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Abstract: Poisson equation is a widely used partial differential equation. It is very important to study
its numerical solution. Based on the strategy of domain decomposition, the alternating asymmetric
iterative algorithm for 3D Poisson equation is provided. The solution domain is divided into several
sub-domains, and eight asymmetric iterative schemes with the relaxation factor for 3D Poisson equation
are constructed. When the numbers of iteration are odd or even, the computational process of the
presented iterative algorithm are proposed respectively. In the calculation of the inner interfaces, the
group explicit method is used, which makes the algorithm to be performed fast and in parallel, and avoids
the difficulty of solving large-scale linear equations. Furthermore, the convergence of the algorithm
is analyzed theoretically. Finally, by comparing with the numerical experimental results of Jacobi and
Gauss Seidel iterative algorithms, it is shown that the alternating asymmetric iterative algorithm based
on domain decomposition has shorter computation time, fewer iteration numbers and good parallelism.

Keywords: poisson equation; domain decomposition; asymmetric iterative schemes; group explicit;
parallel computation

1. Introduction

Poisson equation is an elliptic partial differential equation, which frequently appears in many fields
such as fluid dynamics, heat transfer, electromagnetics, acoustics, electrostatics mechanical engineering
and so on. Many researches on studding the numerical techniques to approximate the solution of Poisson
equation have been made in the past few decades. The application of finite difference methods for solving
Poisson equation will normally lead to a large, block, and sparse system of equations. Direct methods and
iterative methods [1] are normally considered as common approaches for solving such system of equations.
Several high precision multigrid and compact difference methods are given in [2–6]. Romao et al. [7,8]
provides the Galerkin and least-squares finite element methods in the solution of 3D Poisson equation.
In [9,10], the Haar wavelet methods are given. Speyer et al. [11] provide a preconditioned bi-conjugate
gradient stabilized method which is efficient, albeit nonmonotonic and convergent.

With the continuous improvement of computer hardware, people are more and more focused on
solving large-scale scientific and engineering problems quickly and efficiently on parallel computers.
Therefore, people wish to find some direct methods and iterative methods, which have the characteristic
of much better solving elliptic equations and easier parallel implementation. In recent years, parallel
algorithms are also constantly emerging. Several new parallel methods of direct solution are proposed.
P. Valero-Lara and A. Pinelli et al. [12] provide the implementation of a fast solver based on a block cyclic
reduction algorithm for the linear systems of a three dimensional separable elliptic problem. And they
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also study on the parallel characteristics of an algorithm for the direct solution of linear systems with a
block-tridiagonal coefficient matrix (BLKTRI problem) [13]. C. P. Stone et al. [14] analyze the performance
of a block tridiagonal benchmark. Many authors have given the implementation of scalar tridiagonal
solver on GPUs [15–17]. Y. Zhang [16] also illustrates several methods to solve tridiagonal systems on
GPUs. Because of the direct method to solve large-scale sparse and block diagonal equation systems,
when the coefficient matrix is close to singularity, the calculation will often stop or make mistakes. So
people also find iterative methods which can be solved by constructing some efficient iterative schemes
to approximate the problem itself, so that the iteration can reach a certain accuracy. In [18–21], a class of
efficient parallel finite difference iterative algorithms for Poisson equation were also proposed.

In addition, the domain decomposition method [22] is also a powerful tool for parallel implementation,
which studies parallelization from the model level of physical problems. This kind of method can
decompose scale problem into small-scale problem and solve serial problem into parallel problem.
The explicit-implicit domain decomposition method is proposed by Kuznetsov [23]. Because the numerical
boundary conditions on the internal boundary are often not the same as those of the original mathematical
model or the corresponding physical problems, different methods to obtain the internal boundary
information form different explicit-implicit domain decomposition (EIDD) methods. This leads to the
idea of parallel implementation for iterative method based on domain decomposition. In [24], the authors
have proposed a kind of finite difference parallel iterative algorithm for two-dimensional Poisson problem,
and verified its efficiency and accuracy.

This paper extends to the study of the domain decomposition method for three-dimensional Poisson
problem. Several finite difference asymmetric iterative schemes are constructed, and each asymmetric
iterative schemes are used to solve the sub-domains alternatively and in parallel; in the processing of
inner interfaces, group explicit (GE) method [25,26] is used. The calculation on the whole solution domain
is explicit but using the implicit iterative schemes, which greatly avoids the difficulty of solving linear
equations and improves the calculation speed and accuracy. When the number of iteration is odd or
even, the iterative process of the presented algorithm is given respectively, and a kind of efficient iterative
algorithm is established based on domain decomposition for solving three-dimensional Poisson equation.

This paper is outlined as follows. In Section 2, we present several asymmetric iterative schemes.
Section 3 gives the alternating asymmetric iterative algorithm. And the convergence and the optimal
relaxation factor are obtained in Section 4. In Section 5, we perform the numerical experiments to examine
the presented algorithm. Finally we give the conclusion of this paper in Section 6.

