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Abstract: In this study, we define a hesitant fuzzy topology and base, obtain some of their
properties, respectively, and give some examples. Next, we introduce the concepts of a hesitant
fuzzy neighborhood, Q-neighborhood, closure, and interior and obtain some of their properties,
respectively. Furthermore, we define a hesitant fuzzy continuous mapping and investigate some of
its properties. Furthermore, we define a hesitant fuzzy subspace and obtain some of its properties.
In particular, we obtain the Pasting lemma. We investigate the concept of hesitant fuzzy product
space and study some of its properties.

Keywords: hesitant fuzzy set; hesitant fuzzy topology; hesitant fuzzy bees; hesitant fuzzy
neighborhood and Q-neighborhood; hesitant fuzzy closure; hesitant fuzzy interior; hesitant fuzzy
continuous mapping; hesitant fuzzy subspace; hesitant fuzzy product space

1. Introduction

In 1965, Zadeh [1] introduced the concept of a fuzzy set as a generalization of a crisp set. Chang [2]
defined initially the notion of fuzzy topological spaces, and then, many researchers [3-12] investigated
various properties, for example neighborhood systems, Q-neighborhood systems, continuities,
compactness, initial structures, and separation axioms in fuzzy topological spaces.

In 2010, Torra [13] introduced the notion of a hesitant fuzzy set as an extension of a fuzzy set
proposed by Zadeh [1] ([14,15]). In a hesitant fuzzy set, since the membership function takes values
from the power set [0, 1] (see Definition 1), it helps in dealing with the situation effectively. Then,
hesitant fuzzy set theory has many applications in various fields like decision making problems,
decision support systems, clustering algorithms, algebras, etc. After that time, hesitant fuzzy set theory
has been developed rapidly by some scholars in theory and practice.

Xia and Xu [16] applied a hesitant fuzzy set to decision making by defining “hesitant fuzzy
information aggregation”. Jun et al. [17] studied hesitant fuzzy bi-ideals in semigroups. Deepark
and John [18] introduced a basic version of hesitant fuzzy rough sets through hesitant fuzzy relations.
Furthermore, they studied the homomorphisms of hesitant fuzzy subgroups and hesitant fuzzy
subrings and ideals in [19-21]. On the other hand, Jun and Ahn [22] applied hesitant fuzzy sets to
BCK/BCl-algebras. Kim et al. [23] gave characterizations of a hesitant fuzzy positive implicative
ideal, a hesitant fuzzy implicative ideal, and a hesitant fuzzy commutative ideal, respectively in
BCK-algebras. Furthermore, they [24] introduced the category HSet(H) consisting of all hesitant
H-fuzzy spaces and all morphisms between them and studied HSet(H) in the sense of a topological
universe. Recently, Mathew et al. [25] defined a hesitant fuzzy topology and dealt with closures,
interiors, continuities, connectedness, and compactness in hesitant fuzzy topological spaces.

The purpose of this paper is to investigate the topological properties on hesitant fuzzy sets. First,
we define a hesitant fuzzy topology and base, obtain some of their properties, respectively, and give
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some examples. Second, we introduce the concepts of a hesitant fuzzy neighborhood, Q-neighborhood,
closure, and interior and obtain some of their properties, respectively (in particular, see Propositions 6,
7,9, and 10). Third, we define a hesitant fuzzy continuous mapping and investigate some of its
properties. Fourth, we define a hesitant fuzzy subspace and obtain some of its properties. In particular,
we obtain the Pasting lemma (see Proposition 31). Finally, we introduce the notion of a hesitant fuzzy
product space and study some of its properties.

2. Preliminaries

In this section, we list some definitions and results needed in the later sections.

Definition 1. ([24]). Let X be a reference set, and let P[0, 1] denote the power set of [0,1]. Then, a mapping
h: X — P[0,1] is called a hesitant fuzzy set in X.
The hesitant fuzzy empty (resp. whole) set, denoted by h° (resp. h'), is a hesitant fuzzy set in X defined as:
foreach x € X,
WO(x) = ¢ [resp. K1 (x) = [0,1]].

Especially, we will denote the set of all hesitant fuzzy sets in X as HS(X).
In fact, we can easily see that the hesitant fuzzy empty set and whole set are complete ignorance and a
set of nonsense, respectively, introduced by Tora [13].

Definition 2. ([18]). Let hy, hy € HS(X). Then:
(i) we say that hy is a subset of hy, denoted by hy C hy, if hy(x) C hy(x), for each x € X,
(if) we say that hy is equal to hy, denoted by hy = hy, if hy C hy and hy C hy.

Definition 3. ([24]). Let hy, hy € HS(X), and let (h;);c; C HS(X). Then:
(i) the intersection of hy and hy, denoted by h1Nhy, is a hesitant fuzzy set in X defined as follows: for each
x e X,
(h1Nhy)(x) = hy(x) Nhy(x),

(ii) the intersection of (h;);c;, denoted by ﬁje rhj, is a hesitant fuzzy set in X defined as follows: for each
x e X,

(ﬂjelhj) (x) = () hj(x),

i€l
(iii) the union of hy and hy, denoted by hyUhy, is a hesitant fuzzy set in X defined as follows: for each

x e X,
(h10hy)(x) = hy(x) U hy(x),

(iv) the union of (h;);c;, denoted by Ojejh]-, is a hesitant fuzzy set in X defined as follows: for each x € X,

(U, ) ) = Uy,
j€]
Definition 4. ([24]). Let X be a nonempty set, and let h € HS(X). Then, the complement of h, denoted by h°,
is a hesitant fuzzy set in X defined as: for each x € X,

he(x) = h(x)" = [0,1] \ h(x).

Result 1. ([24], Proposition 3.14). Let X be a nonempty set; let h, hy, hy, hy € HS(X); and let (hj)jej -
HS(X). Then:

(1) (Idempotent laws): hOh = h, h0Oh = h,

(2) (Commutative laws): h1Ohy = hyUhq, hi0hy = hoNhy,

(3) (Associative laws): h1U(hyUhz) = (hyUhy)Uhs, h1N(haNhz) = (hiNhy)Nhs,
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(4) (Distributive laws): hyU(hyNhs) = (hyUhy)N(h1Ohs),
hlﬁ(hzohg,) (l’ll ﬁhz) (l’ll ﬂh3)

(4) (Generalized distributive laws): hU(ﬂ]e]h ) = ﬂjel(hOhj),

_ hrl(U]e]h) Uie](}iﬁhj)/

(5) (Absorption laws): hyU(h1Nhy) = hy, hiN(hUhy) = hy.

(6) (DeMorgan’s laws): (h10hy)¢ = NS, (hiNhy)© = h{URS,

(6) (Generalized DeMorgan’s laws): (Oje]hj)c = ﬁje]h]?, (ﬁje]hj)c = Oje]h]?,

(7) (h°)¢ = h,

(8) h]ﬁhz g hl and hzﬁ]’ll Q hz,

(9) h1 - thhz and ]’lz - thhz,

(10) if hy C hy and hy C hs, then hy C h3,

(11) if hy C ha, then hyi3h C hyfh and hiOh C hyOh,

(12)K® C h C K1,

(13) hh® = kO, hOK® = h, hih! = h, WO = 1.

We can see that Kim et al. [24] redefined the intersection, the union, and the complement
introduced by Tora [13] so that (HS(X),N, U, ) is a Boolean algebra with the least element /% and the
largest element h!.

Definition 5. ([24]). Let X and Y be a nonempty sets; let hxy € HS(X) and hy € HS(Y));andlet f : X — Y
be a mapping. Then:
(i) the image of hx under f, denoted by f(hx), is a hesitant fuzzy set in Y defined as follows: for each

yey, )
Fx)(y) = { ;Jxef Ahx ()i fHY) # ¢

otherwise,

(ii) the preimage of hy under f, denoted by f~'(hy), is a hesitant fuzzy set in Y defined as follows: for
each x € X,

o (hy)(x) = hy o f(x).

Result 2. ([24], Proposition 3.16). Let f : X — Y be a mapping, and let hx, hxi, hx, € HS(X),
(hXj)jef C HS(X), hy, hyq, hy, € HS( )and (hy])]ef C HS(Y) Then:

(1) if hxy € hxo, then f(hx1) € f(hx2), N
(2) f(hx10hxa) = f(hx1)Of (hx2), f(Ujeshx;) = Uje; f (hx,),

(3) f(hxaNhxa) C f(hx1)0f (hx2), f(Njeshx;) € Njegf (hx,),

(3)" if f is injective, then f(hx1Mhxo) = f(hX])ﬂf(hX2),f(n]€]hXj) = ﬁje]f(hx].),

@) f(A) =h° zfandonlyzfA =ho,

(B)ifh 1 C hyy, then f~(hy1) C f_ (hy2),

6) f 7 (hy1Uhya) = f~1(hy1)Of ~(hya), fH(Ujeshy;) = U]e]f H(hy,),

@) fH(hy1Dhy2) C fHhy)Of  (hya), £~ 1(ﬂ]e]hY) C NjepfHhy s
)

2
(8) f~Y(hy) = hY if and only if hyNf (k') = K1,
9) hx C f~Yo f(hx); in particular, hx = f~1 o f(hx), if f is injective,
(10) f o f~Y(hy) C hy; in particular, f o f~Y(hy) = hy, if f is surjective.

