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Abstract: The human lymphatic system (HLS) is a complex network of lymphatic organs linked
through the lymphatic vessels. We present a graph theory-based approach to model and analyze the
human lymphatic network. Two different methods of building a graph are considered: the method
using anatomical data directly and the method based on a system of rules derived from structural
analysis of HLS. A simple anatomical data-based graph is converted to an oriented graph by
quantifying the steady-state fluid balance in the lymphatic network with the use of the Poiseuille
equation in vessels and the mass conservation at vessel junctions. A computational algorithm for
the generation of the rule-based random graph is developed and implemented. Some fundamental
characteristics of the two types of HLS graph models are analyzed using different metrics such as
graph energy, clustering, robustness, etc.

Keywords: graph theory; networks; mathematical modeling; lymphatic system; immunology

1. Introduction

The human lymphatic system (HLS) is a complex network of lymphatic organs linked through
the lymphatic vessels. Its structure and functioning are critical to immunity by transporting the
immune cells and antigens [1] and maintaining the fluid balance in tissues [2]. Currently, there are
only a few studies considering the spatial structure of the human lymphatic system in terms of the
network models [3-5] . The mathematical properties of the HLS network remain poorly investigated.
The graph theory provides a powerful tool to implement, visualize and analyze the characteristics of
the network models. Recently, it has been successfully applied for analysis of the topological properties
and robustness of conduit networks in lymphatic nodes [6].

Generally, two complementary approaches to modeling the network structure of the lymphatic
system. One is based on employment of available anatomical data [7,8]. The second approach uses
some general rules of lymphatic vessels network organization as discussed in [5,9]. In this study,
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we develop oriented graph-type models of the HLS following both approaches. To specify the links
direction in the anatomically derived HLS graph model, the analysis of the homeostatic lymph flow
through the network is performed using the Poiseuille law. The topological characteristics of the graph
models are analyzed using some general metrics such as graph energy, clustering, robustness, etc.
The aim of the present study is to explore the fundamental mathematical properties of the lymphatic
vessels network, for which the guiding organizational principles remain to be identified [2].

The paper is structured as follows. In Section 2, we present two anatomical data-based graph
models, i.e., the Reddy’s [3] and the Plastic boy model [5] of the HLS. The lymph flow balance is
analyzed to specify the respective directed graph of the HLS. In Section 3, computational algorithm
for generating a random rule-based directed graph of the HLS is formulated and applied to derive
the rule-based model. In Section 4, the parameters of the algorithm for the rule-based graph model
are estimated to best-fit the topological characteristics of the anatomy-based model. In Section 5,
a systematics analysis of the anatomy-based and the rule-based graph models of the HLS is performed.
Conclusions and future work are discussed in the last section.

2. Graph Models Based on Anatomical Data

The physiological data on the structural organization of the HLS provide a foundation for
developing anatomically based models of the HLS network. These days, the input information can
be obtained from the Plasticboy project (http://www.plasticboy.co.uk/store/Human_Lymphatic_
System_no_textures.html) or the CGTrader (2011-2020) at https://www.cgtrader.com/3d-models/
character/anatomy/lymphatic-system-inhuman-body.

2.1. Reddy’s Directed Graph Model of the HLS

The first network model of the HLS has been systematically developed by Reddy [3]. Due to
the scarcity of the available data at that time, the network model considers only the major lymphatic
vessels, many organs are lumped into single vessels and the right side of the head, neck, thorax and
upper right extremity are nor considered. The simplified Reddy’s network model of the HLS can be
represented by oriented graph G(V, E) with 29 vertices and 28 edges as shown in Figure 1 generated
using the network analysis package igraph (https://igraph.org/).

Figure 1. Oriented graph of a simple network model of the human lymphatic system suggested by
Reddy et al. [3] with 29 nodes and 28 edges. The black node with out-degree deg™ = 0 corresponds to
jugular vein (sink).
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2.2. Plastic Boy-Derived Graph Model of the HLS

We have previously developed a 3D computational geometry model of the HLS based on available
anatomical data from the Plasticboy project [5]. This network is a graph G(V, E) containing 996 vertices
and 1117 edges as shown in Figure 2. Unlike the Reddy’s graph model of the HLS shown in the Figure 1,
the above model is an undirected graph. To transform it to an oriented graph, we need to determine
the directions of the lymph flow through the graph. To this end, the simulation of a steady lymph flow
based on Poiseuille equation is employed.
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Figure 2. Graph of a human lymphatic system based on anatomical Plasticboy data [5] with 996 vertices
and 1117 edges (graph files are provided in Supplementary Materials). (A) Face- and (B) side views.
Blue colored vertices represent 272 lymph nodes. The black vertex corresponds to the output node.

2.2.1. Undirected Graph of the HLS

The anatomical data-based 3D graph model contains several vertices of degree 2 corresponding
to the lymphatic vessels which are composed of several lymphangions. We remove from the graph all
vertices of degree 2 corresponding to individual lymphangions to represent the multi-lymphangion
vessels as single graph edges. Moreover, we add one edge to correct the connection of right arm to
the body (which was missing in the original graph) and three edges to get a single output vertex for
the whole HLS graph (modeling the excretory vessels emptying the lymph to the venous system,
i.e., the jugular lymphatic trunk, thoracic duct and jugular vein). Overall, the following specifications
are made to obtain the HLS presented in Figure 2:

1. coordinates of all vertices in the graph are scaled to correspond to the basal 1750 mm height of
a marn;

2. theright hand and the head right side vertices are attached to the major part of HLS graph by
adding the edge from vertex 987 to the vertex 993;
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single output node (sink): (1) two vertices are added (numbered as 995 and 996) with vertex 996
being the output of the system, (2) three edges, i.e., between nodes 993-995, 994-995 and 995-996
were added;

we iterate over graph vertices and search for irrelevant vertices that meet all the following conditions:

(@) their degree is equal to two;
(b)  they are not lymph nodes;
(c)  their neighbor vertices v,, v, are not connected with each other by an edge;

at each iteration, the irrelevant vertex was removed, and the edge v, — v, was created.

The topological properties of the HLS data-based graph models, i.e., the vertices degree- and
edge-length distributions for the Plastic boy data-based graph and Reddy’s graph of the HLS are
summarized in Figure 3A,B, respectively. For the data-based HLS graph, we additionally show the
edge-length distribution and degree distribution of the vertices that represent lymph nodes (LNs) in

Figure 3A.

A: Data-based graph statistics

Degree distribution

Distribution of in-degrees

Distribution of out-degrees

0.4 0.75
303 .03 3
c c
[} 02 @ 0.50
302 2 g
= 0.1 |:| = 0.1 2025
00— —% D‘?‘TT? Wl === 000{l——= = . .
1 2 3 4 5 6 7 8 01 2 3 4 5 6 7 0 1 2 3
total degree of the vertex in-degree out-degree
Edge length distribution (data-based graph)
0.2
2
‘@
=
0.1
0.0 - e - = - - -
0 5 10 15 20 25 30 35 40

Degree distribution of 272 LNs

Edge length, cm

Distribution LNs' in-degrees
150

Distribution LNs' out-degrees

100 200
g g 100 £ 150
3 3 3
S 50 S 59 8 100
50
2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3
total degree in-degree out-degree
B: Reddy's graph statistics
Degree distribution Distribution of in-degrees Distribution of out-degrees
1.00
204 204 5075
c c C
g £ $0.50
g0.2 g0.2 g
= E = 0.25
0.0 ; - ; - 0.0 ; - ; ; 0.00 - ;
1 2 3 4 0 1 2 3 0 1
total degree of the vertex in-degree out-degree

Figure 3. Statistical distributions of the anatomy data-based HLS graphs. (A) Statistics of the data-based
graph, (B) of the Reddy’s graph. Statistics include the distributions of total degrees of the vertices,
distributions of in- and out-degrees, as well as the edge-length distribution and degree distribution of

the vertices that represent the lymph nodes (LNs) for data-based graph.
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2.2.2. Lymph Flow Analysis for Specifying the Directed Graph

The lymphatic system collects excess of intercellular fluid in the body tissues, drains it through
the lymph nodes (LN) and redirects the lymph further along the lymphatic vessels, delivering the
collected fluid into the central venous duct. In the LNs, about 90% of the afferent lymph flow takes
a peripheral path through the subcapsular and medullary sinuses [10]. The remaining 10% enters
interstitium to finally reach the efferent lymphatic vessel or to be absorbed by parenchymal blood
vessels of the LN. Earlier experimental data show that about 10% of the lymph is absorbed into the
blood vessels that penetrate the lymph nodes [11,12], while the remaining 90% of lymph entering LN
is transported further through the lymphatic vessels to higher-level LN.

We study the balance of lymph flow in the undirected anatomical-based graph presented in
Figure 2 to obtain the direction of lymph flow through the graph. We use the similar approach as
described in [13]. We apply the Poiseuille equation to every internal vessel represented by edge (i, ),

Q”__”R%UH—PD W
T 8Ly
where Q;; is the lymph flow rate along the vessel, R;; = R is the vessel lumen radius, 7 is the dynamic
viscosity of the lymph, p;, p; are the pressures at the ends of the vessel, L;; is the length of the vessel.
In the internal nodes, the mass conservation law is imposed:

ZQI] fd 0, i = 1,...,N - Nlnp - NOutl (2)
i

where Nj,,, = 357 is the number of input nodes with zero in-degree that provide the inflow of the lymph
Qi = 0.081 mm?3/s, Ny, = 1is the only output node with outflow Q,y; = NiupQin = 28.93 mm?/s.
To close the system (1) and (2) we specify the pressure po,: = 1127.73 Pa on the output node and Q;,
flow rate on the input nodes.

The above set of equations on HLS network in the matrix form

Kp =b, 3)

to calculate the lymph flows where p = [p1,..., pn]! is an unknown pressure vector for all the vertices

of the graph G(V, E). Matrix K and vector b are defined as

R4 . . . .
_A1]78777L1] ] 7é 1 1€ ‘/171,] U Vint an 1€ Vlnp
Kj=q DN Andle j=i i€VipUVy bi={ 0 i€Vim @
§ij i€ Vour Pour 1 € Vour

where A is an adjacency matrix of the LS graph; L;; is a distance between vertices i and j; Viup, Viut, Vour
are sets of input, internal and output vertices; dijis Kronecker’s delta. For the inflow vertices, we assume
that all input vertices obtain equal amount of lymph (Q;,,). For internal vertices, the conservation of
mass requires the sum of incoming and outgoing flows to be zero. For the outflow vertices, we fix the
pressure values Py

To calculate the stationary flows, the following assumptions were made:

1. there are no other sinks of the lymph except for the exit vertex number 996: V,,; = {996};

2. all vertices of the graph that have only one connection with other vertices (except for the
vertex 996) are the points of lymph entry (collecting lymphatics) into the lymphatic network;

3. the pressure at all inflow vertices is adjusted to provide the lymph flow rate on the input edges to
be equal to the output flow rate of the system divided by number of vertices with zero input edges;

4.  theradii of all the vessels are set to be same, equal to 1 mm;

5. the constant viscosity is set in the lymphatic network.
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The value of the dynamic viscosity of lymph at a temperature of 37 °C (5 = 1.8 x 1073 Pa-s) is
used. The pressure in the central venous duct ranges from 8 to 15 mmHg [2,14-16], and the value
of 11.5 mmHg is considered in the calculations. According to existing data, from 2 to 3 L of lymph
per day gets into the central venous duct [17,18], hence we take this parameter to be 2.5 L per day.
The resulting stationary lymph flow distribution in the HLS is shown in Figure 4.
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Figure 4. Steady-statedistribution of lymph flows in the HLS graph model. The output sink node is
presented as black circle.

The above analysis enabled us to specify the lymph flow directions in the graph edges,
and ultimately, to generate an oriented graph of the human lymphatic system, which is shown
in Figure 5A. As the dimension of the graph HLS model is high, it can be visualized in 2D being
subdivided into six segments representing specific parts of the human organism: arms, legs, head and
body. The resulting oriented subgraphs are presented in the Figure 5B.
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A

P _.‘_" =

Figure 5. Oriented graph model of the HLS based on the analysis of the lymph flow directions in the
network. (A) Spatial view of the graph with numbered vertices (face-view projection of 3D coordinates).
(B) View of the graph on a plane with no-overlapping layout. The 2D layout was obtained using
spring-based model algorithm [19] implemented in package igraph, followed by some manual tweaking
to space out the vertices. The colored subgraphs correspond to different parts of the body, i.e., arms
(dark and light blue), head /neck (magenta), torso (light green), legs (red and gray). LNs are represented
by larger circles.
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The adjacency matrix of this graph is presented in Figure 6.
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Figure 6. Adjacency matrix of the oriented data-based graph of human lymphatic system shown in
Figure 5. Colors represent the lengths L;; of the edges ¢;;.

3. Computational Algorithm for Generating a Random Rule-Based Directed Graph of the HLS

A quantitative modeling of the HLS presents a challenge due to enormous morphological
complexity and variability in its appearance [5]. Scarcity of available anatomical data calls for the
development of the so-called rule-based models of the HLS network structure. General rules of the
lymphatic vessels network organization can be specified as follows: (i) no long-distance edges are
allowed, (ii) nodes can have multiple inflow connections, (iii) the nodes connections are locally acyclic,
(iv) the lymphatic system network is a circular graph [9], and additionally, the links between nodes
of the same layer are allowed. To build a random graph of the lymphatic system, we developed a
rule-based algorithm that generates a random oriented graph with a predetermined number of layers
Nj, number of vertices Ny, number of sources Ny, (input nodes, which should only have out-degree 1)
and with one sink (output node). The layers in the algorithm are numerated from the output to the
input vertices, from ground layer with index 1 to top layer with index N;. Iterative process on vertices
is executed layer by layer starting from the next to the top layer. The rule-based graph HLS model
generation consists of three major steps as specified in Algorithm 1 (C++ language realization of
the algorithm is provided in Supplementary Materials, for any questions please contact authors of
the article).
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Algorithm 1: Generation of a rule-based directed graph of the HLS.
Parameters: Ny, Ny, Nj, Pe, Po;
Ny—number of vertices; Nj,,—number of input nodes; Nj—number of layers;

P,—probability of additional edge creation; P,—prob. of over-layer edge type;
Init array A of size N; to store lists of vertices in each layer;

Step 1. Distribute the vertices through the layers.
Set AVL = round(1.1- (N, —1)/(N; — 1));
for each layer L from A do
add one vertex to the layer L;
end
while vertices count in A is less than N, do
select random layer L from A;
if L is a top layer of A and vertices count in layer L is less than min(Nj,,, AVL) then
‘ add one vertex to the layer L;
else
if L is not top layer of A and vertices count in layer (L + 1) is more than in layer L then
‘ add one vertex to the layer L;
end

end
end

Step 2. Configure the input vertices.

Init empty list L;,, to store the input vertices (which can be spread through the layers);
insert all vertices from top layer of A into Ljyy;
while vertices count in Ly is less than Ny, do
select random layer L. from A;
let 1. be the number of vertices in layer L;
let 1, be the number of vertices in layer L. that are present in L;;;;
if nc > ny,, + 1 then
select random vertex from layer L. that is not in L;,p as Ucandidates

insert Veangidate INtO Liyyp;

end
end

Step 3. Create directed edges between the vertices.

for each vertex vin A do
let L, be the layer which holds the current vertex v;
let L be the list of vertices from layer (L, — 1) that do not have inflow connections;
let Lgpeopq be the list of vertices from layer (L, — 1) that do have inflow connections;
(deg™ (v) =0forv € Ly, deg (v) > 0for v € Lyecona)
if Lfjpst is not empty then

‘ select random vertex from Ly, that is notin L;,, as vs;
else

‘ select random vertex from Lgecong that is notin L;,, as vs;
end
create directed edge from current vertex v to selected vertex vs;
if vis notin L;,, then
while P, > random(0,1) do
let Ly, =L, —1;
while Ly, > 1 and P, > random(0,1) do

Liv=Lp—1;

end
select random vertex from layer L, that is not in Linp as vs;

create directed edge from current vertex v to selected vertex vs;

end
end

end
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The optimal estimation of the algorithm parameters is performed in Section 4. To this end
a topological fitness function specifying a mismatch between the anatomy-based graph and the
rule-based graph is used. One realization of a random graph constructed using Algorithm 1 with the
optimal parameters is presented in Figure 7, its degree distribution is shown in Figure 8, its adjacency

matrix—in Figure 9.

