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Abstract: We consider a new type of oscillations of discontinuous unpredictable solutions for linear
impulsive nonhomogeneous systems. The models under investigation are with unpredictable
perturbations. The definition of a piecewise continuous unpredictable function is provided.
The moments of impulses constitute a newly determined unpredictable discrete set. Theoretical
results on the existence, uniqueness, and stability of discontinuous unpredictable solutions
for linear impulsive differential equations are provided. We benefit from the B-topology in
the space of discontinuous functions on the purpose of proving the presence of unpredictable
solutions. For constructive definitions of unpredictable components in examples, randomly
determined unpredictable sequences are newly utilized. Namely, the construction of a discontinuous
unpredictable function is based on an unpredictable sequence determined by a discrete random
process, and the set of discontinuity moments is realized by the logistic map. Examples with numerical
simulations are presented to illustrate the theoretical results.

Keywords: discontinuous unpredictable function; linear impulsive system; discontinuous
unpredictable solution; asymptotic stability

1. Introduction

A new type of oscillation, called an unpredictable trajectory, was introduced in the paper [1].
An unpredictable trajectory is necessarily positively Poisson stable, and one of its distinctive features
is the emergence of chaos in the corresponding quasi-minimal set. The type of chaos based on the
presence of an unpredictable trajectory is called Poincaré chaos [1]. Symbolic dynamics, logistic map,
and Hénon map are some examples that possess unpredictable motions [1,2]. Instead of interaction of
several motions, which is a requirement in other chaos types [3–5], it is enough to check the existence
of a single unpredictable motion to verify Poincaré chaos. Thus, the connection of unpredictable
oscillations with Poincaré chaos is based on Poisson stable motions. The basics of the Poisson stable
motion can be seen in [6]. In the theory of differential equations, the class of Poisson stable solutions
has been intensively studied [7–10].

The theoretical basics of the present research lies in the theory of dynamical systems, which was
founded H. Poincaré and G. Birkhoff [6,11]. It was the French genius, who learned that underneath of
chaotic dynamics is the Poisson stable motion. The line of different types of oscillations was maintained
by the notion of an unpredictable point in paper [1]. Let (X, d) be a metric space and π : R+ × X → X,
where R+ is the set of non-negative real numbers, be a semiflow on X. A point x ∈ X and the
trajectory through it are unpredictable if there exists a positive number ε0 and sequences tn, sn both
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of which diverge to infinity, such that lim
x→∞

π (tn, x) = x and d(π (tn + sn, x) , π (tn, x)) ≥ ε0 for each

n ∈ N. In paper [1], it was proved that a Poisson stable motion equipped with the unpredictability
property determines sensitivity in the quasi-minimal set. It is usual that dynamical properties generate
functional ones. For example, recurrent or almost periodic motions allow us to define recurrent and
almost periodic functions, respectively. Similarly, issuing from the unpredictable point introduced
in [1], in paper [12] the unpredictable function was defined as a point of the Bebutov dynamics,
where the state space is a set of functions. In the present research we replace the metrical state space of
the dynamics with the B-topology [13], where a convergence of piecewise continuous functions on
compact subsets of the real axis is utilized. This makes our suggestions more universal and effective in
applications, since constructive verifiable conditions are proposed. In this study it is applied for linear
impulsive systems.

Unpredictable points and unpredictable functions are becoming increasingly applicable in the
study of chaos theory. For instance, some topological properties of Poincaré chaos were considered
by Miller [14], and Thakur and Das [15]. Various types of differential equations with unpredictable
solutions were considered in the papers [2,12,16–18] and in the book [19]. Recently it is proved in
paper [20] that unpredictable motions take place also in random processes.

Alongside the theory of chaos, impulsive differential equations have also played an essential
role from both theoretical and practical points of view over the past few decades [13,21–30].
Such differential equations describe dynamics of real world phenomena in which abrupt interruptions
of continuous processes are present, and they play a crucial role in various fields such as mechanics,
electronics, medicine, neural networks, communication systems, and population dynamics [31–38].
Chaos in the sense of Li-Yorke and the presence of period-doubling route to chaos in impulsive systems
were investigated in the studies [39,40] by means of the replication of chaos technique.