Definition 6. ([26]). Let h € HS(X). Then, h is called a hesitant fuzzy point with the support x € X and
the value A, denoted by x,, if x) : X — P[0, 1] is the mapping given by: for each y € X,

xA(y):{ A C[0,1] ify=x

¢ otherwise.
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In particular, Hp(X) is called the set of all hesitant fuzzy points in X.

Definition 7. ([26]). Let h € HS(X), and let x, € Hp(X). Then, x is said to belong to h, denoted by x, € h,
if A C h(x).
It is obvious that h = Oerhx/\.

Result 3. ([26], Theorem 3.3). Let hy, hy € HS(X), and let (h;)jc; C HS(X). Then:
(1) by C hy if and only if x) € hy, for each x) € hy.
(2) xp € hyNhy if and only if x) € hy and x) € hy.
(@) Ifx) € hyor x) € hy, then x) € h1Chy.

(4)x) € ﬁje]hj if and only if x) € hj, foreach j € J.

(5) If x) € hj for some j € ], then x) € Dje]hj~

Remark 1. ([26], Theorem 3.3). From Definitions 2.6 and 2.9, we can easily see that for any mapping
f:X — Yandeach x, € Hp(X), f(x)) = f(x),.

3. Topology of Hesitant Fuzzy Sets

A fuzzy topology is a concept that combines order structure and topology. Chang [2] studied
fuzzy topological spaces in the sense of point-like structure. Ekici [3] showed that the concept of fuzzy
topology may be relevant to quantum particle physics in connection with string theory. Silva and
Landim [4] showed that the notion of a fuzzy space topology can be used to explain the origin of the
black hole entropy. Since a hesitant fuzzy topology is a more flexible variation of a fuzzy topology, we
expect that a hesitant fuzzy topology may be more effectively applicable.

In this section, we introduce the concepts of hesitant fuzzy topologies, bases, and sub-bases in
hesitant fuzzy topological spaces, find some of their basic properties, and give examples. One can
easily see that our definition of a hesitant fuzzy topology is different from the one introduced by
Mathew et al. [25]. Moreover, in order to apply hesitant fuzzy sets to a topology, we refer mainly
to [27,28].

Definition 8. Let X be a nonempty set, and let T C HS(X). Then, T is called a hesitant topology (HFT) on X,
if it satisfies the following axioms:

(HFT1) K%, ! e ,

(HFT2) hyNhy € T, forany hy, hy € T,

(HFT3) Dje]hj € T, for each (h;)je; C T.

Especially, the pair (X, T) is called a hesitant fuzzy topological space. Each member of T is called a
hesitant fuzzy open set (HFOS) in X. A hesitant fuzzy set h in X is called a hesitant fuzzy closed set (HFCS)
in (X, 1), ifh° € 7.

We will denote the set of all HFTson X (resp. HFOSsand HFCSsin X) as HFT(X) (resp. HFO(X) and
HFC(X))

Example 1. (1) Let X = {a, b, c}, and consider hesitant fuzzy sets in X given by:
hi(a) =[0.8,1], hy(b) = {0.3,0.6,0.9}, hy1(c) = [0.8,1),

hy(a) =1[0.6,1), hy(b) = {0.3,0.6,0.8}, ha(c) = (0.8,1],
h3(a) = [0.8,1), h3(b) = {0.3,0.6}, h3(c) = (0.8,1),
hy(a) = [0.8,1], ha(b) = {0.3,0.6,0.8,0.9}, hy(c) = [0.8,1].

Then, we can easily see that T = {h°, h,hy, hy, h3, hy} € HFT(X).

(2) Let X be a nonempty set. Then, clearly, the class {h°, h'} € HFT(X). In particular, {h°, h'} will be
called a hesitant fuzzy indiscrete topology on X and denoted by tg. The pair (X, To) is called a hesitant fuzzy
indiscrete space.
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(3) Let X be a nonempty set. Then, we can easily see that the class HS(X) is a hesitant fuzzy topology
on X. In particular, HS(X) will be called a hesitant fuzzy discrete topology on X and denoted by ty. The pair
(X, 1) is called a hesitant fuzzy discrete space.

From Definition 8, we have the following result.

Proposition 1. Let (X, T) be a hesitant fuzzy topological space. Then:
(1) %, W' € HFC(X),
(2) h{Uhy € HFC(X), for any hy, hy € HFC(X),
(2) Njejhj € HFC(X), for each (h))je; € HFC(X).

Proposition 2. If (1j)je; C HFT(X), then (\je;7; € HFT(X).

Proof. Let T = (¢ 7j. Then, clearly, h, h! € 1, for each j € J. Thus, h°, h' € Njej Tj- Therefore,
h°, hl € T. Hence, T satisfies Axiom (HFT1).

Let hy, hy € t. Then, hy, hy € T, for each j € J. Thus, hiNhy € Tj, for each j € J. Therefore,
hiNhy € Niej T, i-e, I Nhy € 7. Hence, T satisfies the axiom (HFT2).

Now, let (h)rex € T. Then, (h)rex C Tj, for each j € J. Therefore, Urcxhi € Njej T ie.,
Ukexhx € T. Hence, T satisfies Axiom (HFT3). This completes the proof. [J

For any 7y, 7, € HFT(X), we say that 77 is weaker or coarser than 1, if 1 C 7. In this case, we
say that 7, is stronger or finer than ;.

The following is the immediate result of Example 1 and Proposition 2.

Proposition 3. Let (1j)jc; C HFT(X). Then, it forms a complete lattice with respect to the set inclusion
relation of which Ty is the smallest element and Ty is the largest element.

Definition 9. Let (X, T) be a hesitant fuzzy topological space, and let B C . Then, B is called a base for T, if
foreachh € T,h = KO, or there is B' C B such that h = UB/.

Example 2. (1) Let X be a nonempty set. Then, Hp(X) is a base for 11.
(2) Let X = {a,b,c}, and consider B = {hy,hy, h'},
where hy(a) = {0.6} U[0.7,1), hy(b) = {0.4,0.6}, hy(c) = [0,0.6) U {0.8},
hy(a) = {03} U (0.8,1], ha(b) = {0.6,0.8}, ha(c) = (0.5,0.6) U {0.7}.
Suppose B is a base for an HFT T on X. Then, by the definition of a base, B C . Since hy, hy € T,
h10hy € T. It is clear that hyMhy # h°. However, for any B C B, hyfhy # UB'. Thus, by Definition 9, B is
not a base for some hesitant fuzzy topology on X.

Theorem 1. Let X be a nonempty set. Then, B C HS(X) is a base for some HFT on X if and only if it satisfies
the following conditions:

(1) it = UB,

(2) if By, By € Band x, € B1NBy, then there is B € B such that:

Xy €B and B C B1ﬁBz.

Proof. Suppose B C HS(X) is a base for some HFT T on X. Since h! € 1, it is clear that h' = (JB.
Then, the condition (1) is satisfied.

Now, suppose By, B, € Band x, € B1NB,. Then, clearly, By, B, € 7. Thus, BiNB, € T and
B11MB, # hY. Since B is a base for T, there is B C B such that B;71B, = UB'. Since x, € B;1B,, there
is B € B' such that:

x), € Band B C B1NB,.
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Therefore, Condition (2) is satisfied.
Conversely, suppose the necessary conditions hold, and let:

7={h°}U{h:h=0B, forsome B C B}.

Then, clearly, h%, ! € 7. Furthermore, we can easily see that 7 is closed under arbitrary union.
Thus, T satisfies Axioms (HFT1) and (HFT3).

Let hy, hy € 7, and let x, € hiNhy. Then, by the definition of 7, there are By, B, € B such that
xy € By C hy and x, € By C hy. Thus, by Condition (2), there is B € B such that xy € B C B;NB.
Therefore, h1Nhy = DB/, for some B C B. Hence, hiNhy € 1. Therefore, T satisfies Axiom (HFT?2).
This completes the proof. [

Definition 10. If B is a base for an HFT T on X, then T is called the hesitant fuzzy topology generated by B.
In fact,
7={h°}U{h:h=0B, forsome B C B}.

Example 3. Let X = {a,b,c}, and consider B = {hy,hy, h3},

where hy(a) = {0.6} U (0.7,1], hy(b) = {0} U (0.6,1], h1(c) = [0,0.6),
hy(a) = [0,0.8] U {0.9}, hy(b) = (0,0.7) U {0.8}, ha(c) = {0.3} U (0.5,1],
h3(a) = {0.6,0.9} U (0.7,0.8], h3(b) = (0.6,0.7) U {0.8},
h3(c) = {0.3} U (0.5,0.6).