2. Asymmetric Iterative Schemes

Consider the three-dimensional Poisson problem,

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = f (x, y, z), (x, y, z) ∈ Ω, (1)

with the boundary condition,
u(x, y, z) = g(x, y, z), (x, y, z) ∈ ∂Ω. (2)

where Ω = [0, L]× [0, M]× [0, K], and ∂Ω is the boundary of the domain Ω. We divide the solution
domain Ω into uniform grid, the space step hx = L/l in x direction, hy = M/m in y direction and
hz = K/s in z direction. For implicity, the space steps are assumed equal that hx = hy = hz = h. Denote

xi = ih, i = 0, 1, ..., l; yj = jh, j = 0, 1, ..., m; zk = kh, k = 0, 1, ..., s; u(n)
i,j,k as numerical solution on the nth
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iteration level at the grid node (xi, yj, zk). We can give the classical difference discretization in Equation (3)
for the 3D Poisson Equation (1),

ui+1,j,k − 2ui,j,k + ui−1,j,k

h2 +
ui,j+1,k − 2ui,j,k + ui,j−1,k

h2 +
ui,j,k+1 − 2ui,j,k + ui,j,k−1

h2 = fi,j,k, (3)

namely,

ui,j,k −
1
6
(ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1 − h2 fi,j,k) = 0. (4)

Then we construct eight asymmetric iterative schemes by the difference operator L with the relaxation
factor ω as follows,

L1u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i+1,j,k + u(n+1)
i,j+1,k + u(n+1)

i,j,k+1) + u(n)
i−1,j,k + u(n)

i,j−1,k + u(n)
i,j,k−1

+(1−ω)(u(n)
i+1,j,k + u(n)

i,j+1,k + u(n)
i,j,k+1)− h2 fi,j,k

]
, (5)

L2u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i−1,j,k + u(n+1)
i,j+1,k + u(n+1)

i,j,k+1) + u(n)
i+1,j,k + u(n)

i,j−1,k + u(n)
i,j,k−1

+(1−ω)(u(n)
i−1,j,k + u(n)

i,j+1,k + u(n)
i,j,k+1)− h2 fi,j,k

]
, (6)

L3u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i−1,j,k + u(n+1)
i,j−1,k + u(n+1)

i,j,k+1) + u(n)
i+1,j,k + u(n)

i,j+1,k + u(n)
i,j,k−1

+(1−ω)(u(n)
i−1,j,k + u(n)

i,j−1,k + u(n)
i,j,k+1)− h2 fi,j,k

]
, (7)

L4u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i+1,j,k + u(n+1)
i,j−1,k + u(n+1)

i,j,k+1) + u(n)
i−1,j,k + u(n)

i,j+1,k + u(n)
i,j,k−1

+(1−ω)(u(n)
i+1,j,k + u(n)

i,j−1,k + u(n)
i,j,k+1)− h2 fi,j,k

]
, (8)

L5u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i+1,j,k + u(n+1)
i,j+1,k + u(n+1)

i,j,k−1) + u(n)
i−1,j,k + u(n)

i,j−1,k + u(n)
i,j,k+1

+(1−ω)(u(n)
i+1,j,k + u(n)

i,j+1,k + u(n)
i,j,k−1)− h2 fi,j,k

]
, (9)

L6u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i−1,j,k + u(n+1)
i,j+1,k + u(n+1)

i,j,k−1) + u(n)
i+1,j,k + u(n)

i,j−1,k + u(n)
i,j,k+1

+(1−ω)(u(n)
i−1,j,k + u(n)

i,j+1,k + u(n)
i,j,k−1)− h2 fi,j,k

]
, (10)

L7u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i−1,j,k + u(n+1)
i,j−1,k + u(n+1)

i,j,k−1) + u(n)
i+1,j,k + u(n)

i,j+1,k + u(n)
i,j,k+1

+(1−ω)(u(n)
i−1,j,k + u(n)

i,j−1,k + u(n)
i,j,k−1)− h2 fi,j,k

]
, (11)



Mathematics 2020, 8, 281 4 of 19

L8u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i+1,j,k + u(n+1)
i,j−1,k + u(n+1)

i,j,k−1) + u(n)
i−1,j,k + u(n)

i,j+1,k + u(n)
i,j,k+1

+(1−ω)(u(n)
i+1,j,k + u(n)

i,j−1,k + u(n)
i,j,k−1)− h2 fi,j,k

]
, (12)

Figure 1 represents the distribution of unknown solution at the (n + 1)th iteration level for the eight
asymmetric iterative schemes (5)–(12).

Figure 1. The asymmetric iterative schemes (5)–(12) for the 3D Poisson equation with the relaxation
factor ω.