In the present study, we show that unpredictable perturbations can lead to the presence of
discontinuous unpredictable motions in the dynamics of linear impulsive systems. In the absence
of the perturbation term, the linear system under investigation has a simple dynamics such that
it admits an asymptotically stable regular solution. However, our results reveal that the presence
of an unpredictable term dominates the behavior of the resulting dynamics and a discontinuous
unpredictable solution occurs. In the present study, we also investigate the case of the presence of
unpredictability in the impulsive moments. Due to the nature of impulsive systems, the concept of
B-topology [13] is required for the theoretical investigation of discontinuous unpredictable solutions.

We have already obtained the essential results for ordinary linear and quasilinear systems, as well
as discrete equations [17,18]. One of the main contributions of the present study is the presentation of
the novel definitions of discontinuous unpredictable function and unpredictable discrete set. Another
main contribution is the demonstration of the existence and uniqueness of unpredictable solutions for
linear impulsive systems. Systems with both non-unpredictable and unpredictable impulsive actions
are under investigation.

Benefiting from the techniques introduced in [2,12,16,19] and results on the theory of impulsive
differential equations [13,21], the existence, uniqueness, and stability of discontinuous unpredictable
solutions of linear impulsive systems are investigated in this study. To construct an unpredictable
function, an unpredictable sequence resulting from a randomly defined discrete Bernoulli process [20]
is utilized.

2. Preliminaries

Throughout the paper, R, N, and Z respectively stand for the sets of real numbers, natural
numbers, and integers. Moreover, we make use of the usual Euclidean norm for vectors and the
spectral norm for square matrices [41].

It is known that solutions of an impulsive system are piecewise continuous functions, which have
discontinuities of the first kind. A difficulty of investigation of impulsive system is that, in general,
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discontinuity moments of distinct solutions do not coincide. For that reason the concept of B-topology
is required in our investigations [13].

Denote byR the set of all functions defined on the real axis. They are continuous except countable
sets of points. At the points the, functions admit one-sided limits. The sets of points do not necessarily
coincide, if functions are different. The sets of points do not have finite accumulation points and are
unbounded on both sides.

Two functions F(t) and G(t) from R, are said to be ε-equivalent on an interval J ⊆ R if the
points of discontinuity of the functions F(t) and G(t) in J can be respectively numerated θF

i and θG
i ,

i = 1, 2, . . . , k, such that |θF
i − θG

i | < ε for each i = 1, 2, . . . , k, and ||F(t)− G(t)|| < ε for each t ∈ J,
except those between θF

i and θG
i for each i. In the case that F and G are ε-equivalent on J, we also say

that the functions are in ε-neighborhoods of each other. The topology defined with the aid of such
neighborhoods is called the B-topology.

In what follows we will denote by [â1, a2], a1, a2 ∈ R, the interval [a1, a2], if a1 < a2 and the
interval [a2, a1], if a2 < a1.

Let θi, i ∈ Z, be a sequence of real numbers such that θ ≤ θi+1 − θi ≤ θ for some positive numbers
θ, θ, and |θi| → ∞ as |i| → ∞.

Definition 1. A piecewise continuous and bounded function ϕ(t) : R → Rp with the set of discontinuity
points θi, i ∈ Z, satisfying ϕ(θi−) = ϕ(θi) for each i ∈ Z is called discontinuous unpredictable function
(d.u.f.) if there exist positive numbers ε0, σ, sequences tn, sn of real numbers and sequences ln, mn of integers all
of which diverge to infinity such that

(a)
∣∣θi+ln − tn − θi

∣∣→ 0 as n→ ∞ on each bounded interval of integers and
∣∣θmn+ln − tn − θmn

∣∣ ≥ ε0 for
each natural number n;

(b) for every positive number ε, there exists a positive number δ such that ‖ϕ(ρ1)− ϕ(ρ2)‖ < ε whenever
the points ρ1 and ρ2 belong to the same interval of continuity and |ρ1 − ρ2| < δ;

(c) ϕ(t + tn)→ ϕ(t) as n→ ∞ in B-topology on each bounded interval;
(d) for each natural number n there exists an interval [sn − σ, sn + σ] ⊆ [ ̂θmn , (θmn+ln − tn)] which does

not contain any point of discontinuity of ϕ(t) and ϕ(t + tn), and ‖ϕ(t + tn)− ϕ(t)‖ ≥ ε0 for each
t ∈ [sn − σ, sn + σ].