Then, clearly, hiOhyUhs = hl. Furthermore, we can easily show that B satisfies Condition (2) of
Theorem 1. Thus, B is a base for some HFT T on X. In fact,

T = {h% h', g, hy, 3}

Definition 11. Let 7y, 7 € HFT(X), and let By and B, be bases for Ty and 1y, respectively. Then, 3y and By
are said to be equivalent, if T = Tp.

Theorem 2. Let 7y, T € HFT(X), and let By and BB, be bases for 1) and 1y, respectively. Then, the following
are equivalent:

(1) 1 is finer than 71, i.e., 71 C Tp,

(2) for each x, € Hp(X) and each By € By such that x, € By, there is By € By such that x) € By C Bj.

Proof. (1)=(2): Suppose 71 C Tp; let x, € Hp(X), and let B; € Bj such that x, € B;. Then, clearly,
By € 1. Since 1, is generated by B; and x, € By, there is By € B; such that x, € B, C Bj.

(2)=-(1): Suppose the necessary condition holds; let € 7y, and let x, € h. Since 7y is generated
by Bj, there is By € By such that x5 € By C h. Then, by Condition (2), there is By € B; such that
X, € By C Bj. Thus, By C h. Therefore, h = OB;, for some Blz C B. Hence, h € 15. Therefore,
71 Cn O

Proposition 4. Let (X, T) be a hesitant fuzzy topological space. Assume B C T such that for each x) € Hp(X)
and each U € T with x) € U, thereis B € B such that xy € B C U. Then, B is a base for T.

Proof. Let x, € Hp(X). Since k' € 7, there is B € B such that x, € B]subseth!. Then, k' = JB.

Suppose By, B, € Band x, € B;NB,. Since By, B, € T, BiNB; € . Then, there is B € B such
that x) € B C B;MB,. Thus, by Theorem 1, B is a base for some HFT 7’ on X. By Theorem 2, T’ is finer
than 7. Since B C 1, arbitrary unions of members of B are members of 7. Therefore, T C 7. Hence,
T =1 Therefore, B is a base for . O
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Definition 12. Let (X, T) be a hesitant fuzzy topological space, and let S C T. Then, S is called a sub-base for
T, if the family:
{h€ HS(X) :h =1N;_4S;, S;€ Sfori=1,2, ---, n}

is a base for T.

Proposition 5. Let X be a nonempty set, and let S C HS(X) such that k' = US. Then, there is a unique
HFT 7 such that S is a sub-base for T.

Proof. Let B= {B € HS(X):B=N;_,S;, S; € Sfori=1,2, ---, n},and let:
7={he HS(X):h=h"orh=UB forsome B C B}.

Since ! = (JS, h! € 7. By the definition of 7, #'° € 7. Then, 7 satisfies Axiom (HFT1).

Let (hj)je; C 7. Then, for each j € ], there is B; C B such that h; = UB;. Thus, Ujejh; =
Oje ](OBj). Therefore, O]-e jhj € T. Hence, T satisfies Axiom (HFT3).

Now, let i1, hy € T,and let x, € hyNhy. Then, there are By, B, € B such thatx, € B;1By, By C Iy
and B, C hy. Since B; and B; are finite intersection of members of S, respectively, By, B, € B. Thus,
h My = B, for some B' C B. Therefore, 17y € T. Hence, T satisfies Axiom (HFT2). Therefore,
T € HFT(X). Furthermore, we can easily show that 7 is unique. [

Example 4. Let X = {a,b,c}, and consider S = {hy,ho, h3},
where hy(a) = {0.6} U (0.7,1], hy(b) = {0} U (0.6,1], hy1(c) = (0,0.6),
hy(a) = [0,0.7), hy(b) = (0,0.6) U {0.8}, ha(c) = {0.3} U(0.5,1),
hs(a) = {0.7}, h3(b) = (0.5,0.7), hz(c) = {0} U (0.8,1].
Then, clearly, OS = hOhyUhy = h'. Thus, OS is a sub-base for the HFT T on X. Furthermore,
B = {hy,hy,h3, hy, hs, he} is a base for T,
where hy(a) = {0.6}, hy(b) = {0.8}, hy(c) = {0.3} U (0.5,0.6),
hs(a) = ¢, hs(b) = (0.5,0.6), hs(c) = (0.8,1),
he(a) = ¢, he(b) = (0.6,0.7), he(c) = ¢.
Therefore, T = {ho, hl, hl/ hz, h3, h4, h5, h6/ h7, hg, h9rh10/h11/ h12/ h13, h14, h15, hlé}r
where h7 = hlﬁhl, hg = h20h3, h9 = ]’llghg,, th = l’l10h5,
hi1 = haOhg, h1p = h3Uhy, hi3 = hyUhs, hiy = hyUhg,

4. Hesitant Fuzzy Neighborhoods, Interiors, and Closures

It is well known that a neighborhood system generates a topology in a classical topological space.
Then, the definition of a hesitant fuzzy neighborhood is necessary.

In this section, we define a hesitant fuzzy neighborhood of a hesitant fuzzy point, a hesitant fuzzy
Q-neighborhood of a hesitant fuzzy quasi-coincident point, the hesitant fuzzy closure, interior, and
exterior, study some of their properties, and give some examples.

Definition 13. Let (X, T) be a hesitant fuzzy topological space; let x, € Hp(X); and let N € HS(G). Then,
N is called a hesitant fuzzy neighborhood (HFN) of x,, if there is U € T such that x) € U C N.
We will denote the set of all HFNs of x in (X, T) as HFN(x)).

The following is the immediate result of Definition 13.

Theorem 3. Let (X, T) be a hesitant fuzzy topological space, and let U € HS(X). Then, U € T if and only if
it is an HFN of each of its HFP, i.e., for each x) € U, U € HFN(x).
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From the following result, we can see that the hesitant fuzzy neighborhoods have the property of
the classical neighborhoods.

Proposition 6. Let (X, T) be a hesitant fuzzy topological space, and let xy € Hp(X). Then, HFN(x, ) has
the following properties:

(HEN1) x, € N, foreach N € HFN(x,),

(HEN2) if N € HFN(x, ), then M € HFN(x,), for each M € HS(X) such that N C M,

(HFN3) if N, M € HFN(x, ), then NOAM € HFN(x,),

(HEN4) if N € HFN(x,), then there is M € HFN(x,) such that N € HFN((y,), for each y, € M.

Proof. (1) The proof is clear.

(2) Suppose N € HFN(x,), and let N\\M € HFN(x, ). Then, there is U € T such thatx) € U C
N. Thus, x, € U C M. Therefore, M € HFN(x,).

(3) Suppose N, M € HFN(x,). Then, thereare U, V € tsuchthatxy € U C Nandx, € V C M.
Thus, x, € UNV C NNM and UNV € 1. Therefore, NN\M € HFN(x,).

(4) Suppose N € HFN(x,). Then, there is M € 7 such that x; € M C N. Since M € T, by
Theorem 3, M € HFN(yy), for each y, € M. Thus, for each y, € M, there is V € 7 such that
Yy € V.C M C N. Therefore, N € HFN(y,). This completes the proof. [

Proposition 7. Let X be a nonempty set, and let for each x, € Hp(X) there be a nonempty collection B(x,) of
hesitant fuzzy sets in X satisfying Properties (HFN1)-(HFN4). Then, there is a unique HFT T on X such that
foreach x, € Hp(X), B(x)) = HFNz(x,), where HF N (x, ) denotes the set of all HFNs of x, in (X.T).

Proof. Let T = {U € HS(X) : U € B(x,), for each x, € U}. Then, clearly, h° € 7. By (HFN2), h! € 7.
Thus, T satisfies Axiom (HFT1).

Let U, V € 7,and let x, € UNV. Then, x, € U and x) € V. Thus, U, V € B(x,). By (HFN3),
UNV € B(x,). Therefore, UNV € . Hence, T satisfies Axiom (HFT2).

Let (Uj)jey C T,and let x, € Ojejllj. Then, there is j € J such that x, € U;. Since (U;)jej C T,
U; € B(xy). Thus, by (HFN2), Dje jU; € B(x,). Therefore, Oje jU; € 7. Hence, T satisfies Axiom
(HFT3). Therefore, T € HFT(X).