3. Alternating Asymmetric Iterative Algorithm Based on Domain Decomposition

3.1. The Domain Decomposition

We can divide the 3D solution domain Ω into multi-subdomains. For simplicity, we use six grid
planes x = p, x = p + 1, y = q, y = q + 1, z = r, z = r + 1 to discrete the solution domain Ω into eight
sub-domains, and note Ωi, i = 1, 2, ..., 8 as subsets of grid points, while p, q, r are positive integers with
p ∈ [1, l], q ∈ [1, m], r ∈ [1, s]. Denote πi is the interfaces of the sub-domain Ωi. The sorting order of
sub-domains is as follows: the subspaces above z = r + 1 are sorted anticlockwise starting from the upper
right sub-domain of the inner layer, and the sub-domains under z = r are sorted anticlockwise starting
from the lower right subspace (as shown in Figure 2). The specific description is as follows:
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Ω1 : {(x, y, z)|x = l − 1, l − 2, ..., p + 1; y = m− 1, m− 2, ..., q + 1; z = s− 1, s− 2, ..., r + 1} ,
Ω2 : {(x, y, z)|x = 1, 2, ..., p; y = m− 1, m− 2, ..., q + 1; z = s− 1, s− 2, ..., r + 1} ,
Ω3 : {(x, y, z)|x = 1, 2, ..., p; y = 1, 2, ..., q; z = s− 1, s− 2, ..., r + 1} ,
Ω4 : {(x, y, z)|x = l − 1, l − 2, ..., p + 1; y = 1, 2, ..., q; z = s− 1, s− 2, ..., r + 1} ,
Ω5 : {(x, y, z)|x = l − 1, l − 2, ..., p + 1; y = m− 1, m− 2, ..., q + 1; z = 1, 2, ..., r} ,
Ω6 : {(x, y, z)|x = 1, 2, ..., p; y = m− 1, m− 2, ..., q + 1; z = 1, 2, ..., r} ,
Ω7 : {(x, y, z)|x = 1, 2, ..., p; y = 1, 2, ..., q; z = 1, 2, ..., r} ,
Ω8 : {(x, y, z)|x = l − 1, l − 2, ..., p + 1; y = 1, 2, ..., q; z = 1, 2, ..., r} .

Figure 2. The solution domain is divided into eight sub-domains.

3.2. Algorithm Implementation

In this subsection, we provide a new alternating asymmetric iterative (AAI) algorithm based on
domain decomposition for 3D Poisson problem (1) and (2). We give different computational processes in
each sub-domains at the odd iteration layers and even iteration layers respectively, and use the asymmetric
iterative schemes alternatively. The Group Explicit (GE) method is used to solve the inner interfaces, which
makes the algorithm to be computed fast and in parallel, and avoids the difficulty of solving large-scale
linear equations.
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3.2.1. Implementation of Odd Level Iteration

When the iteration number are odd, namely, n = 2a + 1, a = 0, 1, ..., we solve the grid nodes from the
boundaries to the inner interfaces step by step, that is, using the asymmetric iterative schemes (5)–(12) to
solve the grid points in Ωi, i = 1, 2, ..., 8 respectively:

L1u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω1,

L2u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω2,

L3u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω3,

L4u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω4,

L5u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω5,

L6u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω6,

L7u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω7,

L8u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω8.

(13)

Obviously, the numerical solution can be obtained independently in parallel when the iteration numbers
are odd, which saves a lot of computational time compared with the full-implicit iteration case. In addition,
although the asymmetric iterative schemes are implicit, the computational process can be transformed
into explicit, which can obviously improve the calculation speed and avoid solving large and complex
linear equations.

3.2.2. Implementation of Even Level Iteration

When the iteration number is even, namely, n = 2a + 2, a = 0, 1, ..., we calculate the numerical
solution from the inner interfaces to the boundaries step by step. Where the computational process of the
interfaces π =

⋃
πi, i = 1, 2, ..., 8 includes three parts:

• Interfaces I (namely, the grid nodes at the center of the domain Ω) (shown in Figure 3): (p, q, r + 1), (p+
1, q, r + 1), (p + 1, q + 1, r + 1), (p, q + 1, r + 1), (p, q, r), (p + 1, q, r), (p + 1, q + 1, r), (p, q + 1, r).

• Interfaces II: the interface lines except Interfaces I (shown in Figure 3).
• Interfaces III: the interfaces except Interfaces I and II, namely,

π \ Inter f aces I ∪ Inter f aces I I.

Therefore, it can be seen that the interfaces π = Interfaces I ∪ Interfaces II ∪ Interfaces III. When the
interfaces π are solved, the inner grid nodes in the domain Ω can be solved in order like the odd case of
iteration numbers in Section 3.2.1. We give the computational procedures in detail as follows.