In Definition 1, we call the property (b) conditional uniform continuity of ϕ, the property (c) Poisson
stability of ϕ, and the property (d) unpredictability of ϕ.

Definition 2. Suppose that ω(t) : R → Rp is a piecewise continuous and bounded function with the set
of discontinuity points θi, i ∈ Z, satisfying ω(θi−) = ω(θi) and Γi, i ∈ Z, is a bounded sequence in Rp.
The couple (ω(t), Γi) is called unpredictable if there exist positive numbers ε0, σ, sequences tn, sn of real numbers
and sequences ln, mn of integers all of which diverge to infinity such that

(a)
∣∣θi+ln − tn − θi

∣∣→ 0 as n→ ∞ on each bounded interval of integers and
∣∣θmn+ln − tn − θmn

∣∣ ≥ ε0 for
each natural number n;

(b) for every positive number ε there exists a positive number δ such that ‖ω(ρ1)−ω(ρ2)‖ < ε whenever
the points ρ1 and ρ2 belong to the same interval of continuity and |ρ1 − ρ2| < δ;

(c) ω(t + tn)→ ω(t) as n→ ∞ in B-topology on each bounded interval;
(d) for each natural number n there exists an interval [sn − σ, sn + σ] ⊆ [ ̂θmn , (θmn+ln − tn)] which does

not contain any point of discontinuity of ω(t) and ω(t + tn), and ‖ω(t + tn)− ω(t)‖ ≥ ε0 for each
t ∈ [sn − σ, sn + σ];

(e)
∣∣Γi+ln − Γi

∣∣→ 0 as n→ ∞ for each i in bounded intervals of integers and
∣∣Γmn+ln − Γmn

∣∣ ≥ ε0 for each
natural number n.

Similarly to Definition 1, in Definition 2 we call the property (b) conditional uniform continuity of
ω, the property (c) Poisson stability of ω, and the property (d) unpredictability of ω.
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The sequence θi, i ∈ Z, is said to be an unpredictable discrete set if the condition (a) is satisfied.
It is clear that if the couple (ω(t), Γi) is unpredictable in the sense of Definition 2, then ω(t) is a

discontinuous unpredictable function in the sense of Definition 1.
Obviously, Definition 1 does not follow from the Definition 2, since one cannot obtain the former

just by diminishing the terms Γi. The sequence of zeros is not an unpredictable sequence. Consequently,
both definitions are needed in the paper.

The definition of the unpredictable sequence is as follows.

Definition 3 ([16]). A bounded sequence κi, i ∈ Z, in Rp is called unpredictable if there exist a positive number
ε0 and sequences ζn, ηn, n ∈ N, of positive integers both of which diverge to infinity such that ‖κi+ζn − κi‖ → 0
as n→ ∞ for each i in bounded intervals of integers and ‖κζn+ηn − κηn‖ ≥ ε0 for each n ∈ N.

According to the purpose of the present study, we specify the discontinuity moments of the
impulsive systems that will be investigated as

θi = iT + γi, i ∈ Z, (1)

where γi, i ∈ Z, is a sequence of real numbers which is unpredictable in the sense of Definition 3 and
T ≥ 4 is a number such that sup

i∈Z
|γi| < T/h for some number h ≥ 3.

Since γi, i ∈ Z, is an unpredictable sequence, there exists a positive number ε0 and sequences
ζn, ηn, both of which diverge to infinity such that |γi+ζn − γi| → 0 as n → ∞ for each i in bounded
intervals of integers and |γζn+ηn − γηn | ≥ ε0 for each natural number n.

Let us show that the sequence θi, i ∈ Z, is unpredictable discrete set. More precisely, we will
demonstrate that property (a) mentioned in Definition 1 is valid for θi, i ∈ Z, with tn = Tζn, ln = ζn,
and mn = ηn for each natural number n. By these choices of the sequences tn, ln, and mn, we have that∣∣θi+ln − tn − θi

∣∣ = ∣∣(i + ζn)T + γi+ζn − ζnT − iT − γi
∣∣ = ∣∣γi+ζn − γi

∣∣ .