Now, we will show that B(x)) = HFN(x)). Let N € HFNz(x,). Then, there is U € 7 such
that xy € U C N. Thus, by the definition of 7, U € B(x,), for each , € U. Therefore, by (HFN2),
N € B(x,). Hence, HFN(x,) C B(x,). Suppose N € B(x,), and let U = O{yy € Hp(X) : N €
HFN¢(yu)}- Then, clearly, U € HS(X) and x, € U. By (HFN1), we can easily see that U C N. Let us
show that U € 7,i.e, U € B(yu), for each y, € U. Lety, € U. By the definition of U, N € HFNz(y,).
Since HFNz(y,) C B(yu), N € B(yy). Then, by (HEN4), there is M € B(y,) such that N € B(z,), for
each z, € M. Thus, by the definition of U, z, € U. Therefore, M C U. Hence, by (HFN2), U € B(y,).
This completes the proof. [

Definition 14. Let X be a nonempty set; let x, € Hp(X); and let h € HS(X). Then, x is said to:
(i) be quasi-coincident with h, denoted by x qh, if A 2 h°(x),
(ii) be not quasi-coincident with h, denoted by x,gh, if A C h(x).

Definition 15. Let X be a nonempty set, and let hy, hy € HS(X). Then, hy is said to
be quasi-coincident with hy, denoted by hyqhy, if there is x € X such that hy(x) 2 h§(x).

In this case, we say that hy and hy are quasi-coincident (with each other) at x.

It is obvious that if hy and hy are quasi-coincident at x,, then (hiNhy)(x) # ¢.

Theorem 4. Let X be a nonempty set; let x, € Hp(X); and let h, hy, hy € HS(X). Then, hy C hy if and
only if hiqh§. In particular, x) € h if and only if x,gh°.
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Proof. The proof follows from the fact: for each x € X,

My C hy iff Iy (x) 2 a(x) i by (x) Ul (x)° S Bia(x) Ulia(x)° = (ho0RS) (x) = [0, 1].

O

Theorem 5. Let X be a nonempty set; let x, € Hp(X); and let (hj)jc; C HS(X). Then, quO]-GIhj if and
only if there is j € ] such that x,qh;.

Proof. Suppose quD]«ejh]-. Then, A 2 (Djejhj)f(x) = (ﬁje]h]c')(x) = Njeyhj(x)°. Thus, thereis j € |
such that A 2 h;(x)°.

Conversely, suppose there is j € ] such that A £ h;(x)". Then, A 2 Nje; hj(x)° and Njep hj(x)" =
(Ujelhj)c(x). Thus, x,qUjeshj. O

Proposition 8. Let X, Y be nonempty sets; let xy € Hp(X);leth € HS(X); and let f : X — Y be a mapping.
If xaqh, then f(x))qf (h).

Proof. Suppose x gh. Then, A 2 h°(x) = h(x)¢ and f(h)(f(x)) = h(x). Thus,

f)(f(x) = fF(R)(f(x) = h(x)" & A = fF)r(f(x)) = fF(O)a(f(x)).
Therefore, f(x) qf(h). O

Definition 16. Let (X, T) be a hesitant fuzzy topological space; let N € HS(X); and let x, € Hp(X). Then,
N is called an HQ-neighborhood (HQN) of x,, if there is a U € T such that xyqU C N. The set of all
HQ-neighborhoods of x, is called the system of of HQ-neighborhoods of x, and denoted by HQN (x, ).

Proposition 9. Let (X, T) be a hesitant fuzzy topological space, and let x, € Hp(X). Then, HQN(x, ) has
the following properties:

(HQNT1) x,gN, for each N € HQN(x,),

(HQN2) if N € HQN(x,), then M € HQN(x,), for each M € HS(X) such that N C M,

(HQN3) if N, M € HQN(xy), then NFiM € HQN(x,),

(HQN4) if N € HQN(x,), then there is M € HQN (x,) such that N € HQN (y,), for each y,qM.

Proof. The proofs are similar to Proposition 6. []

Proposition 10. Let X be a nonempty set, and let for each x, € Hp(X) there be a nonempty collection B(x,)
of hesitant fuzzy sets in X satisfying Properties (HQN1)—(HQN4). Then, there is a unique HFT T on X such
that for each x) € Hp(X), B(x)y) = HQNx(x,), where HQN(x,) denotes the set of all HQNSs of x, in
(X. 7).

Proof. The proof is similar to Proposition 7. [J

Theorem 6. Let (X, T) be a hesitant fuzzy topological space, and let B C HS(X). Then, B is a base for T if and
only if for each x, € Hp(X) and each U € HQN/(x,) such that U € T, there is B € BB such that xyqB C U.

Proof. The necessary condition follows directly from the definition of a base and Proposition 8. Let
us show that the sufficient condition. Assume that B is not a base for 7. Then, thereis A € B
such that V. = (J{B € B : B € A} # A. Thus, there is x € X such that V(x) G A(x). Let
A =1[0,1]\ V(x) = V¢(x). Then, clearly, A(x) UA 2 V(x) UA = [0,1]. Thus, A(x) UA 2 V(x) = [0,1].
Therefore, x)q 4.
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On the other hand, for any B € B suchthat B C A, A C V. Then, B(x) UA C V(x) UA = [0,1].
Thus, x)gB. Since B C A, x)gA. Therefore, this contradicts the assumption. This completes the
proof. O

Definition 17. Let (X,T) be a hesitant fuzzy topological space, and let h € HS(G). Then, the
hesitant fuzzy interior points of h, denoted by inty (h), are a hesitant fuzzy set in X defined by:

inty(h) = | J{U €T:UCh}.

Example 5. Let X = {a,b,c}, and let T = {h° h,hy, hy, h3, hy} € HFT(X),

where hy (a) = {04} U[0.5,1), hy(b) = (0.1,0.9], hy(c) = [0.3,0.8) U {0.1,0.9},
hy(a) = (0.3,0.5) U [0.6,0.9], hp(b) = {0.2} U (0.8,0.9), ha(c) = (0.4,1] U {0.1},
hs(a) = (0.3,1), h3(b) = (0.1,0.9], h3(c) = [0.3,1] U {0.1},
ha(a) = {04} U [0.6,09], I3(b) = {02} U (0.8,0.9), hz(c) = (0.4,0.8) U {0.1,0.9}.
Let h be the hesitant fuzzy set in X given by:

h(a) = [04,1), h(b) = (0.1,0.9], h(c) = [0.1,0.8) U {0.9}.
Then, clearly h® C h, hy C hand hy C h. Thus, inty (h) = hi®OhUhy = hyOhy.
From Definition 17, we have the following result.

Proposition 11. Let (X, T) be a hesitant fuzzy topological space, and let h, hy hy € HS(X). Then,
(1) inty (h°) = 1°,
(2) intyy (h) is the largest hesitant fuzzy open set contained in h,
(3) h € tifand only if inty(h) = h,
(4) if hy C hy, then li’ltH(hl) C l?’li’H(l’lz)

Theorem 7. Let (X, T) be a hesitant fuzzy topological space; let x, € Hp(X); and let A € HS(X). Then,
x) € inty(A) if and only if there is N € HFN(x, ) such that N C A.

Proof. The proof is straightforward. [

Proposition 12. (Hesitant fuzzy interior axioms). Let (X, T) be a hesitant fuzzy topological space, and let
h, hi hy € HS( ) Then:

(HFI1) inty (h') = hl

(HFI2) intg(h) C

(HFI3) intH(th( )) = inty(h),

(HFI14) ii’ltH(hlﬂhz) intH(hl)ﬁintH(hz).

Proof. From Definition 17 and Proposition 11 (1), the proofs of (HFI1) and (HFI2) are clear.

(HFI3) By (HFI2), it is obvious that inty(inty(h)) C inty(h). Let x) € inty(h). Then, there is
U € tsuch that xy € U C h. Thus, by Proposition 11 (2) and (3) and (HFI2), xy € U C intg(h).
Therefore, x, € inty(inty(h)). Hence, inty(h) C inty(inty(h)). Therefore, inty(inty(h)) = intg(h).

(HFI4) 1t is clear that hiNhy C hy and hiNhy C hy. Then, by Proposition 11 (3), inty (h1Nhy) C
intH(hl) and intH(hlﬁhz) C iTltH(hz). Thus, il’ltH(hlﬁhz) C ian<h1)ﬁiTltH(h2). Let Xy €
intg (hy)Ninty (hy). Then, x, € intg(hy) and x, € intg(hy). Thus, there are U, V € T such that x, €
U C hyand x, € V C hy. Therefore, x € UNV C hiNhy and UNV € 7. Hence, x, € inty(hiNhy),
i.e., inty(hy)Ninty(hy) C inty(h1Nhy). Therefore, inty (hNhy) = inty (hy)Ninty(hy). O

Definition 18. Let X be a nonempty set. Then, a mapping °H : HS(X) — HS(X) is called a
hesitant fuzzy interior operator on X, if it satisfies Properties (HFI1)—(HFI4) of Proposition 12.



Mathematics 2020, 8, 188 11 of 21

The following result shows that a hesitant fuzzy interior operator completely determines a hesitant
fuzzy topology on X and that in this topology, the operator is the hesitant fuzzy interior.