(1) The solution to Interfaces I

We use the asymmetric iterative schemes (5)–(12) to solve the Interfaces I, then the following linear
equations can be obtained:
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M1



u(2a+2)
p+1,q+1,r+1

u(2a+2)
p,q+1,r+1

u(2a+2)
p,q,r+1

u(2a+2)
p+1,q,r+1

u(2a+2)
p+1,q+1,r

u(2a+2)
p,q+1,r

u(2a+2)
p,q,r

u(2a+2)
p+1,q,r


= N1, (14)

where matrices M1 and N1 are represented as bellow,

M1 =



6 −ω −ω −ω

−ω 6 −ω −ω

−ω 6 −ω −ω

−ω −ω 6 −ω

−ω 6 −ω −ω

−ω −ω 6 −ω

−ω −ω 6 −ω

−ω −ω −ω 6


, N1 =



e1

e2

e3

e4

e5

e6

e7

e8


,

e1 = u(2a+1)
p+2,q+1,r+1 + u(2a+1)

p+1,q+2,r+1 + u(2a+1)
p+1,q+1,r+2 + (1−ω)(u(2a+1)

p,q+1,r+1 + u(2a+1)
p+1,q,r+1

+u(2a+1)
p+1,q+1,r)− h2 fp+1,q+1,r+1,

e2 = u(2a+1)
p−1,q+1,r+1 + u(2a+1)

p,q+2,r+1 + u(2a+1)
p,q+1,r+2 + (1−ω)(u(2a+1)

p+1,q+1,r+1 + u(2a+1)
p,q,r+1 + u(2a+1)

p,q+1,r)

−h2 fp,q+1,r+1,

e3 = u(2a+1)
p−1,q,r+1 + u(2a+1)

p,q−1,r+1 + u(2a+1)
p,q,r+2 + (1−ω)(u(2a+1)

p+1,q,r+1 + u(2a+1)
p,q+1,r+1 + u(2a+1)

p,q,r )

−h2 fp,q,r+1,

e4 = u(2a+1)
p+2,q,r+1 + u(2a+1)

p+1,q−1,r+1 + u(2a+1)
p+1,q,r+2 + (1−ω)(u(2a+1)

p,q,r+1 + u(2a+1)
p+1,q+1,r+1 + u(2a+1)

p+1,q,r)

−h2 fp+1,q,r+1,

e5 = u(2a+1)
p+2,q+1,r + u(2a+1)

p+1,q+2,r + u(2a+1)
p+1,q+1,r−1 + (1−ω)(u(2a+1)

p,q+1,r + u(2a+1)
p+1,q,r + u(2a+1)

p+1,q+1,r+1)

−h2 fp+1,q+1,r,

e6 = u(2a+1)
p−1,q+1,r + u(2a+1)

p,q+2,r + u(2a+1)
p,q+1,r−1 + (1−ω)(u(2a+1)

p+1,q+1,r + u(2a+1)
p,q,r + u(2a+1)

p,q+1,r+1)

−h2 fp,q+1,r,

e7 = u(2a+1)
p−1,q,r + u(2a+1)

p,q−1,r + u(2a+1)
p,q,r−1 + (1−ω)(u(2a+1)

p+1,q,r + u(2a+1)
p,q+1,r + u(2a+1)

p,q,r+1)

−h2 fp,q,r,

e8 = u(2a+1)
p+2,q,r + u(2a+1)

p+1,q−1,r + u(2a+1)
p+1,q,r−1 + (1−ω)(u(2a+1)

p,q,r + u(2a+1)
p+1,q+1,r + u(2a+1)

p+1,q,r+1)

−h2 fp+1,q,r.
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Then we just solve the above eight-order sparse linear Equation (14) to obtain the numerical solution
of the inter f ace I.

(2) The solution to Interfaces II

The computational procedure of the Interfaces I is depending on the use of GE method based on
eight points per group. Similarly, we use the GE method based on four points per group to solve the
Interfaces II between the inner boundaries of eight subspaces Ωi, i = 1, 2, ..., 8. Take one group of the
Interfaces II for example to illustrate the order of the solution process. Figure 3 gives the direction of the
iteration computation.

Figure 3. The computation of the interfaces I, I I, I I I.

Using the asymmetric iterative schemes (6), (7), (10), (11) to solve the grid nodes (i, q, r), (i, q, r +
1), (i, q+ 1, r+ 1), (i, q+ 1, r)i = p+ 2, p+ 3, ..., l− 1 (shown in Figure 3), then we can provide the following
fourth-order linear equations:


6 −ω −ω

−ω 6 −ω

−ω 6 −ω

−ω −ω 6




u(2a+2)
i,q,r

u(2a+2)
i,q,r+1

u(2a+2)
i,q+1,r+1

u(2a+2)
i,q+1,r

 =


d1

d2

d3

d4

 , (15)
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where

d1 = ωu(2a+2)
i−1,q,r + u(2a+1)

i+1,q,r + u(2a+1)
i,q−1,r + u(2a+1)

i,q,r−1 + (1−ω)(u(2a+1)
i−1,q,r + u(2a+1)

i,q+1,r + u(2a+1)
i,q,r+1 ),

d2 = ωu(2a+2)
i−1,q,r+1 + u(2a+1)

i+1,q,r+1 + u(2a+1)
i,q−1,r+1 + u(2a+1)

i,q,r+2 + (1−ω)(u(2a+1)
i−1,q,r+1 + u(2a+1)

i,q+1,r+1

+u(2a+1)
i,q,r ),

d3 = ωu(2a+2)
i−1,q+1,r+1 + u(2a+1)

i+1,q+1,r+1 + u(2a+1)
i,q+2,r+1 + u(2a+1)

i,q+1,r+2 + (1−ω)(u(2a+1)
i−1,q+1,r+1

+u(2a+1)
i,q,r+1 + u(2a+1)

i,q+1,r ),

d4 = ωu(2a+2)
i−1,q+1,r + u(2a+1)

i+1,q+1,r + u(2a+1)
i,q+2,r + u(2a+1)

i,q+1,r−1 + (1−ω)(u(2a+1)
i−1,q+1,r + u(2a+1)

i,q,r

+u(2a+1)
i,q+1,r+1).