Therefore,
∣∣θi+ln − tn − θi

∣∣ → 0 as n → ∞ for each i in bounded intervals of integers. On the
other hand,∣∣θmn+ln − tn − θmn

∣∣ = ∣∣(ηn + ζn)T + γηn+ζn − ζnT − ηnT − γηn

∣∣ = ∣∣γηn+ζn − γηn

∣∣ ≥ ε0

for each natural number n.
Additionally, one can confirm that θi, i ∈ Z, defined by (1) satisfies the inequality θ ≤ θi+1− θi ≤ θ

with θ = T − 2T
h

and θ = T +
2T
h

.

3. Linear Systems with Non-Unpredictable Impulses

The main object of the present section linear impulsive system,

x′(t) = Ax(t) + f (t), t 6= θi,

∆x|t=θi = Bx(θi), (2)

where t ∈ R, the matrices A ∈ Rp×p and B ∈ Rp×p commute, the sequence θi, i ∈ Z, of discontinuity
moments is defined by Equation (1), and f (t) : R → Rp is a d.u.f. in the sense of Definition 1.
We suppose that det(I + B) 6= 0, where I is the p× p identity matrix.
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Let us denote by X(t, u) the Cauchy matrix of the following linear impulsive system associated
with (2),

x′(t) = Ax(t), t 6= θi,

∆x|t=θi = Bx(θi). (3)

Since the matrices A and B commute, we have for t > u that

X(t, u) = eA(t−u) (I + B)i([u,t)) , (4)

where i([u, t)) denotes the number of the terms of the sequence θi, i ∈ Z, which belong to the interval
[u, t), and X(u, u) = I [21].

Let us denote by λj, j = 1, 2, . . . , p, the eigenvalues of the matrix A +
1
T

Ln(I + B).
The following condition on the system (2) is required.

(C) max
j
<eλj = λ < 0, where <eλj is the real part of λj for each j = 1, 2, . . . , p.

In consequence of (4), under the condition (C), there exist numbers K ≥ 1 and 0 < α < −λ such
that

‖X(t, u)‖ ≤ Ke−α(t−u) (5)

for t ≥ u [13,21].
Let us prove the following auxiliary assertion.

Lemma 1. Assume that the condition (C) is fulfilled, then the following inequality

‖X(t + tn, u + tn)− X(t, u)‖ ≤ K0e−α(t−u) (6)

holds, where K0 = K max (1, ‖B‖).

Proof. By using (4) and (5), we can show that

‖X(t + tn, u + tn)− X(t, u)‖ ≤
∥∥∥eA(t−u) (I + B)i([u+tn ,t+tn)) − eA(t−u) (I + B)i([u,t))

∥∥∥
≤

∥∥∥eA(t−u) (I + B)i([u,t))
∥∥∥ ∥∥∥(I + B)|i([u+tn ,t+tn))−i([u,t))| − I

∥∥∥
≤ K max (1, ‖B‖) e−α(t−u).

for t ≥ u.

The following theorem is concerned with the discontinuous unpredictable solution of system (2).

Theorem 1. Suppose that the condition (C) is valid. If f (t) is a d.u.f. in the sense of Definition 1,
then system (2) possesses a unique asymptotically stable discontinuous unpredictable solution.

Proof. As it is known from the theory of impulsive differential equations [13,21], according to the
boundedness of the function f (t), system (2) admits a unique solution ϕ(t) which is bounded on the
real axis and satisfies the equation

ϕ(t) =
t∫

−∞

X(t, u) f (u)du, t ∈ R. (7)
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One can verify for points of continuity that

∥∥∥∥dϕ(t)
dt

∥∥∥∥ ≤ ‖A‖
t∫

−∞

‖X(t, u)‖ ‖ f (u)‖ du + ‖ f (t)‖ =
‖A‖M f K

α
+ M f , (8)

where M f = sup
t∈R
‖ f (t)‖. Therefore, ϕ(t) is a conditional uniform continuous function. The asymptotic

stability of ϕ(t) can be verified in a very similar way to the stability of a bounded solution mentioned
in [13].

Since f (t) is a d.u.f., there exist positive numbers ε0, σ, sequences tn, sn of real numbers and
sequences ln, mn of integers all of which diverges to infinity such that the properties (c) and (d) in
Definition 1 hold for f (t), i.e., when ϕ is replaced by f .

