

Article

New Construction of Strongly Relatively Nonexpansive Sequences by Firmly Nonexpansive-Like Mappings

Hüseyin Işık ¹, Mohammad Reza Haddadi ²,*, Vahid Parvaneh ³, Choonkil Park ⁴,* and Somayeh Kornokar ²

- Department of Mathematics, Faculty of Science and Arts, Muş Alparslan University, 49250 Muş, Turkey; isikhuseyin76@gmail.com
- Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran; somayehkornokar@gmail.com
- Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran; zam.dalahoo@gmail.com
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- * Correspondence: haddadi@abru.ac.ir (M.R.H.); baak@hanyang.ac.kr (C.P.)

Received: 19 November 2019; Accepted: 18 December 2019; Published: 20 February 2020

Abstract: In recent works, many authors generated strongly relatively nonexpansive sequences of mappings by the sequences of firmly nonexpansive-like mappings. In this paper, we introduce a new method for construction of strongly relatively nonexpansive sequences from firmly nonexpansive-like mappings.

Keywords: Banach space; firmly nonexpansive-like mapping; fixed point; mapping of type (*r*); mapping of type (*sr*)

1. Introduction and Preliminaries

The class of firmly nonexpansive-like mappings has been introduced in [1]. Fixed point theory for such mappings can be applied to several nonlinear problems such as zero point problems for monotone operators, convex feasibility problems, convex minimization problems, equilibrium problems (see, [1–5] for more details).

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space X, J be a normalized duality mapping from X into dual X^* , and $S,T\colon C\to X$ are firmly nonexpansive-like mappings. The set of all fixed points of T is denoted by F(T). It is known that if C is a bounded subset, then F(T) is nonempty ([1], Theorem 7.4). We investigate asymptotic behavior of the following sequence $\{x_n\}$ in a uniformly smooth and 2-uniformly convex Banach space X.

$$x_{n+1} = Q_C J^{-1} (JTx_n - (\mu_X)^{-2} J(x_n - Sx_n))$$
(1)

for all $n \in \mathbb{N}$, where $x_1 \in C$, μ_X denotes the uniform convexity constant of X, and Q_C denotes the generalized projection of X onto C. If X is a Hilbert space, then (1) is reduced to

$$x_{n+1} = Tx_n$$
, for all $n \in \mathbb{N}$. (2)

Throughout the present paper, we denote by \mathbb{N} the set of all positive integers, \mathbb{R} the set of all real numbers, X a real Banach space with dual X^* , $\|.\|$ the norms of X and X^* , $\langle x, x^* \rangle$ the value of $x^* \in X^*$

Mathematics **2019**, *8*, 284

at $x \in X$, $x_n \longrightarrow x$ strong convergence of a sequence $\{x_n\}$ of X to $x \in X$, $x_n \rightharpoonup x$ weak convergence of a sequence $\{x_n\}$ of X to $x \in X$, S_X the unit sphere of X, and B_X the closed unit ball of X.

Now, we present some definitions which are needed in the sequel. The normalized duality mapping of X into X^* is defined by

$$Jx = \{x^* \in X^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$$
(3)

for all $x \in X$. The space X is said to be smooth if

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{4}$$

exists for all $x,y \in S_X$. The space X is said to be uniformly smooth, if (4) converges uniformly in $x,y \in S_X$. It is said to be strictly convex, if $\|\frac{x+y}{2}\| < 1$ whenever $x,y \in S_X$ and $x \neq y$. It is said to be uniformly convex, if $\delta_X(\varepsilon) > 0$ for all $\varepsilon \in (0,2]$, where δ_X is the modulus of convexity of X defined by

$$\delta_X(\varepsilon) = \inf\left\{1 - \left\|\frac{x+y}{2}\right\| : x, y \in B_X, \|x-y\| \geqslant \varepsilon\right\}$$
 (5)

for all $\varepsilon \in [0,2]$.

The space X is said to be 2-uniformly convex, if there exists c > 0 such that $\delta_X(\varepsilon) \ge c\varepsilon^2$ for all $\varepsilon \in [0,2]$.

It is obvious that every 2-uniformly convex Banach space is uniformly convex. It is known that all Hilbert spaces are uniformly smooth and 2-uniformly convex. It is also known that all the Lebesgue spaces L_p are uniformly smooth and 2-uniformly convex whenever 1 .