Then the numerical solution of such a set of inner boundary points can be calculated quickly only by
solving the fourth order sparse linear Equation (15). In the same way, the points on the other five groups
of inner boundary lines are also calculated by Group Explicit method, and we will not represent them one
by one here.

(3) The solution to Interfaces III

It can be seen from the calculation process of Interfaces I and II we solve the Interfaces III just depending
on the group explicit method based on two points a group. The specific calculation process is the same as
above (1) and (2), and we do not repeat it.

Finally, taking the above results as the interface conditions, we use the asymmetric iterative schemes
different from the schemes at the odd levels to solve the inner points on Ωi, i = 1, 2, ..., 8.

L7u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω1\π1,

L8u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω2\π2,

L5u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω3\π3,

L6u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω4\π4,

L3u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω5\π5,

L4u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω6\π6,

L1u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω7\π7,

L2u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω8\π8.

(16)

Through the above specific implementation process of the domain decomposition iteration algorithm,
we can see that the calculation of numerical solution can transform implicit iteration to explicit calculation
no matter on the odd or even iteration layer. Combining with the domain decomposition method, the
alternating asymmetric iterative (AAI) algorithm is well performed in parallel.

4. The Algorithm Convergence

In the last section, we propose a new AAI algorithm based domain decomposition for solving the
three-dimensional Poisson problem (1)–(2), which can be written in the following matrix form,

u(n+1) = Tωu(n) + b, (17)
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while Tω is the iterative matrix of AAI algorithm and b is the right-term. Then we can give the
following theorem:

Theorem 1. The sufficient and necessary conditions for the convergence of AAI algorithm are as follows:

ρ(Tω) < 1, (18)

where ρ(Tω) is the corresponding spectral radius of the iterative matrix Tω.

Consider the eigenvalue problem of Equation (17):

Tωx = λx, (19)

Due to the asymmetry of the schemes (5) and (12) in the calculation direction, we take one of the
iteration scheme (5) as an example,

λui,j,k −
1
6
[(λω + 1−ω)ui,j,k + (λω + 1−ω)ui,j−1,k + (λω + 1−ω)ui,j,k−1 + ui+1,j,k

+ ui,j+1,k + ui,j,k+1] = 0. (20)

Firstly, we give the relationship between the eigenvalues µ of Jacobi iterative matrix B and the
eigenvalues λ of the AAI iterative matrix Tω . Let Vi,j,k be the eigenvectors of the Jacobi iterative matrix, then

ui,j,k = [±(λω + 1−ω)
1
2 ]i+j+kVi,j,k. (21)

Taking Equation (21) into Equation (20), we can obtain,

µVi,j,k −
1
6
[Vi−1,j,k + Vi,j−1,k + Vi,j,k−1 + Vi+1,j,k + Vi,j+1,k + Vi,j,k+1] = 0. (22)

where
µ = ± λ

(λω + 1−ω)
1
2

. (23)

If λ is the eigenvalue of the matrix Tω, then

µ2(λω + 1−ω) = λ2. (24)

Equation (24) determines that µ is eigenvalue of the matrix B, which is Jacobi iteration matrix of
Poisson equation. On the contrary, if µ is eigenvalue of the matrix B, it can be determined only if there
is a relationship between the eigenvalues λ of Jacobi iteration matrix and the eigenvalues µ of the given
iteration matrix in the Equation (24).

In particular, it is shown that the iterative schemes (5)–(12) are Gauss-Seidel iterative schemes in fact
when ω = 1. Then the presented AAI algorithm has obvious convergence since λ = µ2 < 1.

Second, we discuss the changes of ρ(Tω) about ω.
From Equation (24), we can see that the eigenvalue λ depends on the relaxation factor ω and the

eigenvalue µ of Jacobi iteration matrix. Suppose 0 ≤ µ ≤ 1, 0 < ω < 2, the two eigenvalues are obtained
by Equation (24):

λ1(ω, µ) =
µ2ω

2
+ µ

√
(

µω

2
)2 − (ω− 1), (25)
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λ2(ω, µ) =
µ2ω

2
− µ

√
(

µω

2
)2 − (ω− 1), (26)

Define
M(ω, µ) = max{|λ1(ω, µ)|, |λ2(ω, µ)|}, (27)

by the discriminant equaling to zero, namely,

∆ = µ4ω2 − 4µ2(ω− 1) = 0. (28)

Then the root of the Equation (24) is

ωµ =
2(1−

√
1− µ2)

µ2 , 0 < ωµ < 2. (29)

When 0 < ω < ωµ, ∆ > 0, we can get

λ1(ω, µ) > λ2(ω, µ) > 0. (30)

When ωµ < ω < 2, the eigenvalue λ1(ω, µ) and λ2(ω, µ) are conjugate complex, therefore

|λ1(ω, µ)| = |λ2(ω, µ)| = µ2(ω− 1). (31)

Due to Equations (30) and (31), we can give

M(ω, µ) =

{
λ1(ω, µ), 0 < ω < ωµ,
µ2(ω− 1), ωµ < ω < 2.