Let us continue with the verification of the Poisson stability of ϕ(t), i.e., property (c) in Definition 1.
Fix an arbitrary positive number ε and an arbitrary compact interval [a, b], where b > a. We will

show for sufficiently large n that the inequality ‖ϕ(t + tn)− ϕ(t)‖ < ε is satisfied for each t in [a, b].
Choose numbers c < a and ξ > 0 such that

M f (K0 + 2K)
α

e−α(a−c) <
ε

3
, (9)

M f (K0 + 2K)
(
eαξ − 1

)
α
(
1− e−αθ

) <
ε

3
, (10)

and

Kξ

α
<

ε

3
. (11)

Let n be a sufficiently large natural number such that
∣∣θi+ln − tn − θi

∣∣ < ξ for θi ∈ [c, b], i ∈ Z,
and || f (t + tn) − f (t)|| < ξ for t ∈ [c, b]. We assume without loss of generality that θi ≤ θi+ln .
Additionally, suppose that

θm−1 ≤ c ≤ θm < · · · < θq ≤ t ≤ θq+1

for m, q ∈ Z.
If t ∈ [a, b], then we have

‖ϕ(t + tn)− ϕ(t)‖ ≤
c∫

−∞

‖X(t + tn, u + tn)− X(t, u)‖ ‖ f (u + tn)‖ du

+

t∫
c

‖X(t + tn, u + tn)− X(t, u)‖ ‖ f (u + tn)‖ du +

c∫
−∞

‖X(t, u)‖ ‖ f (u + tn)− f (u)‖ du

+

t∫
c

‖X(t, u)‖ ‖ f (u + tn)− f (u)‖ du.

Using the inequality (6), one can obtain

c∫
−∞

‖X(t + tn, u + tn)− X(t, u)‖ ‖ f (u + tn)‖ du ≤
c∫

−∞

M f K0e−α(t−u)du <
M f K0

α
e−α(a−c).

Moreover, we have
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t∫
c

‖X(t + tn, u + tn)− X(t, u)‖ ‖ f (u + tn)‖ du ≤
q

∑
i=m

θi+ln−tn∫
θi

M f K0e−α(t−u)du

≤
q

∑
i=m

M f K0

α
e−αt

(
eα(θi+ln−tn) − eαθi

)
≤

q

∑
i=m

M f K0

α
e−α(t−θi)

(
eαξ − 1

)
<

M f K0

α

(
eαξ − 1

)
e−α(t−θq)

q

∑
i=m

e−α(θq−θi) <
M f K0

(
eαξ − 1

)
α
(
1− e−αθ

) .

In a similar way to the last inequality, one can deduce that

c∫
−∞

‖X(t, u)‖ ‖ f (u + tn)− f (u)‖ du +

t∫
c

‖X(t, u)‖ ‖ f (u + tn)− f (u)‖ du

≤
c∫

−∞

2M f Ke−α(t−u)du +

t∫
c

Kξe−α(t−u)du +
q

∑
i=m

θi+ln−tn∫
θi

2M f Ke−α(t−u)du

<
2M f K

α
e−α(a−c) +

Kξ

α
+

2M f K
(
eαξ − 1

)
α
(
1− e−αθ

) .

The inequalities (9)–(11) imply that ‖ϕ(t + tn)− ϕ(t)‖ < ε for t ∈ [a, b], and therefore,
ϕ(t + tn)→ ϕ(t) uniformly on each compact interval in B-topology.

Next, we will show the existence of a sequence rn, which diverges to infinity, and positive numbers
ε1, σ such that ‖ϕ(t + tn)− ϕ(t)‖ ≥ ε1 for t ∈ [rn − σ, rn + σ].

Corresponding to the Definition 1 for the d.u.f. f (t), the interval [sn − σ, sn + σ] ⊆ [ ̂θmn , (θmn+ln −
tn)], does not admit any points of discontinuity of f (t) and f (t + tn). For that reason, the following
discussion ignores the presence of a discontinuity moment.

There exists a positive number σ1 < σ such that the inequalities

‖ f (t + tn)− f (tn + sn)‖ ≤
ε0

4
√

p

and

‖ f (t)− f (sn)‖ ≤
ε0

4
√

p
,

are valid for every t ∈ [sn − σ1, sn + σ1] and natural number n.
Let us fix an arbitrary natural number n, and suppose that f (t) = ( f1(t), f2(t), . . . , fp(t)),

where each fk(t), k = 1, 2, . . . , p, is a real valued function. One can confirm that there exists an
integer jn, 1 ≤ jn ≤ p, such that ∣∣ f jn(tn + sn)− f jn(sn)

∣∣ ≥ ε0√
p

.