Proposition 13. Let °H be hesitant fuzzy interior operator on a set X. Let:
T={U e HS(X): U°H = U}.
Then, T € HFT(X), and if inty is the hesitant fuzzy interior defined by T, then
U°H = inty(U), for each U € HS(X).

Proof. By (HFI1) and (HFI2), (h1)°# = hl and (h%)°# = K0. Then, h°, hl € 7. Thus, T satisfies Axiom
(HFT1).
Let U, V € 1. Then, U°® = U and V°E = V. Thus, by (HF14),

(URV)°H = UCHAVH = UAV.

Therefore, UNV € 1. Hence, T satisfies Axiom (HFT2).

Let (Uj)jej C T,and let U = Uje;Uj. Then clearly, U; C U, for each j € J. By (HFI2), uyt c uen,
foreachj € J. Thus, O]-E]U;H C UeH. Since (Uj)jey C T, U]OH = Uj, for each j € ]. Therefore, U C U°H,
i.e.,, U°H = U. Hence, T satisfies Axiom (HFT3). Therefore, T € HFT(X).

Suppose inty is the hesitant fuzzy interior defined by 7, and let h € HS(X). Then clearly, intg (h)
is the largest hesitant fuzzy open set in X contained in h. Thus, h°# = h. By (HFI3), h°H (h°H) =
h°H. Therefore, h°H € 7. By (HFI2), h°f C h. Hence, h°" C inty(h). On the other hand, by
(HFI2), inty(h) C h. Then, h°H C h°H(inty(h)) = inty(h). Thus, h°H = inty(h). Therefore, U°H =
inty(U), foreach U € HS(X). O

Definition 19. Let (X, T) be a hesitant fuzzy topological space, and let h € HS(X). Then, the hesitant fuzzy
closure of h, denoted by cly(h), is a hesitant fuzzy set in X defined by:

clyy(h) = (\{F € HFC(X) : h C F}.

Example 6. Let X = {a,b,c}, and let T = {h®, h', hy, hy, h3,hy} € HFT(X),

where hy (a) = {04} U[05,1), Iy (b) = (01,09, hy(c) = [0.3,0.8) U {0.1,0.9},
hy(a) = (0.3,05) U [0.6,0.9], ha(b) = {0.2} U (0.8,0.9), hy(c) = (0.4,1] U {0.1},
hs(a) = (0.3,05) U [0.5,1), hs(b) = (0.1,09], hs(c) = [0.3,1] U {0.1},
ha(a) = {0.4} U[0.6,09], ha(b) = {02} U (0.8,0.9), ha(c) = (0.4,0.8) U {0.1,0.9}.
Then, HFC(X) = {h®, k%, k¢, 5, S, 1S},

where h‘f( ) = [0,0.4) U (0.4,05) U {1}, K (b) = [0,0.1) U[09,1],

K (c) = [0,0.1) U (0.1,0.3) U [0.8,0.9) U (0.9,1],
2(a) [0,0.3] U[0.5,0.6) U (0.9,1], h5(b) = [0,0.2) U (0.2,0.8] U [0.9,1],
hs(c) = [0,0.1] U (0.1,0.4],
hS(a) = 0,03 U {1}, K5(b) = [0,0.1] U (0.9,1], K5(c) = [0,0.1) U (0.1,0.3),
1S (a) = [0,0.4) U (0.4,0.6) U (0.9,1], () = [0,0.2) U (0.2,0.8] U [0.9,1],
1S (c) = 0,0.1) U (0.1,0.4] U [0.8,0.9) U (0.9,1].

Let h be the hesitant fuzzy set in X given by:
h(a) = [0,0.2] U (0.9,1], h(b) = (0.9,1], h(c) = [0,0.2) U[0.9,1].
Then clearly, h C h*, h C h§ and h C hS. Thus, cly(h) = h°0h§NhS = hSNRS.

From Definition 19, we have the following result.
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Proposition 14. Let (X, T) be a hesitant fuzzy topological space, and let h, hy hy € HS(X). Then,
(1) cly(h') = h',
(2) cly (h) is the smallest hesitant fuzzy closed set containing h,
(3) h € HFC(X) if and only if cly(h) = h,
(4) if hy C hy, then cly(hy) C cly(hy).

Theorem 8. Let (X, T) be a hesitant fuzzy topological space; let x, € Hp(X),; and let A € HS(X). Then,
x) € cly(A) ifand only if for each N € HQN(x, ), NqA.

In this case, x) is called a hesitant fuzzy closure point of A. In fact,

cly(A U{x)L € Hp(X) : x, is a hesitant fuzzy closure point of A}.

Proof. x) € cly(A) iff foreach F € HFC(X) with F D A, x) € F,i.e, A C F(x)
iff foreach F* = U € Twith U C A, U(x) C A(x)°
iff for each U € T with U(x) 2 A°(x), U ¢ A°
iff by Theorem 4, UgA
iff foreach N € HQN(x,), NgA. O

Proposition 15. Let (X, T) be a hesitant fuzzy topological space, and let h € HS(X). Then:
intg(h) = (cly(h©))¢, ie., (intg(h))¢ = cly(h®).

Proof. Let x, € inty(h). Then clearly, x, € inty(h) € Tsuch that inty(h)(h" = h° Thus, A 2 h¢(x),
ie., x) & h°. Since h® C cly(h), x) & clgy(h®). Therefore, A € (cly(h°))°. Hence, inty(h) C (clg(h©))C.

Now, let x, € (clg(h®))c. Then, x, & clg(h®). Thus, x) & h°, ie., x, € h. Since x, & cly(h°),
there is U € 7 such that x, € U and UNk® = h°. Therefore, U C h. Hence, x, € inty(h), i.e.,
(clg(h©))¢ C inty(h). Therefore, inty(h) = (cly(h€))c. O

From Definition 19 and Proposition 15, we have the following result.

Proposition 16. (Hesitant fuzzy Kuratowski closure axioms). Let (X, T) be a hesitant fuzzy topological
space, and let h, hy hy € HS(X). Then:

(HFC1) clg (h%) = K,

(HFC2) h C cly(h),

(HFC3) cly(clp(h)) = clp(h),

(HFC4) ClH (I/ll Uh2) = CZH(hl ) UCZH (hz)

Definition 20. Let X be a nonempty set. Then, a mapping ~H : HS(X) — HS(X) is called a hesitant fuzzy
closure operator on X, if it satisfies Properties (HFC1)—-(HFC4) of Proposition 16.

As expected, a result analogous to Proposition 13 holds for the hesitant fuzzy closure operator.
Then, a hesitant fuzzy closure operator completely determines a hesitant fuzzy topology, and in that
topology, the hesitant fuzzy closure operator is the hesitant fuzzy closure.

Proposition 17. Let ~H be a hesitant fuzzy closure operator on a set X. Let F = {F € HS(X) : F"H = F},
and let T = {U € HS(X) : U € F}. Then, T € HFT(X), and if cly is the hesitant fuzzy closure defined by
T, then:

F™H = cly(F), for each F € HS5(X).

Proof. It is similar to Proposition 13. O
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Definition 21. Let X be a nonempty set, and let hy, hy € HS(X). Then, the difference of hy and hy, denoted
by hy \ hy, is a hesitant fuzzy set in X defined by:

Iy \ hy = hy (IS,

Definition 22. Let (X, T) be a hesitant fuzzy topological space, and let h € HS(X). Then, x, € Hp(X) is
called a hesitant fuzzy limit point or an accumulation point of h, if hLOU \ {x)} # h°, for each U € T with
xy € U, where U\ {x,} = UN{x,}°. The union of all hesitant fuzzy limit points of h will be called the
hesitant fuzzy derived set of h and will be denoted by Dy (h). Then clearly,

Dy (h) = J{xx € Hp(X) : x, is a hesitant fuzzy limit point of }.

Example 7. (1) Let X be the hesitant fuzzy discrete space. Then, Dy (h) = h°, for each h € HS(X).
(2) Let X be the hesitant fuzzy indiscrete space. Then, Dy (h) = h', for each h € HS(X).

From Definition 22, we have the following result.

Proposition 18. Let (X, T) be a hesitant fuzzy topological space, and let h, hy, hy € HS(X). Then:
(HFD1) Dy (K°) = h°,
(HFD2) if hy C hy, then Dy (h1) C Dy (ho),
(HFD3) if x) € Dy(h), then xy € Dy (h\ {x)}),
(HFD4) Dy (11Ohy) = Dy (h1)UDp (ha).

Definition 23. Let (X,T) be a hesitant fuzzy topological space, and let h € HS(X). Then, the
hesitant fuzzy exterior of h, denoted by ey (h), is a hesitant fuzzy set in X defined by ey (h) = inty (h°).

It is obvious that inty (h) = ey (h°).
By the above definition, we have the following result.

Proposition 19. Let (X, T) be a hesitant fuzzy topological space, and let h, hy, hy € HS(X). Then:
(HFD1) ey (h°) = h1
(HFD2) ey (h) C
(HFD3) ey (h) = 3H([ H(h)]%),
(HFD4) e (h1Uhy) = ep(h1)Nep (ha).

Definition 24. Let (X, T) be a hesitant fuzzy topological space, and let h € HS(X). Then, the hesitant fuzzy
boundary of h, denoted by by (h), is a hesitant fuzzy set in X defined by by (h) = [inty (h)]°U int g (h°).

It is clear that by (h) = by (h) = clg(h)N cly (h) = cly(h) \ inty (h).

5. Hesitant Fuzzy Continuous Mappings

We define a hesitant fuzzy continuous mapping and a hesitant fuzzy open (resp. closed) mapping
and prove that each concept has similar properties in classical topological spaces.

Definition 25. Let (X, T), (Y, 0) be hesitant fuzzy topological spaces. Then, a mapping f : (X, 1) — (Y,0)
is said to be hesitant fuzzy continuous, if f (V) € T, for each V € o.

From Result 2 and Definition 25, we have the following result.

Proposition 20. Let (X, 7), (Y,0), (Z,6) be hesitant fuzzy topological spaces.
(1) The identity mapping id : (X, T) — (X, T) is continuous.
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QIff:(X,1) = (Y,0)and g : (Y,0) — (Z,0) are continuous, then go f : (X,7) — (Z,0) is
continuous.

Remark 2. From Proposition 20, we can see that the class of all hesitant fuzzy topological spaces and hesitant
fuzzy continuous mappings forms a concrete category.

Definition 26. Let (X, T), (Y, 0) be hesitant fuzzy topological spaces. Then, a mapping f : (X, 1) — (Y,0)
is said to be hesitant fuzzy continuous at x, € Hp(X), if f~1(V) € HFN(x,), foreach V € HFN(f 1)) =
HFN(f(x),) (see Remark 1).

The following is the immediate result of Result 2 and Definitions 25 and 26.

Theorem 9. Let (X, 1), (Y, ) be hesitant fuzzy topological spaces. Then, a mapping f : (X, t) — (Y, 0) is
hesitant fuzzy continuous if and only if f is hesitant fuzzy continuous at each hesitant fuzzy point of X.

Theorem 10. Let (X, T), (Y, ) be hesitant fuzzy topological spaces, and let f : (X, T) — (Y, o) be a mapping.
Then, the following are equivalent:

(1) f is continuous,

(2) f~Y(F) € HFC(X), for each F € HFC(Y),

(3) fX(S) € T, foreach S € S, where S is the sub-base for o,

(4) f is continuous at each x) € Hp(X),
(5) for each x) € Hp(X) and each V€ HEN(f(x),), thereis U € HFN(x,) such that f(U) C V,
6) f(cly(h )) C cly(f(h)), foreach h € HS(X),
(@) clg(f~Y(h)) C f~Y(cly(h)), for each h € HS(Y).
Proof. (1)= (2): The proof is clear from Definitions 8 and 25.

(2)= (3): Suppose f~!(F) € HFC(X), for each F € HFC(Y), and let S € S. Then, clearly,
S¢ € HFC(Y). Thus, by the hypothesis, f ~1(5¢) € HFC(X). It is obvious that f~1(5¢) = (f~1(S))".
Therefore, (f~1(S))¢ € HFC(X). Hence, f~1(S) € T.

(3) = (4): Suppose (3); and let x, € Hp(X), and let V € HFN(f(x),). Then, thereis S € S such
that f(x), € S C V, where S is the sub-base for ¢. Thus, by (3), f"(S) € 7. Since f(x), €S CV,
x) € f~Y(S) € f~Y(V). Therefore, f~}(V) € HFN(x,). Hence, f is continuous at each x, € Hp(X).

(4) = (5): The proof is obvious.

(5)= (6): Suppose (5), and let y, € f(cly(h)), for each h € HS(X). Then, there is x € X such
that y, = f(x,) and x;, € cly(h). Let V.€ HFN(f(x,)). Then, by (5), there is U € HFN(x,) such that
f(U) C V. Since x, € cly(h), UNh # h°. Thus, f(U)Nf(h) # h°. Therefore, VAf(h) # h°. Hence,
Yu € cly(f(h)). Therefore, f(cly(h)) C cly(f(h)).

(6) = (7): Suppose (6), and let A = f~1(h), for each h € HS(Y). Then, by (6), f(clg(A)) C

clu(f(A)). Thus, f(cly (f (1)) C clu(f(f~'(h)) C cly(h). Therefore, cly(f~1(h)) € f~(cly ().
(7) = (2): The proof is clear. [

The following is the immediate result of Theorem 10.

Corollary 1. f : (X, 1) — (Y,0) is continuous if and only if f~1(inty(h)) C inty(f~1(h)), for each
he HS(Y).

Definition 27. Let (X, T), (Y, 0) be hesitant fuzzy topological spaces. Then, a mapping f : (X, 1) — (Y,0)
is said to be hesitant fuzzy open (resp. closed), if f(U) € o, for each U € T (resp. f(F) € HFC(Y), for each
F € HEC(X)).

Proposition 21. Let (X, 7), (Y,0), (Z,0) be hesitant fuzzy topological spaces. If f : (X, t) — (Y,0) and
g:(Y,0) = (Z,6) are open (resp. closed), then g o f : (X, T) — (Z,6) is open (resp. closed).
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Proof. Let U € 7. Since f : (X,7) — (Y,0) is open, f(U) € o. Since g : (Y,0) — (Z,0) is open,
g(f(U)) € 6. Then, (go f)(U) € 4. Thus, g o f is open. The proof of the second part is similar. [

Theorem 11. Let (X, T), (Y, 0) be hesitant fuzzy topological spaces, and let f : X — Y be a mapping. Then,
f is open if and only if f(inty(h)) C inty(f(h)), foreach h € HS(X).

Proof. Suppose f is open, and let h € HS(X). Then, clearly, inty(h) € t. Thus, by the hypothesis,
f(inty(h)) € o. Since inty(h) C h, f(inty(h) C f(h). Since inty(f(h)) is the largest hesitant fuzzy
open set contained in f(h), f(inty(h) C inty(f(h)).

Conversely, assume the necessary condition holds, and let U € 7. Then, clearly, U = inty(U).
Thus, by the hypothesis, f(U) = f(intg(U)) C inty(f(U)). Since inty(f(U)) C f(U), f(U) =
intg(f(U)). Therefore, f(U) € 0. Hence, f is open. O

Proposition 22. Let (X, T), (Y,0) be hesitant fuzzy topological spaces, and let f : X — Y be an injective
mapping. If f : (X, T) — (Y, 0) is continuous, then inty (f(h)) C f(intg(h)), for each h € HS(X).

Proof. Suppose f is continuous, and let 1 € HS(X). Then, clearly, intg(f(h)) € ¢. Thus, by the
hypothesis, f ~![inty (f(h))] € T. Since f is injective, by Result 2 (9), f~![inty (f(h))] C f~1(f(h)) = h.
Therefore, f ~1[inty(f(h))] C inty(h). Hence, inty(f(h)) C f(inty(h)). O

From Theorem 11 and Proposition 22, we have the following result.

Corollary 2. Let (X, 7), (Y,0) be hesitant fuzzy topological spaces. If f : (X, 7T) — (Y, 0) is continuous,
open, and injective, then inty (f(h)) = f(inty(h)), for each h € HS(X).

Theorem 12. Let (X, T), (Y, 0) be hesitant fuzzy topological spaces, and let f : X — Y be a mapping. Then,
f is closed if and only if clg (f(h)) C f(clg(h)), for each h € HS(X).

Proof. Suppose f is closed, and let h € HS(X). Then, clearly, h C clgy(h). Thus, f(h) C f(clg(h))
Since f is closed and cly (k) is closed in X, f(cly(h)) is closed in Y. Therefore, cly (f(h)) C f(cly(h))

Conversely, assume the necessary condition holds, and let F € HFC(X). Then, clearly, F = cly(F).
Thus, by the hypothesis,

clua(f(F)) © f(el(F)) = F(F) € clu((F)).
Therefore, cly(f(F)) = f(F). Hence, f(F) is closed in Y. Therefore, f is closed. [

The following is the immediate result of Theorems 10 and 12.

Corollary 3. Let (X, T), (Y,0) be hesitant fuzzy topological spaces. Then, a mapping f : (X, ) — (Y, 0) is
continuous and closed if and only if cly (f (F)) = f(clg(h)), for each h € HS(X).

Definition 28. Let (X, T), (Y, 0) be hesitant fuzzy topological spaces. Then, a mapping f : (X, 1) — (Y,0)
is called a hesitant fuzzy homeomorphism, if it is bijective, continuous, and open.

Remark 3. For any hesitant fuzzy discrete spaces X and Y, f : X — Y is a hesitant fuzzy homeomorphism if
and only it is bijective.

6. Hesitant Fuzzy Subspaces

We define a hesitant fuzzy subspace topology, and we obtain some of its similar properties in
classical topological spaces. Moreover, we prove that the “Pasting lemma” holds in hesitant fuzzy
topological spaces.
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Definition 29. Let (X, T) be a hesitant fuzzy topological space, and let h € HS(X). Then, the collection
7, = {UNh : U € T} is called a hesitant fuzzy subspace topology or hesitant fuzzy relative topology on h. The
pair (h, ) is called a hesitant fuzzy subspace, and each member of T, is called a hesitant fuzzy open set in h.

Example 8. (1) Let X = {a,b,c}, and let T = {h°, h', hy, ho, h3, hy} € HFT(X),
where hy(a) = {04} U[0.5,1), h1(b) = (0.1,0.9], h1(c) = [0.3,0.8) U {0.1,0.9},
ha(a) = (0.3,0.5) U [0.6,0.9], hp(b) = {02} U (0.8,0.9), hn(c) = (0.4,1] U {0.1},
h3(a) = (0.3,1), h3(b) = (0.1,0.9], h3(c) = [0.3,1] U {0.1},
ha(a) = {04} U[0.6,0.9], hy(b) = {0.2} U (0.8,0.9), hy(c) = (0.4,0.8) U{0.1,0.9}.
Let h be the hesitant fuzzy set in X given by:
h(a) = (0.4,09] U {1}, h(b) = [0.1,0.3) U[0.7,0.8], h(c) = [0.2,0.4) U (0.5,1].
Then, T = {]’lo, h, hl ﬁh, I’lzﬁh, I’lgﬁh, I’l4ﬁh}
(2) If X is a hesitant fuzzy discrete space and h € HS(X), then (h, ) is a hesitant fuzzy discrete space.
(3) If X is a hesitant fuzzy indiscrete space and h € HS(X), then (h, ty) is a hesitant fuzzy indiscrete space.

Proposition 23. Let (X, T) be a hesitant fuzzy topological space, and let h € HS(X). Then, Ty, is a hesitant
fuzzy topology on h.

Proof. Since h°, h' € 7, h® = h°Nh € 1, and h = KNk € 1,

Let U, V € T,. Then, there are hy, hy € T such that U = hyNh and V = hyNh. Thus, UNV =
(hlﬁh)ﬁ(hzﬁh) = (l’l]ﬁhz)ﬁh Since h]ﬁhz cT,UNV e T).-

Now, let (Uj)jef C T, Then, there is hj € T such that U; = h]-ﬁh, for each j € J. Thus,
O]‘e]U]‘ = Djel(hjﬁh) = (Oje]hj)ﬁh. Since Oje]hj €T, O]E]Uj € T,. Therefore, T, is a hesitant fuzzy
topology on h. [

Proposition 24. Let (X, T) be a hesitant fuzzy topological space, and let hy, hy € HS(X) such that hy C hj.
Then, Ty, = (Thz)hl’

Proof. Let U € 7,,. Then, V € 7 such that U = VNhy. Since hy C hy, hy = hiNhy. Thus, U =
Vﬁ(hlﬁhz) = (Vﬁhz)ﬁhl. Since Vﬁhz € Ty, ue (Thz)hl' Therefore, Ty C (Thz)hl' Let U € (Thz)hl'
Then, there is V € T, such that U = VM. Since V € T3, there is i € T such that V = h(hy. Thus,
U = (hNhy)Nhy = hN(haNhy). Since by C hy, hoNhy = hy. Therefore, U = hNhy. Hence, U € T, ie.,
(Thy )n, C Th,- Therefore, 7, = (T, )p,- O

Proposition 25. Let (X, T) be a hesitant fuzzy topological space; let h € HS(X); and let BB be a base for T.
Then, B, = {BNh : B € B} is a base for .

Proof. Let U € T, and let x, € UNh. Then, there is B € B such that xy € B C U. Thus, x) € BNh C
UNh. Therefore, by Proposition 4, By, is a base for 7j,. [

The following gives a special situation in which every member of the the hesitant fuzzy space
topology is also a member of the hesitant topology on X.

Proposition 26. Let (X, T) be a hesitant fuzzy topological space, and let h € T. If U € T, then U € T.

Proof. Suppose U € T;,. Then, there is V € T such that U = VNh. Since h € T, VNh € 7. Thus,
Uet. O

Theorem 13. Let (X, T) be a hesitant fuzzy topological space; let h € HS(X); and A € HS(X) such that
A C h. Then, A is closed in h if and only if there is F € HFC(X) such that A = FNh.
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Proof. Assume A is closed in h. Then clearly, h\ A = hNA® € T,. Thus, there is U € T such that
WA = UNh. Since A C h, A = UNh. Let F = U°. Since U € 1, U° is closed in X. Therefore, F is
closed in X. Hence, the necessary condition holds.

Conversely suppose the necessary condition holds, and let A € HS(X) such that A C h. Then,
there is F € HFC(X) such that A = FNh. Thus, F¢ € T and h \ A = F°Nh. Therefore, h\ A € T,.
Therefore, A is closed in h. [

There is also a criterion for a hesitant fuzzy closed set in a hesitant fuzzy subspace to be closed in
the hesitant fuzzy topological space. The proof is similar to Proposition 26.

Proposition 27. Let (X, T) be a hesitant fuzzy topological space, and let h € HFC(X). If A is closed in (h, T,),
then A € HFC(X).

Proposition 28. Let (X, T) be a hesitant fuzzy topological space; let h € HFC(X); and let A C h. Then,
cly, (A) = hDcly (A), where cly, (A) denotes the closure of A in (h,T,).

Proof. Itis clear that clf(A) is closed in X. Then, by Theorem 13, hcly(A) is closed in (k, T,). Since
A Chand A C clg(A), A C hNcly(A). Since:

cly,(A) = ({F € HS(X) : A C Fand Fis closed in (I, 7,)},

cly, (A) C hNcly(A). Since cly, (A) is closed in (h, T,), by Theorem 13, there is F € HFC(X) such that
cly, (A) = hOF. Since A C ¢l (A), A C F. Since F € HFC(X), clg(A) C F. Thus, hcly(A) C hOF =
cly, (A). Therefore, cly, (A) = hNcly (A). This completes the proof. [

From Definitions 13 and 29, we have the following result.

Theorem 14. Let (X, T) be a hesitant fuzzy topological space; let h € HFC(X); let N C h; and let a) € h.
Then, N € HFNy, r,)(a,) if and only if there is U € HFN (a,) such that N = UNh, where HFN(;, 1,)(a,)
denotes the set of all neighborhoods of a, in (h, t;).

Let X be a nonempty set, and let A be a subset of X. Then, we can consider A as the mapping
A : X — P[0,1] defined by: for each x € X,

A(x):{ 01 ifxea
¢ otherwise.

In this case, A is also a hesitant fuzzy set, and we will write A as A = h}q.

Remark 4. Let (X, T) be a hesitant fuzzy topological space, and let A C X. Then, we can easily see that the
collection Tyt = {unnY, : U € t} is a hesitant fuzzy subspace topology on A. Furthermore, we can see that all
the propositions and all theorems obtained in the above hold in (A, Tt ).

Proposition 29. Let (X, T), (Y, 0) be hesitant fuzzy topological spaces, and let A C X, B C Y.

(1) The inclusion mapping i : (A, Th}‘) — (X, T) is continuous.

@ Iff: (X, 1) = (Y,0) is continuous, then f |4: (A, Th}{) — (Y, o) is continuous.

GIff:(X,T)— (B,(Th}g) is continuous, then the mapping ¢ : (X, ) — (Y, 0) defined by g(x) = f(x)
for each x € X is continuous.

@Iff: (X,t) — (Y,0) and f(X) C B, then the mapping ¢ : (X,7) — (B,O‘h%;) defined by
g(x) = f(x) for each x € X is continuous.

Proof. (1) Let V € 7. Then, clearly, i (V) = VAhY. Thus, i 1(V) € T, - Therefore, i is continuous.



Mathematics 2020, 8, 188 18 of 21

(2) Let V € 0. Then clearly, (f |4)~1(V) = f~1(V)NKL. Since f is continuous, f~}(V) € . Thus,
(fla)~H(V) e T - Therefore, f |4 is continuous.
(3) Let V € . Then clearly, Vﬁh% € Ot Since f is continuous,

fHVRRE) = fH (VRS () = fH(V)hx = fH(V) e T

Thus, by the definition of g, ¢~1 (V) = f~1(V). Therefore, g~ (V) € 1. Hence, g is continuous.
(4) Suppose f : (X,7) = (Y,0) and f(X) C B. LetV € Tt Then, there is U € ¢ such that
V = UNh}. Thus, by the hypothesis, f~1(U) € . Since f(X) C B, by the definition of g,

§ (V) =g (UNhp) = g~ (U)Ng™" (hp) = f~H(U)Aky = f~ (WD)
Therefore, g~ (V) € 1. Hence, g is continuous. [J

Proposition 30. Let (X, T), (Y, o) be hesitant fuzzy topological spaces, and let f : X — Y be a mapping. Let
(Uj)je be any family of subsets of X such that X = U; Uj, and let (U;)je; C T. If f |Uj: u;, T, ) — (Y, 0)
i

is continuous, for each j € |, then f : (X, ) — (Y, 0) is continuous.