10 0of 18
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Figure 7. Two examples (A,B) of algorithmically generated realizations of rule-based directed random
graphs of the HLS. The output nodes are marked with black color. Algorithm parameters: N, = 996,
Ninp = 357, N; = 41, P, = 0.035, P, = 0.21. The metrics of topological fitness to anatomy-based graphs

presented in figure are defined in Section 4.
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Figure 8. Degree distribution of the rule-based graph presented in Figure 7A.
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Figure 9. Directed graph adjacency matrix of the rule-based random graph presented in Figure 7A.

4. Parameters of the Rule-Based Algorithm Providing Best Match to the Anatomy Data Graph

The basic topological properties of the graph are the node (vertex) degree- and the edge (arc) length

distributions. These were presented for two types of graph in the previous sections. As the coordinates
of nodes (and edge lengths) of the rule-based graph are not specified, we can only obtain statistics
on the degree distribution of the vertices, and this indicator varies significantly depending on the
parameter settings of the algorithm. We consider some fundamental characteristics of the HLS graph
properties to make a deeper comparison of the graph models such as the energy, clustering, robustness,
etc. Let G = (V, E) be an undirected version of the graph with n =| V(G) | and m =| E(G) | nodes
and edges, respectively. Let A denote the n x n adjacency matrix of G.

The number of input nodes Ny, i.e., the number of nodes with degree 1 and out-degree 0.
Maximum degree of graph Ag, i.e., the maximum degree of its vertices.

Girth of the graph g, which is the length of the shortest (undirected) cycle in the graph.
Diameter, i.e., the longest geodesic distance (in other terms, maximum eccentricity of any vertex),

D = maxe(v) = maxmaxd(u,v), (5)
veV veV ueV
where d(u,v) is the geodesic distance (shortest directed path connecting vertices u and v), €(v) is

the eccentricity of vertex v.
Radius of the graph (minimum eccentricity of any vertex),

= mi = mi d(u,v). 6
r IJ&I{I/IG(U) min max (u,v) (6)

Average path length (mean geodesic distance),

1

= d(u,v). (7)

Ig =
1) u,veV, u#v
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e  The energy and the spectral radius of the graph are defined as follows,
n
En(A) =) |A;l, p(A) =max{|A]}, ®)
j=1

where A; stand for the eigenvalues of the adjacency matrix A of the graph.
¢  Edge density of the graph, i.e., the number of edges divided by the number of all possible edges,

m
Pa = nin—1) )

®  The clustering coefficient C (transitivity) measures the probability that two neighbors of a vertex
are connected. It can be computed as function of adjacency matrix A:

n,n,n Y . . .
LiZ1 j=1 k=1 %ij " A O

i1 (S aij) - (T ay) — 1))

*  Number of separators sy, i.e., the vertices removal of which disconnects the graph.

e  Therobustness R of the graph can be defined as the fraction of peripheral vertices that retained the
connection with the output vertex after removing 5% of the vertices selected randomly, averaged
over k = 1, ..., N, removal realizations. Given adjacency matrix Ay of the k-th realization of the
graph, indices iy, ..., inmp of its input vertices and index o of the output vertex, the robustness is
computed as

c(a) = (10)

N, Rinp 107 ) 1if Y (Aol >0,
R = i Z Ry, Ry= Z F(Ak, ll,o,n)/ F(Ak/ ij, 0, 7’1) = f Z{rlill ( ~;€>l“0 (11)
Nr (= iz M 0, if X5 [(Apiel =0,

¢  Topological diversity of the vertices as a function of the Shannon entropy associated with flow
rates through the incident edges,

k
H(v;)  — Y= Pijlog(pij) Qi
D ow U;) = — , =
fl ( l) log(k) log(k) Pij Z;;l |Ql’]'|

(12)

where k is the number of v;’s incident edges and p;; is the proportion of the flow between the
adjacent v; and v; to the total flow through the edges involving v;. The flow diversity is defined
analogous to the social and spatial diversity of networks from [20].

The rule-based graphs generated with Algorithm 1 have five tuning parameters: (1) number
of vertices Ny, (2) number of input vertices Nj,,, (3) number of layers Nj, (4) probability of new
edge creation P, at each step of the algorithm, probability that the created edge connects vertices
from different layers P,. The first two parameters are set to match explicitly the properties of
the anatomy-based graph: N, = 996, N;;, = 357. The number of layers can be estimated as
N; = D +1 = 41, where D is the diameter of the directed target graph, which is increased by one
because the output vertex is represented as a separate (ground) layer in Algorithm 1. Given the
metrics characterizing the topology of an anatomy-based graph, we search for values of the remaining
parameters P, and P, that can produce the graphs with similar topological structure. Specifically,
we introduce the following state-vector

T
S(G> = (m/g/ D,r, lG,ETl,P,Pd, C, Nsep, ndeglrndegzlndeg3r”deg4/ndeg5rndeg7rndeg8/AG) ’ (13)
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which describes the topological properties of graph G(V, E), and the objective function

18 . e * 2

which penalizes the topological discrepancies of graph G from the target graph G* and weighs them
with (si(G*))f2 to bring discrepancies of different components of vector s to a single scale. Here,
we denote the number of vertices with degree i as 14,5, = Y eV, deg(v)=i 1, and exclude from the
state-vector 74,4, which equals zero for an anatomy-based graph, to avoid singularity in (14).

First, we investigate the landscape of topological fitness of algorithmically generated graphs
over uniform ranges of admissible values of parameters P, and P,. The dependence of the objective
function (14) on P, and P, is presented in Figure 10A. The colors correspond to logarithmically
transformed mean values of objective function ®,.,, over 640 algorithm realizations for each set of
parameter values. One can see that there is a narrow region in which the objective function reaches
its minimum on the grid cells where P, = 0.035. Next, we examine more closely the dependence
of the objective function distribution on parameter P, for fixed P, = 0.035, which is presented in
Figure 10B. One can see that for a long range of parameter P,, the objective function values remain
low, until they increase for large values P, > 0.8, where the maximum degree of graphs become
too large (the dependence of topological metrics on P, is presented in Figure S1). From Figure 10,
one can estimate the following ranges of viable parameter values for P, and N;: P, € (0.001,0.07),
P, € (0.01,0.8). Two examples of rule-based graphs with satisfactory topological fitness generated by
the algorithm with the use of optimal parameters P, = 0.035, P, = 0.21 are shown in Figure 7.

A N,=41 B P.=0.035, N\=41
-~ mean
- SD

0.96 min-max
0.89 100
0.82 4.0
0.75
0.69 3.5 50+
0.62

, 055 3.0

o’ 048 -
0.42 25
0.35
0.28 20 L
0.21
0.15 1.5
0.08 51
001 109 10(® mear)
ANITL8G
[cReReX=-R=ReR=ReR=R=X=X=R=R=X=) 00 01 02 083 04 05 06 07 08 09 1.0
Pe Po

Figure 10. The landscape of topological fitness of rule-based graphs over different values of algorithm
parameters. (A) Image of 10g;,(®eqn) values as function of varying parameters P, and P, and fixed
N = 41. The mean values are calculated in each image cell over 640 graphs realizations of rule-based
graphs generated with corresponding parameter sets. (B) Dependence of objective function on P,
with fixed P, = 0.035, N; = 41. The statistics on values of objective function (14) are calculated over
10,000 realizations of the algorithm for each value of P,.

5. Comparative Analysis of the HLS Graph Models

The differences between the anatomy data-based and the rule-based graphs in terms of the metrics
introduced in Section 4 are summarized in Tables 1 and 2. The histograms of robustness distributions
(Rg values) for each type of graph calculated over N, = 100,000 (N, = 435 for Reddy’s graph is the
number of random deletions of 5% of nodes corresponding to 29 one node deletions and 406 deletions
of randomly chosen pairs of nodes) realizations of random deletion of 5% of vertices are presented
in Figure 11. The distributions of flow diversity of anatomy-based graphs are presented in Figure 12.
Please note that for data-based graph we use the flows computed in Section 2.2.2. For Reddy’s graph
we obtain the flows assuming the equidistant inflow along 16 input edges equal to the 1/16-th of the
outflow to the blue output node and the conservation law.
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Table 1. Summary statistics for Reddy’s, anatomy-based and rule-based graphs characterizing their
topological properties. For algorithmically generated graphs, we present the statistics obtained over
10,000 graphs generated with algorithm parameters P, = 0.035, P, = 0.21, N; = 41. Robustness was
calculated over 1000 algorithm realizations, with 1000 removal attempts for each graph.

Lymphatic Vascular Reddy’s Anatomy-Based Rule-Based Rule-Based Rule-Based m.
System Graph Model Model Model Model (Mean) Model (SD) (Min-Max Range)
G(n,m) (29,28) (996,1117) (996,1029) (0,6.4) (996, 1009-1056)
Ninp 16 357 357 0 (357-357)
Maximum degree, Ag 4 8 16 1.58 (8-21)
Girth, g 0 3 4 0.9 (3-14)
Diameter, D 5 40 39.96 0.22 (37-40)
Radius, r 4 30 28 23 (23-38)
Average path length, I 2.46 12.79 15.3 0.86 (13.6-18)
Energy, En 32.1 1224.5 1190 49 (1173-1203)
Spectral radius, p 2.58 3.51 4.18 0.19 (3.28-4.72)
Edge density, p, 0.034 0.001127 0.001038 6.4-107° (0.00102-0.00107)
Clustering coefficient, C 0 0.027 0.0004 0.0008 (0-0.0036)
Number of separators, 1) 13 401 496 20 (437-548)
Robustness, R 0.7 0.6 0.66 0.05 (0.45-0.77)
Average flow diversity, Doy 0.908 0.996 — — —

Table 2. Summary statistics for the subgraphs of the anatomy-based graph which correspond to
different parts of the body.

Subgraph Left Arm  Right Arm Head & Neck Torso Left Leg  Right Leg
G(n,m) (149,181)  (141,170) (198,208) (168,183) (163,176) (177,192)
Number of input nodes 46 45 64 68 66 71
Number of output nodes 1 1 2 1 1 1
Maximum degree, Ag 8 8 4 8 5 4
Girth, g 3 3 4 3 3 3
Diameter, D 23 22 21 18 22 22
Radius, r 10 9 13 9 13 13
Average path length, I 8.77 8.37 7.24 7.02 8.95 9.55
Energy, En 192.22 180.6 236.24 164.4 196.57 2141
Spectral radius, p 3.3 3.32 2.95 3.51 2.92 3.08
Edge density, p4 0.0082 0.0086 0.0053 0.0065 0.0067 0.0062
Clustering coefficient, C 0.049 0.035 0 0.055 0.01 0.009
Number of separators, s 41 41 46 (left), 46 (right) 81 66 72
Number of LNs 36 36 51 (left), 51 (right) 59 21 18
A Reddy's graph B Data-based graph C Rule-based graph
6.
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Figure 11. Histograms of the robustness of (A) Reddy’s graph, (B) anatomical data-based graph and
(C) rule-based random graph presented in Figure 7A.
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Figure 12. Histograms of the flow diversity of the inner vertices of anatomy-based graphs: (A) for
data-based graph, (B) for Reddy’s graph.

Given the algorithmically generated rule-based graph with optimal parameters presented in
Figure 7A, we used another method to estimate the level of its resemblance to the anatomy-based graph.
Specifically, to evaluate the level of isomorphism (LI) between the data-based and the rule-based graphs
we searched for the row and column permutations to find the best match of them. Please note that
examination of the graph isomorphism level belongs to the NP complexity calls. For this, we formed an

O 0)’ O B
is the adjacency matrix of the data-based graph, and B is the adjacency matrix of the rule-based graph,
O is the zero matrix with equal sizes, D,y is the initial Hamming distance for the given adjacency
matrices. We used the simulated annealing method to minimize the Hamming distance between
matrices M; , M by performing permutations in the M, matrix (based on graph isomorphism):

expanded connectivity matrix M; = (A 0 My, = (O O> , Dyax = Zi,j(Ml,-,j + Mzi,j)’ where A

Yo IMy,, — My, | — min (15)
ij

The permutations in the M, matrix are performed as follows: a pair of numbers i, j is chosen at random.
Then, in the matrix M, columns number i, j are swapped. After that, the same operation is performed
with rows 7, j. From the point of view of the graph, such transformations mean a permutation of the
designations of the vertices i, j. Using this, we carry out a stochastic optimization of the M, matrix

by the simulated annealing method to minimize (15). After that, we calculate the relative distance
) . Yij My, —My, |
between graphs, presented by the adjacency matrices M, My as D,,; = # Here, D, =1

means a complete mismatch, D,,; = 0 means the complete equivalence of the adjacency matrices.
By solving the minimization problem for the entire graphs, we achieved the upper bound estimate of
the mismatch level of the range LI < 0.49.

6. Conclusions

The human lymphatic system is a complex system consisting of many components and performing
several important functions related to the metabolism, fluid tissue homeostasis and the immune
system [21,22]. Currently, there are only a few models addressing the network structure of the human
lymphatic system in a systematic way [3-5]. In this work, we propose an approach based on the
graph theory to modeling the human lymphatic system and analyzing the fundamental mathematical
properties of the resulting graph models. Two different types of graph models are developed,
the anatomical data- and the rule-based ones. The transformation of the anatomical data-based simple
graph into the oriented graph is implemented on the base of the steady-state lymph flow balance in the
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lymphatic vessel network. This homeostatic balance is quantified by applying the Poiseuille equation
to every vessel and the mass conservation law to every vessel junction. The available empirical data on
lymph flow through the system are rather scarce and range from 0.004 mm? /s in rats to 46.3 mm3/s in
humans [2]. Our computations consistently suggest the range of lymph flows from 0.001 to 10 mm? /s,
depending on the location of the respective vessel.

Our study is aimed to understand the fundamental topological properties of the human lymphatic
system and to critically analyze the underlying organizational principles (rules) of the LS that have been
proposed for modeling the systemic spreading of HIV infection. The combination of the developed
HLS data-based graph and the publicly available software SimVascular (https:/ /simvascular.github.
io/index.html) designed for blood flow simulations provide a solid basis to further move on to the
1D, 2D- and 3D-simulations of the lymphatic system flows. The knowledge gained on the lymphatic
network topology can be useful for systems pharmacokinetics studies and drug therapies design.

Recent progress in tissue bioengineering and 3D bio-printing enables the development of artificial
organs including those of the lymphatics system, e.g., the LN-on-a-chip [23]. The artificial LNs can
be used as a functional cure for certain pathological conditions like lymphoedema characterized
by disruption of the interstitial fluid transport. The graph model of the human lymphatic system
provides a platform for an optimal positioning of the artificial LNs and lymphatic vessels to restore the
functioning and performance of the HLS.

The lymphatic system (LS) is responsible for maintaining the fluid balance in tissues and the
functioning of the immune system. As the complexity of the organization and regulation of the
immune system is extremely high, the move towards a mechanistic understanding of the immune
system functioning takes the form of specific rules (see [24-27]). The respective set of organizational
principles (rules) of the LS structure was recently proposed and used for modeling the systemic
spreading of HIV infection [9]. In our study we analyzed the consistency of the rule-based graph of the
human lymphatic system with that based on the anatomical data. To this end, a novel computational
algorithm for generation of the rule-based random graph has been developed. Some fundamental
characteristics of the two types of HLS graph models are analyzed using metrics such as graph energy,
clustering, robustness, etc.

Additionally, we estimated the optimal parameters of the proposed algorithm for generating
the rule-based graph model which provide the best-fit to the anatomy data-based graph model with
respect to basic topological metrics. Our analysis revealed that the currently available set of rules
specifying universal properties of HLS for the rule-based graph modeling requires further maturation
to be applied in clinical studies.

Overall, it is the first study in which the full complexity of the HLS network is addressed by
methods of the graph theory methods. We probe to elucidate the efficacy of the rule-based approach to
generate the HLS models. Further specification of the basic rules underlying the structure and function
of the HLS is needed in collaboration with immunologists and physiologists. The graph models which
we make publicly available, provide an important step towards a quantitative analysis of transport
phenomena in the whole lymphatic system. This is a problem of a paramount importance for systems
immunology, pharmacokinetics and medicine [1,2,28].

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2227-7390/8/12/2236/s1,
Figure S1: extended rule-based graphs metrics analysis; graph_edges.txt, graph_vertices.txt: data-based graph of
the HLS; graph_generator.cpp, Makefile: C++ code to build rule-based graphs.
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