Therefore, the inequality∣∣ f jn(t + tn)− f jn(t)
∣∣ ≥

∣∣ f jn(tn + sn)− f jn(sn)
∣∣− ∣∣ f jn(t + tn)− f jn(tn + sn)

∣∣
−
∣∣ f jn(t)− f jn(sn)

∣∣ (12)

≥ ε0

2
√

p

is valid for t ∈ [sn − σ1, sn + σ1].
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There exist numbers un
1 , un

2 , . . . , un
p in the interval [sn − σ1, sn + σ1] such that∥∥∥∥∥∥

sn+σ1∫
sn−σ1

( f (u + tn)− f (u)) du

∥∥∥∥∥∥ = 2σ1

[
p

∑
k=1

( fi(un
i + tn)− fi(un

i ))
2

]1/2

.

It can be verified by utilizing the inequality (12) that∥∥∥∥∥∥
sn+σ1∫

sn−σ1

( f (u + tn)− f (u)) du

∥∥∥∥∥∥ ≥ 2σ1

∣∣∣ f jn(u
n
jn + tn)− f jn(u

n
jn)
∣∣∣ ≥ σ1ε0√

p
.

Additionally, using the equation

ϕ(tn + sn + σ1)− ϕ(sn + σ1) = ϕ(tn + sn − σ1)− ϕ(sn − σ1) +

sn+σ1∫
sn−σ1

A (ϕ(u + tn)− ϕ(u)) du

+

sn+σ1∫
sn−σ1

( f (u + tn)− f (u)) du,

we deduce that

‖ϕ(tn + sn + σ1)− ϕ(sn + σ1)‖ ≥
σ1ε0√

p
− (1 + 2σ1||A||) sup

t∈[sn−σ1,sn+σ1]

‖ϕ(t + tn)− ϕ(t)‖ .

Hence, the inequality

sup
t∈[sn−σ1,sn+σ1]

‖ϕ(t + tn)− ϕ(t)‖ ≥ σ1ε0

2(1 + σ1||A||)
√

p

holds.
Suppose that sup

t∈[sn−σ1,sn+σ1]

‖ϕ(t + tn)− ϕ(t)‖ = ||ϕ(tn + rn) − ϕ(rn)|| for some number rn ∈

[sn − σ1, sn + σ1]. Let us denote

ε1 =
σ1ε0

4(1 + σ1||A||)
√

p

and

σ̃ =
σ1αε0

8M f (1 + σ1||A||)(α + 2K||A||)√p
.

Let us choose σ such that

σ < min (σ̃, σ− σ1) . (13)

Then, for t ∈ [rn − σ, rn + σ], we have that
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‖ϕ(t + tn)− ϕ(t)‖ ≥ ‖ϕ(tn + rn)− ϕ(rn)‖ −

∣∣∣∣∣∣
t∫

rn

||A|| ‖ϕ(u + tn)− ϕ(u)‖ du

∣∣∣∣∣∣
−

∣∣∣∣∣∣
t∫

rn

‖ f (u + tn)− f (u)‖ du

∣∣∣∣∣∣
≥ σ1ε0

2(1 + σ1||A||)
√

p
−

4σM f K||A||
α

− 2σM f

= ε1.

Thus, ‖ϕ(t + tn)− ϕ(t)‖ ≥ ε1 for each t from the intervals [rn − σ, rn + σ] ⊆ [ ̂θmn , (θmn+ln −
tn)], n ∈ N. It is clear that the sequence rn diverges to infinity. Consequently, ϕ(t) is the unique
discontinuous unpredictable solution of system (2).

4. Linear Systems with Unpredictable Impulses

Consider the following linear impulsive system,

x′(t) = Ax(t) + f (t), t 6= θi,

∆x|t=θi = Bx(θi) + Ii, (14)

where t ∈ R, the matrices A ∈ Rp×p and B ∈ Rp×p commute, the sequence θi, i ∈ Z, of discontinuity
moments is defined by Equation (1), and ( f (t), Ii) is an unpredictable couple in the sense of Definition 2.
Additionally, det(I + B) 6= 0, where I is the p× p identity matrix.