(32)

It is obviously seen that
M(ω, µ) < 1. (33)

In fact, if ωµ < ω < 2, Equation (33) is ture clearly; Otherwise 0 < ω < ωµ, and

M(ω, µ) = λ1(ω, µ) < µ2ω
2 + µ

√
( µω

2 )2 − µω + 1, (0 < ω < ωµ)

= µ < 1.
(34)

Therefore, ρ(Tω) < 1, Equation (18) is proved and the presented AAI algorithm is convergent.
Obviously, the spectrum radius ρ(Tω) of the presented iterative matrix depends on the relaxation

factor ω, so choosing approximate ω is important to the number of iterations and the convergence rate.
Since the optimal relaxation factor ωopt is obtained for 2D Poisson problem in [25], we can also

provide the same computation for 3D case. When

ω = ωopt =
2

1 +
√

1− ρ(B)2 + ε
, (ε > 0), (35)

ρ(Tωopt) obtains the minimum

ρ(Tωopt) = (1−
√

1− ρ(B)2)2 + ερ(B)2, (ε > 0), (36)

where ρ(B) is the spectrum radius of Jacobi iterative matrix, and ε is a positive, sufficiently small number.
The optimal relaxation factor ωopt can be theoretically evaluated by Equation (36).
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5. Numerical Experiments

In order to confirm the effectiveness of the AAI algorithm, the following experiments are carried out.
The initial iterative values u(0)

i,j,k = 0 (i = 1, 2, · · · , l − 1; j = 1, 2, · · · , m− 1; k = 1, 2, ..., s− 1) is given.
(1) Consider the 3D Laplace equation

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = 0, (x, y, z) ∈ [0, 1]3, (37)

with the boundary condition,
u(0, y, z) = sin(y + z);
u(1, y, z) = exp(

√
2)sin(y + z);

u(x, 0, z) = exp(
√

2x)sin(z);
u(x, 1, z) = exp(

√
2x)sin(1 + z);

u(x, y, 0) = exp(
√

2x)sin(y);
u(x, y, 1) = exp(

√
2x)sin(y + 1).

(38)

The exact solution of the 3D Poisson problem (37)–(38) is u(x, y, z) = exp(
√

2x)sin(y + z). Let u(xi, yj, zk)

be the exact solution and u(n)
i,j,k the nth iterative solution, the errors are calculated in L∞-norm as:

‖E(n)‖∞,h = max
i,j,k

(e(n)h (i, j, k)) = max
i,j,k
|u(xi, yj, zk)− u(n)

i,j,k|. (39)

Moreover, the rate of convergence in space is calculated by

Rate o f convergence ≈ log(‖E‖∞,h1 /‖E‖∞,h2)

log(h1/h2)
.

where h1, h2 are the space steps.
Table 1 gives the errors ‖E‖∞ of the presented alternating asymmetric iteration algorithm based

on domain decomposition for the 3D Laplace problem (37)–(38) with different values of ω when
l = m = s = 31, h = 1/30, n = 150, we can obviously see that the errors is relatively smaller when the
relaxation factor ω is about 1.9. we further see that the errors get the minimum when ω is about 1.82
shown in Figure 4a, which is match with the result of Equation (35). Figure 4b performs the errors with
z = 0.5 when ω = 1.82, which illustrate the effectiveness of the AAI algorithm.

From Tables 2 and 3, we can see the iteration numbers of the AAI algorithm is the least during the
Jacobi, Gauss-Seidel iterative methods under some error controls when h = 1/30, 1/50. In addition,
the AAI algorithm obtains shorter times than the Jacobi and the Gauss-Seidel methods when the
number of the grid nodes is in increasing. Table 4 gives the convergence rates and errors of the
AAI algorithm. In computation of the rates of convergence in space, the spatial steps are taken as
h = 1/(16 + 8d), d = 0, 1, · · · , 4. We can see the rates is of order 2 in space and the errors can up to 10−5.

Figure 5 provides the errors, relative errors and numerical solutions at z = 1/3, 2/3 when
l = m = s = 31, h = 1/30, n = 150, ω = 1.82, which shows the AAI algorithm is effect and accurate.
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Table 1. The errors ‖E‖∞ of alternating asymmetric iterative (AAI) algorithm based on domain
decomposition with the different values of ω when l = m = s = 31, h = 1/30, n = 150.

ω ‖ E ‖∞ ω ‖ E ‖∞

1.0 4.4434×10−1 1.6 3.9316×10−2

1.1 3.6971×10−1 1.7 1.0478×10−2

1.2 2.9383×10−1 1.8 4.8059×10−4

1.3 2.1896×10−1 1.9 2.0334×10−4

1.4 1.4838×10−1 2.0 errors
1.5 8.6993×10−2 – –

Table 1: The errors ∥E∥∞ of alternating asymmetric iterative(AAI) algorithm based on domain
decomposition with the different values of ω when l = m = s = 31, h = 1/30, n = 150

ω ∥ E ∥∞ ω ∥ E ∥∞
1.0 4.4434e-01 1.6 3.9316e-02
1.1 3.6971e-01 1.7 1.0478e-02
1.2 2.9383e-01 1.8 4.8059e-04
1.3 2.1896e-01 1.9 2.0334e-04
1.4 1.4838e-01 2.0 errors
1.5 8.6993e-02 – –

1.75 1.8 1.85 1.9 1.95 2
0

0.5

1

1.5

2

||E
||

10-3

(a) (b)

Figure 4: The ∥E∥∞ with the different ω and the errors at z = 0.5 when l = m = s = 31, h =
1/30, n = 150. (a): ∥E∥∞; (b): the errors at z = 0.5 when ω = 1.82

Table 2: The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm
under the different error controls when l = m = s = 31, h = 1/30

∥E∥∞ 10−3 10−4 10−5

numbers time(s) numbers time(s) numbers time(s)

Jacobi 987 3.3906 1401 4.4219 1774 5.0000
Gauss-Seidel 491 2.4219 698 3.1406 885 3.5469

AAI(ω = 1.82) 93 6.8906 123 9.6406 145 10.1093

Table 3: The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm
under the different error controls when l = m = s = 51, h = 1/50

∥E∥∞ 10−3 10−4 10−5

numbers time(s) numbers time(s) numbers time(s)

Jacobi 2745 21.5156 3905 34.5000 5018 37.9219
Gauss-Seidel 1368 17.2344 1948 20.5938 2505 35.4688

AAI(ω = 1.94) 115 9.4375 209 18.3437 283 22.1250

Table 4: The convergence rates and errors ∥E∥∞ of the presented iterative algorithm when
ω = 1.95, n = 3000

Numbers 16 × 16 × 16 24 × 24 × 24 32 × 32 × 32 40 × 40 × 40 48 × 48 × 48

Rates – 1.9909 1.9906 1.9956 1.9979
Errors 1.4277e-04 6.3687e-05 3.5920e-05 2.3011e-05 1.5986e-05

12

Figure 4. The ‖E‖∞ with the different ω and the errors at z = 0.5 when l = m = s = 31, h = 1/30, n = 150.
(a) ‖E‖∞; (b) the errors at z = 0.5 when ω = 1.82.

Table 2. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 31, h = 1/30.

‖E‖∞ 10−3 10−4 10−5

Numbers Time(s) Numbers Time(s) Numbers Time(s)

Jacobi 987 3.3906 1401 4.4219 1774 5.0000
Gauss-Seidel 491 2.4219 698 3.1406 885 3.5469

AAI (ω = 1.82) 93 6.8906 123 9.6406 145 10.1093

Table 3. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 51, h = 1/50.

‖E‖∞ 10−3 10−4 10−5

Numbers Time(s) Numbers Time(s) Numbers Time(s)

Jacobi 2745 21.5156 3905 34.5000 5018 37.9219
Gauss-Seidel 1368 17.2344 1948 20.5938 2505 35.4688

AAI (ω = 1.94) 115 9.4375 209 18.3437 283 22.1250
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(a) (b)

(c) (d)

(e) (f)

Figure 5. The errors, relative errors and numerical solutions of the AAI algorithm at z = 1/3, 2/3 when
l = m = s = 51, h = 1/50, n = 150, ω = 1.94. (a) The errors at z = 1/3; (b) The errors at z = 2/3; (c) The
relative errors at z = 1/3; (d) The relative errors at z = 2/3; (e) The numerical solution at z = 1/3; (f) The
numerical solution at z = 2/3.



Mathematics 2020, 8, 281 15 of 19

Table 4. The convergence rates and errors ‖E‖∞ of the presented iterative algorithm when
ω = 1.95, n = 3000.

Numbers 16× 16× 16 24× 24× 24 32× 32× 32 40× 40× 40 48× 48× 48

Rates – 1.9909 1.9906 1.9956 1.9979
Errors 1.4277×10−4 6.3687×10−5 3.5920×10−5 2.3011×10−5 1.5986×10−5

(2) Consider the 3D Poisson equation

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = −3sin(x)sin(y)sin(z), (x, y, z) ∈ [0, 1]3, (40)

with the boundary condition,
u(0, y, z) = 0;
u(1, y, z) = sin(1)sin(y)sin(z);
u(x, 0, z) = 0;
u(x, 1, z) = sin(x)sin(1)sin(z);
u(x, y, 0) = 0;
u(x, y, 1) = sin(x)sin(y)sin(1).

(41)

The exact solution of the 3D Poisson problem (40)–(41) is u(x, y, z) = sin(x)sin(y)sin(z).
Table 5 gives the errors ‖E‖∞ of AAI algorithm for the problem 2 with the different values of ω when

l = m = s = 31, h = 1/30, n = 150, and Figure 6 shows the errors get nearly the minimum 2.2319× 10−4

while ω = 1.76. which show the effect of ω to the AAI algorithm. Tables 6–8 give the iteration numbers
and times under some error controls, which also show obviously the presented algorithm has smaller
iteration numbers than the Jacobi and Gauss-Seidel methods. The computational times are shorter with
the grid points increasing.

Figure 7 shows the errors, relative errors and numerical solutions of the AAI iterative algorithm
based on domain decomposition for the problem 2 at z = 1/3, 2/3 when l = m = s = 51, h = 1/50,
n = 150, ω = 1.96. All of the numerical experiments examine the effectiveness and accuracy of the
presented AAI algorithm.

Table 5. The errors ‖E‖∞ of AAI algorithm based on domain decomposition with the different values of ω

when l = m = s = 31, h = 1/30, n = 150.

ω ‖ E ‖∞ ω ‖ E ‖∞

1.0 4.2402×10−2 1.6 3.6712×10−3

1.1 3.4981×10−2 1.7 9.4888×10−4

1.2 2.7756×10−2 1.8 3.9125×10−4

1.3 2.0657×10−2 1.9 5.8138×10−4

1.4 1.3986×10−2 2.0 errors
1.5 8.1573×10−3 – –
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Figure 6. The ‖E‖∞ with the different ω and the errors at z = 0.5 when l = m = s = 31, h = 1/30, n = 150.
(a) The errors ‖E‖∞ with the different ω; (b) The errors at z = 0.5 when ω = 1.76.

Table 6. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 31, h = 1/30.

‖E‖∞ 10−3 10−4

Numbers Time(s) Numbers Time(s)

Jacobi 557 2.6719 976 3.0781
Gauss-Seidel 288 0.8906 498 1.4688

AAI (ω = 1.96) 29 5.6719 135 13.9531

Table 7. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 51, h = 1/50.

‖E‖∞ 10−3 10−4

Numbers Time(s) Numbers Time(s)

Jacobi 1548 15.7031 2712 24.1875
Gauss-Seidel 790 8.3594 1372 15.2500

AAI (ω = 1.96) 51 14.5469 181 30.2344

Table 8. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 71, h = 1/70.

‖E‖∞ 10−3 10−4

Numbers Time(s) Numbers Time(s)

Jacobi 3034 98.5468 5317 176.6562
Gauss-Seidel 1538 53.5156 2681 92.9531

AAI (ω = 1.96) 91 31.7187 201 54.2968
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(a) (b)

(c) (d)

(e) (f)

Figure 7. The errors and numerical solutions of the AAI algorithm when l = m = s = 51, h = 1/50,
n = 150, ω = 1.96. (a) The errors at z = 1/3; (b) The errors at z = 2/3; (c) The relative errors at z = 1/3;
(d) The relative errors at z = 2/3; (e) The numerical solution at z = 1/3; (f) The numerical solution at
z = 2/3.

Since the presented AAI algorithm based on domain decomposition is constructed by the
asymmetrical iterative schemes and GE method, which has interior parallelism and is easy to be
implemented. During the process of the implementation of the AAI algorithm, there’s no need to solve
the large-scale sparse block tridiagonal matrices. When the iteration numbers are odd or even, we just to
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solve the 3D problems by the constructed iterative schemes, which are computed independently. Once the
interfaces are solved by GE method, the other grid points can also be solved by the constructed iterative
schemes directly and in parallel. Therefore, the key of parallel implementation lies in information transfer
and time cost of the inner boundary. In fact, the whole computation is explicit but convergent, which save
the most of the consuming time.

So In this paper, we use the Matlab software to implement the presented AAI algorithm. We extend
this idea to solve the other time-dependent high-dimensional problems, and compare the times, speedup,
caches and so on. The detailed parallel implementation and performance analysis are provided in [27].

6. Conclusions

In this paper, we provide a new alternating asymmetric iterative (AAI) algorithm for 3D Poisson
problem based on domain decomposition. We use several asymmetrical iterative schemes to solve the
sub-domains respectively. Meanwhile the asymmetrical iterative schemes are alternatively used on odd
and even iteration levels to improve the accuracy. Moreover, we give the convergence of the algorithm and
the optimal relaxation factor. Finally, several numerical experiments are taken to examine the effectiveness
and accuracy of the presented algorithm.

The study will be extended to other high-dimensional diffusion problems and wave problems and so
on, and also can be used to solve on more multi-subdomains, and the corresponding new algorithms will
be designed. we will report these soon.
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