For a smooth Banach space, J is said to be weakly sequentially continuous if $\{Jx_n\}$ converges weak to Jx, whenever $\{x_n\}$ is a sequence of X such that $x_n \rightharpoonup x \in X$.

Define $\varphi: X \times X \to \mathbb{R}$ by

$$\varphi(x,y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2 \tag{6}$$

for all $x, y \in X$. It is known that

$$\varphi(x,y) = \varphi(x,z) + \varphi(z,y) + 2\langle x - z, Jz - Jy \rangle \tag{7}$$

for all $x, y, z \in X$.

Definition 1 ([3]). The metric projection P_C from X onto C and the generalized projection Q_C from X onto C are defined by

$$P_C x = \underset{y \in C}{\operatorname{argmin}} \|y - x\|, \quad Q_C x = \underset{y \in C}{\operatorname{argmin}} \varphi(y, x)$$
 (8)

for all $x \in X$, respectively.

Obviously, for $x \in X$ and $z \in C$,

$$z = P_C x \iff \langle y - z, J(x - z) \rangle, \ (\forall y \in C). \tag{9}$$

Also, for $x \in X$ and $z \in C$,

$$z = Q_C x \iff \langle y - z, Jx - Jz \rangle, \ (\forall y \in C). \tag{10}$$

Definition 2 ([1]). A mapping $T: C \longrightarrow X$ is said to be a firmly nonexpansive-like mapping, if

$$\langle Tx - Ty, J(x - Tx) - J(y - Ty) \rangle \geqslant 0$$
 (11)

Mathematics 2019, 8, 284 3 of 7

for all $x, y \in C$.

Definition 3 ([1]). Let $T: C \longrightarrow X$ be a mapping. A point $p \in C$ is said to be an asymptotic fixed point of T, if there exists a sequence $\{x_n\}$ of C such that $x_n \rightharpoonup p$ and $x_n - Tx_n \longrightarrow 0$. The set of all asymptotic fixed points of T is denoted by $\hat{F}(T)$.

Definition 4 ([1]). The mapping T is said to be of type (r), if F(T) is nonempty and $\varphi(u, Tx) \leq \varphi(u, x)$ for all $u \in F(T)$ and $x \in C$.

It is known that if T is a mapping of type (r), then F(T) is closed and convex.

Definition 5 ([4]). The mapping T is said to be of type (sr), if T is of type (r) and $\varphi(Tz_n, z_n) \longrightarrow 0$, whenever $\{z_n\}$ is a bounded sequence of C such that $\varphi(u, z_n) - \varphi(u, Tz_n) \longrightarrow 0$ for some $u \in F(T)$.

Definition 6 ([4]). The sequence $\{T_n\}$ is said to satisfy the condition (Z), if every weak subsequential limit of $\{x_n\}$ belongs to $F(\{T_n\})$, whenever $\{x_n\}$ is a bounded sequence of C such that $x_n - T_n x_n \longrightarrow 0$.

Now, we give some results which will be used in our main results.

Theorem 1 ([5]). The space X is 2-uniformly convex if and only if there exists $\mu \ge 0$ such that

$$\frac{\|x+y\|^2 + \|x-y\|^2}{2} \geqslant \|x\|^2 + \|\mu^{-1}y\|^2, \quad \text{for all } x, y \in X.$$
 (12)

Lemma 1 ([4], Lemma 2.2). Suppose that X is 2-uniformly convex. Then

$$\left(\frac{1}{\mu_X}\|x-y\|\right)^2 \leqslant \varphi(x,y), \quad \text{for all } x,y \in X.$$
 (13)

Lemma 2 ([1]). *If* $T: C \longrightarrow X$ *is a firmly nonexpansive-like mapping, then* F(T) *is a closed convex subset of* X *and* $\hat{F}(T) = F(T)$.

Lemma 3 ([4]). Suppose that X is uniformly convex. If $S: X \longrightarrow X$ and $T: C \longrightarrow X$ are mappings of type (r) such that $F(S) \cap F(T)$ is nonempty and S or T is of type (sr), then $ST: C \longrightarrow X$ is of type (r) and $F(ST) = F(S) \cap F(T)$. Further, if both S and T are of type (sr), then so is ST.

Lemma 4 ([4]). Suppose that X is uniformly convex. Let $\{S_n\}$ be a sequence of mappings of X into itself and $\{T_n\}$ a sequence of mappings of C into X such that $F(\{S_n\}) \cap F(\{T_n\})$ is nonempty, both $\{S_n\}$ and $\{T_n\}$ are of type (sr), and S_n or T_n is of type (sr) for all $n \in \mathbb{N}$. Then the following holds:

- (i) $\{S_nT_n\}$ is of type (sr);
- (ii) if X is uniformly smooth and both $\{S_n\}$ and $\{T_n\}$ satisfy the condition (Z), then so does $\{S_nT_n\}$.

Theorem 2 ([4]). Let X be a smooth and uniformly convex Banach space, C a nonempty closed convex subset of X, and $\{T_n\}$ a sequence of mappings of C into X such that $\{T_n\}$ is of type (sr) and $\{T_n\}$ satisfies the condition (Z). If $T_n(C) \subset C$ for all $n \in \mathbb{N}$ and J is weakly sequentially continuous, then the sequence $\{x_n\}$ defined by $x_1 \in C$ and $x_{n+1} = T_n x_n$ for all $n \in \mathbb{N}$ converges weakly to the strong limit of $\{Q_F x_n\}$.

Now, we construct a new strongly relatively nonexpansive sequence from a given sequence of firmly nonexpansive-like mappings with a common fixed point in Banach spaces.

2. Main Results

The following results will be used in the sequel of the paper.

Mathematics 2019, 8, 284 4 of 7

Lemma 5. Let C be a nonempty closed convex subset of a smooth, strictly convex, 2-uniformly convex and reflexive Banach space X. Suppose that (S,T) is a pair of firmly nonexpansive-like mappings of C into X and let $F = F(S) \cap F(T) \neq \emptyset$. Let U be a mapping of C into X defined by $U = J^{-1}(JT - \beta J(I - S))$, where $\beta > 0$ and I denotes the identity mapping on C. Then

$$\varphi(u, Ux) + \frac{1}{2} \left(\frac{2}{\mu_X^2} - \beta \right) \|Ux - Tx\|^2 \le \varphi(u, Tx)$$

for all $u \in F(U)$ and $x \in C$.

Proof. Let $u \in F(U)$ and $x \in C$ be given. Then, from (7) and the definition of U, it follows that

$$\varphi(u,Ux) + \varphi(Ux,Tx) - \varphi(u,Tx) = 2\langle u - Ux, JTx - JUx \rangle$$

$$= 2\beta\langle u - Ux, J(x - Sx) \rangle. \tag{14}$$

Since *S* is firmly nonexpansive-like and $u \in F(S)$, we know that

$$\langle u - Ux, J(x - Sx) \rangle = \langle u - Sx, J(x - Sx) \rangle + \langle Sx - Ux, J(x - Sx) \rangle$$

= $\langle Sx - Ux, J(x - Sx) \rangle$. (15)

On the other hand, we have

$$\langle Sx - Ux, J(x - Sx) \rangle = -\|Sx - Tx\|^{2} + \langle Tx - Ux, J(x - Sx) \rangle$$

$$\leq -(\|Sx - Tx\|^{2} - \|Tx - Ux\| \|x - Sx\|)$$

$$\leq -(\|Sx - x\|^{2} - \frac{1}{2} \|Ux - Tx\|)^{2} + \frac{1}{4} \|Ux - Tx\|^{2}$$

$$\leq \|Ux - Tx\|^{2}.$$
(16)

Since $\beta > 0$, from (14)–(16), we deduce that

$$\varphi(u, Ux) + \varphi(Ux, Tx) - \varphi(u, Tx) \leqslant 2\beta \|Ux - Tx\|^2. \tag{17}$$

Since *X* is 2-uniformly convex, Lemma 1 implies that

$$(\mu_X)^{-2} \|Ux - Tx\|^2 \leqslant \varphi(Ux, Tx). \tag{18}$$

By (17) and (18), we obtain the desired inequality. \Box

Now, we present the construction of strongly relatively nonexpansive sequences in the following.

Theorem 3. Let C be a nonempty closed convex subset of a smooth and 2-uniformly convex Banach space X;

- (i) $\{T_n\}$, $\{S_n\}$ are sequences of firmly nonexpansive-like mappings from C into X such that $F = F(\{T_n\}) \cap F(\{S_n\})$ is nonempty;
- (ii) $\{U_n\}$ is a sequence of mappings from C into X defined by

$$U_n = J^{-1}(JT_n - \beta_n J(I - S_n))$$

for all $n \in \mathbb{N}$, where β_n is a sequence of real numbers such that $0 < \inf_n \beta_n$ and $\sup_n \beta_n < 2(\mu_X)^{-2}$ and I denotes the identity mapping on C.

Then $F(\{U_n\}) \subset F(\{S_n\}) \cap F(\{T_n\})$ and $\{U_n\}$ is of type (sr). Also, if X is uniformly smooth and $\{S_n\}$ satisfies the condition (Z), then $\{U_n\}$ satisfies the condition (Z).

Mathematics **2019**, *8*, 284 5 of 7

Proof. We can easily see that $F(\{U_n\}) \subset F(\{S_n\}) \cap F(\{T_n\})$. At first, we show that $\{U_n\}$ is of type (sr).

Note that $F(\{U_n\})$ is nonempty. By Lemma 5, we also know that each U_n is a mapping of type (r) from C into X.

Suppose that $\{T_n z_n\}$ is a bounded sequence of C such that

$$\varphi(u, T_n z_n) - \varphi(u, U_n T_n z_n) \longrightarrow 0$$

for some $u \in F(\{U_n\})$. Then, it follows from Lemma 5 that

$$0 \leqslant \frac{1}{2} \left(\frac{2}{\mu_X^2} - \beta_n \right) \| U_n z_n - T_n z_n \|^2 \leqslant \varphi(u, T_n z_n) - \varphi(u, U_n z_n). \tag{19}$$

Thus, it follows from $\sup_n \beta_n < 2(\mu_X)^{-2}$ that $||U_n z_n - T_n z_n|| \longrightarrow 0$. Consequently, we have $\varphi(U_n z_n, T_n z_n) \longrightarrow 0$ and hence $\{U_n\}$ is of type (sr). Now, we present the proof of part (ii). Suppose that X is uniformly smooth and $\{S_n\}$ satisfies the condition (Z). Let p be a weak subsequential limit of a bounded sequence $\{x_n\}$ of C such that $T_n x_n - U_n x_n \longrightarrow 0$. By the definition of U_n , we have

$$J(x_n - S_n x_n) = \frac{1}{\beta_n} (JT_n x_n - JU_n x_n)$$
(20)

for all $n \in \mathbb{N}$. Since J is uniformly norm-to-norm continuous on each nonempty bounded subset of X and $\sup_n \frac{1}{\beta_n} < \infty$, it follows from (20) that

$$||x_n - S_n x_n|| = \frac{1}{\beta_n} ||JT_n x_n - JU_n x_n|| \longrightarrow 0.$$

From our assumptions, we know that $p \in F \supset F(\{U_n\})$. Therefore, $\{U_n\}$ satisfies the condition (Z). \square

Remark 1. It is notable that every nonexpansive mapping T is a mapping of type (r), but the converse is not necessarily satisfied in a Hilbert space. For instance, let $T: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $Tx = x^2$, then T is of type (r) and is neither nonexpansive nor of type (sr). Also, let $T: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ be defined by $Tx = \sqrt{x}$. Then T is a mapping of type (sr).

Remark 2. For a mapping T from C into X, the following assertions hold:

- (a) T is of type (sr) if and only if $\{T, T, \dots\}$ is of type (sr);
- (b) $\hat{F}(T) = F(T)$ if and only if $\{T, T, \dots\}$ satisfies the condition (Z).

Corollary 1. Let (S,T) be a pair of firmly nonexpansive-like mappings from C into X such that $F(T) \cap F(S)$ are nonempty and U be a mapping from C into X which is defined by

$$U = I^{-1}(IT - \beta I(I - S))$$

where $0 < \beta < 2(\mu_X)^{-2}$. Then the following assertions hold:

- (i) $F(U) \subset F(T) \cap F(S)$ and U is of type (sr);
- (ii) if X is uniformly smooth, then $\hat{F}(U) = F(U)$.

Theorem 4. Let $\{V_n\}$ be a sequence of mappings from C into itself which are defined by

$$V_n = Q_C U_n$$

for all $n \in \mathbb{N}$. Then the following consequences hold:

Mathematics 2019, 8, 284 6 of 7

- (i) $F(\lbrace V_n \rbrace) \subset F$ and $\lbrace V_n \rbrace$ is of type (sr);
- (ii) if X is uniformly smooth and $\{S_n\}$ satisfies the condition (Z), then so does $\{V_n\}$.

Proof. We know that $F(V_n) \subset F(T_n) \cap F(S_n)$ for all $n \in N$ and hence $F(\{V_n\}) \subset F \neq \emptyset$. We first show that $\{V_n\}$ is of type (sr). From (i) of Corollary 1, we know that each U_n is of type (sr). Since Q_C is of type (sr) from X into itself and

$$F(Q_C) \cap F(U_n) \subset F(T_n) \cap F(S_n) \supset F \neq \emptyset$$
,

Lemma 3 implies that each $V_n = Q_C U_n$ is also of type (sr). Since $\{Q_C, Q_C, ...\}$ is of type (sr) by Remark 2, $\{U_n\}$ is of type (sr) by Theorem 3, and

$$F(Q_C) \cap F(\{U_n\}) \subset F \neq \emptyset$$
,

the part (*i*) of Lemma 4 implies that $\{V_n\}$ is of type (sr).

We finally show the part (ii). Suppose that X is uniformly smooth and $\{S_n\}$ satisfies the condition (Z). Since C is weakly closed, we can easily see that $\hat{F}(Q_C) = F(Q_C) = C$. This implies that $\{Q_C, Q_C, ...\}$ satisfies the condition (Z). From Theorem 3, we know that $\{U_n\}$ satisfies the condition (Z). Thus, the part (ii) of Lemma 4 implies the conclusion. \square

As a direct consequence of Theorems 2 and 4, we obtain the following result.

Theorem 5. Let X be a uniformly smooth and 2-uniformly convex Banach space, C be a nonempty closed convex subset of X, $\{T_n\}$ and $\{S_n\}$ be two sequences of firmly nonexpansive-like mappings from C into X such that $F = F(\{T_n\}) \cap F(\{S_n\})$ is nonempty and $\{S_n\}$ satisfies the condition (Z), β_n be a sequence of real numbers such that

$$0<\inf_n\beta_n,\ \sup_n\beta_n<2(\mu_X)^{-2},$$

and $\{x_n\}$ be a sequence defined by $x_1 \in C$ and

$$x_{n+1} = Q_C J^{-1} (J T_n x_n - \beta_n J (x_n - S_n x_n))$$

for all $n \in \mathbb{N}$. If J is weakly sequentially continuous, then $\{x_n\}$ converges weakly to the strong limit of $\{Q_Fx_n\}$.

Author Contributions: H.I. analyzed and prepared/edited the manuscript, M.R.H. analyzed and prepared the manuscript, V.P. analyzed and prepared/edited the manuscript, C.P. analyzed and prepared/edited the manuscript, and S.K. analyzed and prepared the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Aoyama, K.; Kohsaka, F.; Takahashi, W. Three generalizations of firmly nonexpansive mappings: Their relations and continuity properties. *J. Nonlinear Convex Anal.* **2009**, *10*, 131–147.
- 2. Aoyama, K.; Kohsaka, F.; Takahashi, W. Strongly relatively nonexpansive sequences in Banach spaces and applications. *J. Fixed Point Theory Appl.* **2009**, *5*, 201–225. [CrossRef]
- 3. Aoyama, K.; Kohsaka, F.; Takahashi, W. Strong convergence theorems for a family of mappings of type (P) and applications. *Nonlinear Anal. Optim.* **2009**, 1–17.

Mathematics **2019**, 8, 284

4. Aoyama, K.; Kohsaka, F. Strongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappings. *Fixed Point Theory Appl.* **2014**, 2014, 95. [CrossRef]

5. Beauzamy, B. Introduction to Banach Spaces and Their Geometry; North-Holland: Amsterdam, The Netherlands, 1985.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).