It is worth noting that (14) is a linear impulsive system with unpredictable impulses, and it is not
a particular case of system (2). Indeed, to introduce the perturbations Ii in the impulsive part, one
must not only consider the sequence to be unpredictable but also assume that the sequences tn and sn

proper for the unperturbed system have to be consistent with the new terms.
In the proof of the following theorem, we will again use the notations K0 = K max (1, ‖B‖) and

M f = sup
t∈R
‖ f (t)‖ as mentioned in the proof of Theorem 1. Moreover, we set MI = sup

i∈Z
‖Ii‖.

Theorem 2. Suppose that the condition (C) is valid. If the couple ( f (t), Ii) is unpredictable in the sense of
Definition 2, then system (14) possesses a unique asymptotically stable discontinuous unpredictable solution.

Proof. According to the results of [13,21], system (14) possesses a unique solution ω(t) which is
bounded on the whole real axis. Moreover, ω(t) satisfies the equation

ω(t) =
t∫

−∞

X(t, u) f (u)du + ∑
θi<t

X(t, θi+)Ii (15)

for t ∈ R. If t is not one of the discontinuity moments θi, then

∥∥∥∥dω(t)
dt

∥∥∥∥ ≤ ‖A‖
t∫

−∞

‖X(t, u)‖ ‖ f (u)‖ du + ‖ f (t)‖

≤ ‖A‖
t∫

−∞

M f Ke−α(t−u)du + M f

= ‖A‖
M f K

α
+ M f .
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The last inequality yields the conditional uniform continuity of ω(t). Moreover, the asymptotic
stability of ω(t) can be verified using the results mentioned in the books [13,21].

The asymptotic stability of the solution ω(t) can be verified as stability of a bounded solution
in [13].

Since the couple ( f (t), Ii) is unpredictable, there exist positive numbers ε0, σ, sequences tn, sn of
real numbers and sequences ln, mn of integers all of which diverges to infinity such that the properties
(c), (d), and (e) in Definition 2 hold for the function f (t) and the sequence Ii, i.e., when ω and Γi are
respectively replaced by f and Ii.

Next, we focus on the Poisson stability of ω(t). Fix an arbitrary positive number ε and
a compact interval [a, b] with b > a. We will show that for sufficiently large n the inequality
‖ω(t + tn)−ω(t)‖ < ε holds for each t ∈ [a, b].

Let us fix numbers c < a and ξ > 0 satisfying the inequalities

M f (K0 + 2K)
α

e−α(a−c) <
ε

5
, (16)

4MIK
1− e−αθ

e−α(a−c) <
ε

5
, (17)

M f (K0 + 2K)
(
eαξ − 1

)
α
(
1− e−αθ

) <
ε

5
, (18)

Kξ (MI + 1)
1− e−αθ

<
ε

5
, (19)

and

Kξ

α
<

ε

5
. (20)

One can check that if n is a sufficiently large natural number, then the equation

∑
θi<t+tn

X(t + tn, θi+)Ii = ∑
θi<t

X(t + tn, θi+ln+)Ii+ln

is valid.
Fix a sufficiently large natural number n such that

∣∣θi+ln − tn − θi
∣∣ < ξ,

∥∥Ii+ln − Ii
∥∥ < ξ whenever

θi ∈ [c, b] and || f (t + tn)− f (t)|| < ξ for t ∈ [c, b]. Assume without loss of generality that θi ≤ θi+ln .
For all t ∈ [a, b], we have

‖ω(t + tn)−ω(t)‖

≤
c∫

−∞

‖X(t + tn, u + tn)− X(t, u)‖ ‖ f (u + tn)‖ du + ∑
θi<c

∥∥X(t + tn, θi+ln+)− X(t, θi+)
∥∥ ∥∥Ii+ln

∥∥
+

t∫
c

‖X(t + tn, u + tn)− X(t, u)‖ ‖ f (u + tn)‖ du + ∑
c≤θi<t

∥∥X(t + tn, θi+ln+)− X(t, θi+)
∥∥ ∥∥Ii+ln

∥∥
+

c∫
−∞

‖X(t, u)‖ ‖ f (u + tn)− f (u)‖ du + ∑
θi<c
‖X(t, θi+)‖

∥∥Ii+ln − Ii
∥∥

+

t∫
c

‖X(t, u)‖ ‖ f (u + tn)− f (u)‖+ ∑
c≤θi<t

‖X(t, θi+)‖
∥∥Ii+ln − Ii

∥∥ du.
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Using the inequality (6), it can be verified that

c∫
−∞

‖X(t + tn, u + tn)− X(t, u)‖ ‖ f (u + tn)‖ du + ∑
θi<c

∥∥X(t + tn, θi+ln+)− X(t, θi+)
∥∥ ∥∥Ii+ln

∥∥
≤

c∫
−∞

M f K0e−α(t−u)du +
m−1

∑
i=−∞

MIKe−α(t+tn−θi+ln ) +
m−1

∑
i=−∞

MIKe−α(t−θi)

<

(M f K0

α
+

2MIK
1− e−αθ

)
e−α(a−c).

On the other hand, one can obtain that

t∫
c

‖X(t + tn, u + tn)− X(t, u)‖ ‖ f (u + tn)‖ du + ∑
c≤θi<t

∥∥X(t + tn, θi+ln+)− X(t, θi+)
∥∥ ∥∥Ii+ln

∥∥
≤

q

∑
i=m

θi+ln−tn∫
θi

M f K0e−α(t−u)du +
q

∑
i=m

MIKξe−α(t−θi) <
M f K0

(
eαξ − 1

)
α
(
1− e−αθ

) +
MIKξ

1− e−αθ
.

Additionally, the inequality

c∫
−∞

‖X(t, u)‖ ‖ f (u + tn)− f (u)‖ du + ∑
θi<c
‖X(t, θi+)‖

∥∥Ii+ln − Ii
∥∥

≤
c∫

−∞

2M f Ke−α(t−u)du +
m−1

∑
i=−∞

2MIKe−α(t−θi) <

(2M f K
α

+
2MIK

1− e−αθ

)
e−α(a−c)

holds for t ∈ [a, b]. Furthermore, we have

t∫
c

‖X(t, u)‖ ‖ f (u + tn)− f (u)‖+ ∑
c≤θi<t

‖X(t, θi+)‖
∥∥Ii+ln − Ii

∥∥ du

≤
t∫

c

Kξe−α(t−u)du +
q

∑
i=m

θi+ln−tn∫
θi

2M f Ke−α(t−u)du +
q

∑
i=m

Kξe−α(t−θi)

<
Kξ

α
+

2M f K
(
eαξ − 1

)
α
(
1− e−αθ

) +
Kξ

1− e−αθ
.

Thus, ‖ω(t + tn)−ω(t)‖ < ε for t ∈ [a, b] in accordance with the inequalities (16)–(20). Therefore,
ω(t + tn)→ ω(t) uniformly in B-topology on each compact interval.

The unpredictability of solution ω(t) can be proved identically to that for solution ϕ(t) of
system (2).

5. Examples

Example 1. In this example, we will construct a discontinuous unpredictable function by means of an
unpredictable orbit of the logistic map and a randomly determined unpredictable sequence [20].

In the paper [2], it was proved that for each µ ∈ [3 + (2/3)1/2, 4], the logistic map

νi+1 = µνi(1− νi), i ∈ Z. (21)
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possesses an unpredictable solution γi, i ∈ Z, in the interval [0, 1]. There exists a positive number ε0 and
sequences ζn, ηn, both of which diverge to infinity such that

∣∣γi+ζn − γi
∣∣→ 0 as n→ ∞, for each i in bounded

intervals of integers and
∣∣γηn+ζn − γηn

∣∣ ≥ ε0 for each n ∈ N.
Consider the sequence θi, i ∈ Z defined by

θi = 4i + γi, i ∈ Z. (22)

Since the sequence (22), is of the form (1), with T = 4, there exists a positive number ε0, a sequence
tn = 4ζn of real numbers and sequences ln = ζn, mn = ηn of integers all of which diverge to infinity such that∣∣θi+ln − tn − θi

∣∣→ 0 as n→ ∞ for each i in bounded intervals of integers and
∣∣θmn+ln − tn − θmn

∣∣ ≥ ε0 for
each natural number n. That is, the sequence is an unpredictable discrete set.

In this example, we utilize a realization of the Bernoulli process, for construction of a discontinuous
unpredictable function by considering it as infinite sequences of two integers 1 and 3 with equal probability
1/2 such that according to (Theorem 1, [20]). Then, there exists an unpredictable sequence τi, τi = 1, 3, i ∈ Z,
and there exist sequences ζn, ηn, n ∈ N, of positive integers both of which diverge to infinity as n → ