)
n,q (u) holds true:

∞

∑
k=0

[
n
k

]
q
mk

C A(m)
n−k,q(u) + C A(m)

n,q (u) = 2An,q(u). (48)

Putting u = v = 0 in Theorem 8, we have the following corollary.

Corollary 2. The following identity of q-generalized tangent-Appell numbers C A(m)
n,q holds true:

C A(m)
n,q (m) + C A(m)

n,q = 2An,q. (49)
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Theorem 9. The following identity of qGTAP C A(m)
n,q (u, v) and q-Bernoulli polynomials Bn,q(u) holds true:

C A(m)
n,q (u, v) =

n+1

∑
k=0

[
n

k− 1

]
q

C A(m)
k,q (1, v)− C A(m)

k,q (0, v)

[k]q

 Bn−k+1,q(u). (50)

Proof. Consider the generating function expressed in Equation (18) in the form

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

(
2

eq(mt) + 1

)
Aq(t)Eq(vt)

(
eq(t)− 1

t

)(
t

eq(t)− 1

)
eq(ut). (51)

Making use of the generating function of q-Bernoulli polynomials Bn,q(u) in Table 1 (I) and the

generating function of qGTAP C A(m)
n,q (u, v) expressed in Equation (18) in suitable forms gives

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

∞

∑
k=0

[
C A(m)

k,q (1, v)− C A(m)
k,q (0, v)

] tk−1

[k]q!

∞

∑
n=0

Bn,q(u)
tn

[n]q!
. (52)

Simplifying and employing the Cauchy product rule and thereafter comparing the coefficients of
similar powers of t gives the assertion expressed in Equation (50).

Theorem 10. The following identity of qGTAP C A(m)
n,q (u, v) and q-Bernoulli polynomials Bn,q(u) holds true:

C A(m)
n,q (u, v) =

n+1

∑
k=0

[
n

k− 1

]
q

∑k
r=0 [

k
r]qBk−r,q(u)− Bk,q(u)

[k]q

 C An−k+1,q(0, v). (53)

Proof. Consider the generating function expressed in Equation (18) in the form

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

(
t

eq(t)− 1

)
eq(ut)

(
eq(t)− 1

t

)(
2

eq(mt) + 1

)
Aq(t)Eq(vt). (54)

Making use of the expansion expressed in Equation (5), the generating function of q-Bernoulli
polynomials Bn,q(u) in Table 1 (I), and the generating function of qGTAP C A(m)

n,q (u, v) expressed in
Equation (18), we obtain

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

∞

∑
k=0

[
k

∑
r=0

[
k
r

]
q
Bk−r,q(u)− Bk,q(u)

]
tk−1

[k]q!

∞

∑
n=0

C An,q(0, v)
tn

[n]q!
. (55)

Simplifying and employing the Cauchy product rule and thereafter comparing the coefficients of
similar powers of t gives the assertion expressed in Equation (53).

Theorem 11. The following identity of qGTAP C A(m)
n,q (u, y) and q-Euler polynomials En,q(u) holds true:

C A(m)
n,q (u, v) =

n

∑
k=0

[
n
k

]
q

C A(m)
k,q (1, v) + C A(m)

k,q (0, v)

2

 En−k,q(u). (56)

Proof. Consider the generating function expressed in Equation (18) in the form

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

(
2

eq(mt) + 1

)
Aq(t)Eq(vt)

(
eq(t) + 1

2

)(
2

eq(t) + 1

)
eq(ut). (57)
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Making use of the generating function of q-Euler polynomials En,q(u) in Table 1 (II) and the generating

function of qGTAP C A(m)
n,q (u, v) expressed in Equation (18) in suitable forms gives

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

∞

∑
k=0

C A(m)
k,q (1, v)− C A(m)

k,q (0, v)

2

 tk

[k]q!

∞

∑
n=0
En,q(u)

tn

[n]q!
. (58)

Further, employing the Cauchy product rule and comparing the coefficients of similar powers of t
gives the assertion expressed in Equation (56).

Theorem 12. The following identity of qGTAP C A(m)
n,q (u, v) and q-Euler polynomials En,q(u) holds true:

C A(m)
n,q (u, v) =

n

∑
k=0

[
n
k

]
q

∑k
r=0 [

k
r]qEk−r,q(u)− Ek,q(u)

2

 C An−k,q(0, v). (59)

Proof. Consider the generating function expressed in Equation (18) in the form

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

(
2

eq(t) + 1

)
eq(ut)

(
eq(t) + 1

2

)(
2

eq(mt) + 1

)
Aq(t)Eq(vt). (60)

Making use of the expansion expressed in Equation (5), the generating function of q-Euler polynomials
En,q(u) in Table 1 (II), and the generating function of qGTAP C A(m)

n,q (u, v) expressed in Equation (18),
we obtain

∞

∑
n=0

C A(m)
n,q (u, v)

tn

[n]q!
=

∞

∑
k=0

∑k
r=0 [

k
r]qEk−r,q(u)− Ek,q(u)

2

 tk

[k]q!

∞

∑
n=0

C An,q(0, v)
tn

[n]q!
. (61)

Simplifying and employing the Cauchy product rule and thereafter comparing the coefficients of
similar powers of t gives the assertion expressed in Equation (59).

Identities involving qGTAP C A(m)
n,q (u, v) derived in this section for qGTBP CB(m)

n,q (u, v) and qGTEP

CE
(m)
n,q (u, v) are given in Table 4.
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Table 4. Identities involving qGTBP CB(m)
n,q (u, v) and qGTEP CE

(m)
n,q (u, v).

S. No. Identities Involving q-Generalized Tangent Identities Involving q-Generalized Tangent
-Bernoulli Polynomials qGTBP C B(m)

n,q (u, v) -Euler Polynomials qGTEP CE
(m)
n,q (u, v)

I Dq,uCB(m)
n,q (u, v) = [n]qCB(m)

n−1,q(u, v) Dq,uCE
(m)
n,q (u, v) = [n]qCE

(m)
n−1,q(u, v)∫ 1

0 CB(m)
n−1,q(u, v)dqu = C B(m)

n,q (1,v)+C B(m)
n,q (0,v)

[n]q

∫ 1
0 CE

(m)
n−1,q(u, v)dqu = CE (m)

n,q (1,v)+CE (m)
n,q (0,v)

[n]q

II Dq,vCB(m)
n,q (u, v) = [n]qCB(m)

n−1,q(u, qv) Dq,vCE
(m)
n,q (u, v) = [n]qCE

(m)
n−1,q(u, qv)∫ 1

0 CB(m)
n−1,q(u, v)dqv =

C B(m)
n,q

(
u, 1

q

)
+C B(m)

n,q (u)

[n]q

∫ 1
0 CE

(m)
n−1,q(u, v)dqv =

CE (m)
n,q

(
u, 1

q

)
+CE (m)

n,q (u)

[n]q

III 2Bn,q(u, v) = ∑∞
k=0 [

n
k]qmk

CB(m)
n−k,q(u, v) 2En,q(u, v) = ∑∞

k=0 [
n
k]qmk

CE
(m)
n−k,q(u, v)

+CB(m)
n,q (u, v) +CE

(m)
n,q (u, v)

IV CB(m)
n,q (u, v) = ∑n+1

k=0 [ n
k−1]q CE

(m)
n,q (u, v) = ∑n+1

k=0 [ n
k−1]q[

C B(m)
k,q (1,v)−C B(m)

k,q (0,v)
[k]q

]
Bn−k+1,q(u)

[
CE (m)

k,q (1,v)−CE (m)
k,q (0,v)

[k]q

]
Bn−k+1,q(u)

V CB(m)
n,q (u, v) = ∑n+1

k=0 [ n
k−1]q CE

(m)
n,q (u, v) = ∑n+1

k=0 [ n
k−1]q[

∑k
r=0 [

k
r]q Bk−r,q(u)−Bk,q(u)

[k]q

]
CBn−k+1,q(0, v)

[
∑k

r=0 [
k
r]q Bk−r,q(u)−Bk,q(u)

[k]q

]
CEn−k+1,q(0, v)

VI CB(m)
n,q (u, v) = ∑n

k=0 [
n
k]q CE

(m)
n,q (u, v) = ∑n

k=0 [
n
k]q[

C B(m)
k,q (1,v)+C B(m)

k,q (0,v)
2

]
En−k,q(u)

[
CE (m)

k,q (1,v)+CE (m)
k,q (0,v)

2

]
En−k,q(u)

VII CB(m)
n,q (u, v) = ∑n

k=0 [
n
k]q CE

(m)
n,q (u, v) = ∑n

k=0 [
n
k]q[

∑k
r=0 [

k
r]qEk−r,q(u)−Ek,q(u)

2

]
CBn−k,q(0, v)

[
∑k

r=0 [
k
r]qEk−r,q(u)−Ek,q(u)

2

]
CEn−k,q(0, v)

In the next section, the graph of qGTAP C A(m)
n,q (u, v) are displayed by using Matlab. The analysis

of the zeros of these polynomials are also carried out using numerical computations.

4. Graphical Representation and Computation of Zeros

This section intends to exhibit the benefit of employment of numerical investigation and to
discover a new, interesting pattern of the zeros of the qGTAP and to support theoretical prediction.
The qGTBP CB(m)

n,q (u, v) can be determined explicitly. A few of them are as follows:

CB(m)
0,q (u, v) = 1,

CB(m)
1,q (u, v) = −m

2
+ u + v− 1

[2]q
,

CB(m)
2,q (u, v) =

m
2
− m2

2
− u + u2 − v + qv2 +

1
[2]q

+
m2[2]q

4
−

mu[2]q
2
−

mv[2]q
2

+ uv[2]q −
[2]q
[3]q

,
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CB(m)
3,q (u, v) =

m
2
− m3

2
− u + u3 − v + q3v3 +

2
[2]q
−

m3[3]q
8

+
m2u[3]q

4
+

m2v[3]q
4

−
muv[3]q

2
−

[3]q
[2]3q
−

m[3]q
2[2]2q

+
m2[3]q
2[2]2q

+
u[3]q
[2]2q

−
u2[3]q
[2]2q

+
v[3]q
[2]2q

−
qv2[3]q
[2]2q

−
m2[3]q
4[2]q

+
m3[3]q
2[2]q

+
mu[3]q
2[2]q

−
m2u[3]q

2[2]q
−

mu2[3]q
2[2]q

+
mv[3]q
2[2]q

−
m2v[3]q

2[2]q

−
uv[3]q
[2]q

+
u2v[3]q
[2]q

−
mqv2[3]q

2[2]q
+

quv2[3]q
[2]q

−
[3]q
[4]q

.

We display the shapes of the qGTBP CB(m)
n,q (u, v) and investigate its zeros. We plot the graph

of qGTBP CB(m)
n,q (u, v) for n = 1, 2, 3, · · · , 10 combined together. The shape of qGTBP CB(m)

n,q (u, v) for
−3 ≤ u ≤ 3, v = 2, m = 3, and q = −1/3 are displayed in Figure 1.

Our numerical results for the number of real and complex zeros of the qGTBP CB(m)
n,q (u, v) for

v = 2, m = 3 and q = −1/3 are listed in Table 5.
Next, we calculated an approximate solution satisfying the qGTBPCB(m)

n,q (u, v) = 0 for u ∈
R, v = 2, m = 3 and q = −1/3. The results are given in Table 6.

-3 -2 -1 0 1 2 3

-300

-200

-100

0

100

200

u

cBn,q
(m)(u, 2)

Figure 1. Curve of qGTBP CB(m)
n,q (u, v).

Table 5. The numbers of real and complex zeros of CB(m)
n,q (u, v).

Degree n Number of Real Zeros Number of Complex Zeros

1 1 0

2 2 0

3 3 0

4 2 2

5 3 2

6 2 4

7 3 4

8 2 6

9 3 6
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Table 6. Approximate solutions of CB(m)
n,q (u, v) = 0 for u ∈ R.

Degree n u

1 1.0000

2 −2.2609, 2.9276

3 −1.8173, −0.15699, 2.7521

4 −2.1632, 2.9221

5 −1.7892, −1.2772, 2.9430

6 −2.1077, 2.9725

7 1.8001, −1.5784, 2.9835

8 −2.0768, 2.9910

9 −1.8504, −1.6667, 2.9948

We investigated the beautiful zeros of the qGTBP CB(m)
n,q (u, v) = 0 by using a computer. The zeros

of the qGTBP CB(m)
n,q (u, v) = 0 for u ∈ C are plotted in Figure 2.

-30 -20 -10 0 10 20 30 40

-30

-20

-10

0

10

20

30

Re(u)

Im(u)

-30 -20 -10 0 10 20 30 40

-30

-20

-10

0

10

20

30

Re(u)

Im(u)

-30 -20 -10 0 10 20 30 40

-30

-20

-10

0

10

20

30

Re(u)

Im(u)

-30 -20 -10 0 10 20 30 40

-30

-20

-10

0

10

20

30

Re(u)

Im(u)

Figure 2. Zeros of qGTBP CB(m)
n,q (u, v) = 0.
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In Figure 2 (top-left), we choose n = 10, m = 10, q = −1/3, and v = 2. In Figure 2
(top-right), we choose n = 20, m = 20, q = −1/3, and v = 2. In Figure 2 (bottom-left), we choose
n = 20, m = 30, q = -1/3, and v = 2. In Figure 2 (bottom-right), we choose n = 20, m = 40, q = −1/3,
and v = 2.

Using computers, several values of n were verified. However, it remains unknown whether the
following conjecture is true or false for all values of n (see Tables 5 and 6 and Figure 2).

Conjecture 1. Forb ∈ R, prove that CB(m)
n,q (u, b), u ∈ C, has Im(u) = 0 reflection symmetry. However,

CB(m)
n,q (u, b) has no Re(u) = a reflection symmetry for a ∈ R.

Conjecture 2. For b ∈ R, prove that qGTBP CB(m)
n,q (u, b) = 0 has n distinct solutions.

Stacks of zeros of qGTBP CB(m)
n,q (u, v) = 0 for v = 2, m = 10, q = −1/3 and 1 ≤ n ≤ 20 form a 3-D

structure and are presented in Figure 3. Next, we plot the real zeros of the qGTBP CB(m)
n,q (u, v) = 0 for

u ∈ R, v = 2, m = 10, q=-1/3 and 1 ≤ n ≤ 20 in Figure 4.

Figure 3. Stacks of zeros of qGTBP CB(m)
n,q (u, v) = 0.

Figure 4. Real zeros of CB(m)
n,q (u, v) = 0.
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The qGTEP CE
(m)
n,q (u, v) can be determined explicitly. A few of them are as follows:

CE
(m)
0,q (u, v) = 1,

CE
(m)
1,q (u, v) = −1

2
− m

2
+ u + v,

CE
(m)
2,q (u, v) = −1

2
− m2

2
+ u2 + qv2 +

1
4[2]q

+
m[2]q

4
+

m2[2]q
4
−

u[2]q
2
−

mu[2]q
2

−
v[2]q

2
−

mv[2]q
2

+ uv[2]q,

CE
(m)
3,q (u, v) = −1

2
− m3

2
+ u3 + q3v3 −

[3]q
8
−

m[3]q
8
−

m2[3]q
8
−

m3[3]q
8

+
u[3]q

4

+
mu[3]q

4
+

m2u[3]q
4

+
v[3]q

4
+

mv[3]q
4

+
m2v[3]q

4
−

uv[3]q
2
−

muv[3]q
2

+
[3]q

2[2]q
+

m[3]q
4[2]q

+
m2[3]q
4[2]q

+
m3[3]q
2[2]q

−
u[3]q
2[2]q

−
m2u[3]q

2[2]q
−

u2[3]q
2[2]q

−

+
mu2[3]q

2[2]q
−

v[3]q
2[2]q

−
m2v[3]q

2[2]q
+

u2v[3]q
[2]q

−
qv2[3]q
2[2]q

−
mqv2[3]q

2[2]q
+

quv2[3]q
[2]q

.

We display the shapes of the qGTEP CE
(m)
n,q (u, v) and investigate its zeros. We plot the graph

of qGTEP CE
(m)
n,q (u, v) for n = 1, 2, 3, · · · , 10 combined together. The shape of qGTEP CE

(m)
n,q (u, v) for

−5 ≤ u ≤ 5, v = 2, m = 3, and q = 1/3 are displayed in Figure 5.

-4 -2 0 2 4

-500

0

500

1000

u

c n,q
(m)(u, 2)

Figure 5. Curve of qGTEP CE
(m)
n,q (u, v).

We observed a remarkable regular structure of zeros of the qGTBP CB(m)
n,q (u, v) = 0 and hope to verify

the same kind of remarkable regular structure of zeros of the qGTEP CE
(m)
n,q (u, v) = 0. Our numerical

results for the number of real and complex zeros of the qGTEP CE
(m)
n,q (u, v) are listed in Tables 7 for

v = 2, m = 3, and q = 1/3.
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Table 7. Numbers of real and complex zeros of CE
(m)
n,q (u, v).

Degree n Number of Real Zeros Number of Complex Zeros

1 1 0

2 2 0

3 3 0

4 2 2

5 3 2

6 4 2

7 5 2

8 4 4

9 5 4

10 2 8

Next, we calculated an approximate solution satisfying the qGTEP CE
(m)
n,q (u, v) = 0 for u ∈ R,

v = 2, m = 3, and q = 1/3. The results are given in Table 8.

Table 8. Approximate solutions of CE
(m)
n,q (u, v) = 0 for u ∈ R.

Degree n u

1 0

2 −2.1602, 2.1602

3 −2.1498, −0.73464, 2.8845

4 0.30406, 3.0659

5 −2.0953, 1.0226, 3.0658

6 −1.9820 , 1.4174, 3.0287

7 −1.9583, −1.2749, −0.42473, 1.5804, 3.0043

8 −2.0338, 0.48493, 1.5889, 2.9970

9 −1.9779, −1.4188, 1.0634, 1.4592, 2.9975

We investigate the beautiful zeros of the qGTEP CE
(m)
n,q (u, v) = 0 by using a computer. The zeros

of the qGTEP CE
(m)
n,q (u, v) = 0 for u ∈ C are displayed in Figure 6.



Mathematics 2020, 8, 383 18 of 20

-20 -10 0 10 20 30 40 50

-20

-10

0

10

20

Re(u)

Im(u)

-20 -10 0 10 20 30 40 50

-20

-10

0

10

20

Re(u)

Im(u)

-20 -10 0 10 20 30 40 50

-20

-10

0

10

20

Re(u)

Im(u)

-20 -10 0 10 20 30 40 50

-20

-10

0

10

20

Re(u)

Im(u)

Figure 6. Zeros of qGTEP CE
(m)
n,q (u, v) = 0.

In Figure 6 (top-left), we choose n = 20, m = 10, q = 1/3, and v = 2. In Figure 6 (top-right), we
choose n = 20, m = 20, q = 1/3, and v = 2. In Figure 6 (bottom-left), we choose n = 20, m = 30,
q = 1/3, and v = 2. In Figure 6 (bottom-right), we choose n = 20, m = 40, q = 1/3, and v = 2.

Stacks of zeros of CE
(m)
n,q (u, v) = 0 for v = 2, m = 10, q = 1/3, and 1 ≤ n ≤ 26 form a 3-D structure

and are presented in Figure 7.

Figure 7. Stacks of zeros of CE
(m)
n,q (u, v) = 0.
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Next, we plot the real zeros of the qGTEP CE
(m)
n,q (u, v) = 0 for u ∈ R, v = 2, m = 10, q = 1/3, and

1 ≤ n ≤ 26 in Figure 8.

Figure 8. Real zeros of CE
(m)
n,q (u, v) = 0.

From all the numerical computations done in this research work, we give the following conjectures:

Conjecture 3. For b ∈ R, prove that CE
(m)
n,q (u, b), u ∈ C, has Im(u) = 0 reflection symmetry. However,

CE
(m)
n,q (u, b) has not Re(u) = a reflection symmetry for a ∈ R.

Conjecture 4. For b ∈ R, prove that qGTEP CE
(m)
n,q (u, b) = 0 has n distinct solutions.

Using computers, several values of n have been verified. However, it is still remains unknown if
these conjectures hold true or not for any value of n (see Tables 7 and 8 and Figure 6). We expect that
the research in this direction will be a new approach using numerical methods for the study of the
qGTAP C A(m)

n,q (u, v).
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