Proof. Let V € o. Then, by the hypothesis, (f |uj)’1(V) € Ty - Since U; € T, by Proposition 26,
j

(f \uj,)’l(V) € 7. On the other hand, f~}(V) = Oje](f |uj)’l(V). Thus, f~1(V) € 1. Therefore, f is
continuous. [

Proposition 31. (Pasting lemma). Let (X, T), (Y, 0) be hesitant fuzzy topological spaces, and let A, B C X
such that X = AUBand A, B € HFC(X). Let f : (A,Th}q) — (Y,0)and g : (B,Thllg) — (Y,0) be
continuous mappings such that f(x) = g(x) for each x € AN B. Then, the mapping h : (X,T) — (Y,0)
defined by h(x) = f(x) for each x € A and h(x) = g(x) for each x € B is continuous.

Proof. Let F € HFC(Y). Since f and g are continuous, by Theorem 10, f~!(F) is closed in (A, T, ),
and ¢~ !(F) is closed in (B, Tj1)- Since A, B € HFC(X), by Proposition 26, f~Y(F), g7'(F) € HFC(X).
Then, h~1(F) = f~1(F)Ng~!(F) € HFC(X). Thus, by Theorem 10, & is continuous. [

7. Hesitant Fuzzy Product Topologies and Initial Topologies

We define a hesitant fuzzy product topology and prove that there exists an initial structure in
hesitant fuzzy topological spaces (See Theorem 16).

Definition 30. Let (Xj,Tj)jc; be a family of hesitant fuzzy topological spaces; let X = Tlje; Xj; and let
(71j : X — Xj)jej be a family of projections. Foreach j € ], let S; = {nj_l(u) tU € 1}, andlet S = Uje; S;
Then, S is a sub-base for a hesitant fuzzy topology T on X induced by (71; : X — (X, 7)) je;-

In this case, T is called the hesitant fuzzy product topology on X and will be denoted by [1;c; ;. The pair
(X, T) is called a hesitant fuzzy product space.

Proposition 32. Let (X;, T;)jcy be a family of hesitant fuzzy topological spaces. Then, the hesitant fuzzy product
topology I'Tje; Tj is the coarsest hesitant fuzzy topology on [jc; X; for which each 7t; = (ITje; Xj, I1je; ) —
(X, T;) is continuous.

Proof. Let S be the sub-base for the hesitant fuzzy product topology [1cs 7. Foreachi € ], let U € 7.
Then clearly, n;l(U) € S. Since S C [li¢gs T, nfl(U) € [jej 7j. Thus, by Theorem 10 (3), 7; is
continuous, for eachi € J.
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Suppose T is any hesitant fuzzy topology on [];c; X; for which each 7; is continuous, where
i+ (ITjey Xj, I1jej 7j) — (Xi, 1) is the projection mapping. Let S € S C []jcj 7. Then, there are
jeJand U € Tj such that S = nfl(U). Thus, by the hypothesis, nfl(U) € 1,i.e., S € T. Therefore,
Hje] T CT ]

Theorem 15. Let (Y}, 7j)jc; be a family of hesitant fuzzy topological spaces, and let (X,T) be a hesitant
fuzzy topological space. Then, a mapping f : (X,T) — (Iljej Y, I1je; 7j) is continuous if and only if
mjo f: (X, 1) = (Y], 7j) is continuous, for each j € ]J.

Proof. Suppose f is continuous, and let j € J. Then, by Proposition 32, 7t; is continuous, where 7; :
(ITjes Yj Ijey 7j) — (Y}, 7j) is the projection mapping. Thus, by Proposition 20, 7; o f is continuous.
Conversely, suppose the necessary condition holds, and let S be the sub-base for the hesitant
fuzzy 1produc’c topology [Tj¢; le on [];; Y given by Definition 30. For each j € Jand each U € 1,
let 4 (U) € S. Then, f‘l(n; (U)) = (7tj o f)~'(U). Thus, by the hypothesis, (7jo f)~}(U) € .

Therefore, f _1(71]-_1(11)) € 7. Hence, by Theorem 10 (3), f is continuous. [

The following is the immediate result of Theorem 15.

Corollary 4. Let (Y}, Tj)jc; be a family of hesitant fuzzy topological spaces; let (X, T) be a hesitant fuzzy
topological space and for each j € J; let f; : X — Y; be a mapping. We define a mapping f : X — [lies Y;
as follows:

foreach x € X and each j € ], the value of f(x) atjis fi(x).

Then, f continuous if and only if f; is continuous, for each j € .
Proposition 32 is the motivation of the following definition.

Definition 31. Let X be a nonempty set; let (X;, 7j);c; be a family of hesitant fuzzy topological spaces; and
let (fi :+ X — (X, 7))jes be a family of mappings. For each j € ], let S; = {fjfl(ll) U € v}, and
let S = Ujej Sj. Then, the coarsest hesitant fuzzy topology T on X with the sub-base S for which each
fi+ (X,7T) = (Xj, ;) is continuous.

Especially, T is called the hesitant fuzzy initial (or weak) topology on X induced by (f; : X — (X}, 7j))jes-

From Proposition 32, we can easily see that the hesitant fuzzy product topology [1;e; 7j on[Tjes X;
is the hesitant fuzzy initial topology induced by the family (7; : [Tje; X; — Xj)jej of projection
mappings. By Theorem 15, we obtain the following theorem.

Theorem 16. Let (X;, Tj)jcj be a family of hesitant fuzzy topological spaces; let x be a set and for each j € J; let
fi+ X = (Xj, 7;) be a mapping. Let T be the hesitant fuzzy initial topology on X with the sub-base S induced by
(fi : X = (X}, 7j) )ney, where S = {f]fl(ll) :U €1, j € J}. Let (Y, 0) be a hesitant fuzzy topological space.
Then, a mapping f : (Y,0) — (X, T) is continuous if and only if fio f : (Y, o) — (X;, 7j) is continuous, for
eachj € J.

Proof. Suppose f is continuous, and let j € J. Then, by the definition of the hesitant fuzzy initial
topology, f; : (X, T) — (Y, 7j) is continuous. Thus, by Proposition 20, f; o f is continuous.
Conversely, suppose the necessary condition holds, and let S be the sub-base for the hesitant

fuzzy initial topology T on X given by Definition 31. For each j € ] and each U € T, let fj_1 (u) e
S. Then, f’l(fj_l(ll)) = (f; o f)~1(U). Thus, by the hypothesis, (f; o f)~1(U) € t. Therefore,

Y fjfl(U)) € 1. Hence, by Theorem 10 (3), f is continuous. [
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Proposition 33. Let (X}, Tj)jc; be a family of hesitant fuzzy topological spaces; let X be a set and for each
j € J;let fj: X — (X;,7j) be a mapping. Let T be the hesitant fuzzy initial topology on X with the sub-base
S induced by (f; : X — (X, 7j))jej, and let A C X. Then, Ty, 15 the hesitant fuzzy initial topology on A

induced by (f; | )je;-

Proof. Let ¢ be the hesitant fuzzy initial topology on A induced by (f; [4);cj, and let S "= {( fila
)1 (Uj) : Uj € T, j € J}. Then, clearly, S’ is a sub-base for 8. In order to prove that § C Ty, » for each

j € Jand U; € T, let (f; |A)_1(Uj) € S'. Then, clearly, (f; |A)_1(U]-) = fj_l(uj)ﬁh%. Since 7 is the
hesitant fuzzy initial topology on X induced by ( f] X — (Y], ”L'j))he I f]fl (U]- € T, thus, by Remark 4,
f].*l(llj)ﬁh}él € T - Therefore, (fi la) "1 (U;) € T - Hence, § C Ty .

Now, let us show that T C d. Foreach j € Jand U; € T, let fj_l(l,[j) € § C 7. Then, clearly,
“Lu)nny e 6and N U)AKY = (fi |4)"Y(U;). Thus, (f; |4)~1(U;) € 6. Therefore, 7,1 C 6.
i\, i (Y j j j j M

This completes the proof. [

8. Conclusions

We defined a hesitant fuzzy topology, a hesitant fuzzy base and sub-base, a hesitant fuzzy
neighborhood and Q-neighborhood, a hesitant fuzzy closure and interior, a hesitant fuzzy continuous
mapping, a hesitant fuzzy subspace, and a hesitant fuzzy product space, and obtained some of
their properties, respectively. In the future, we will try to separate the axioms, compactness, and
connectedness in hesitant fuzzy topological space.
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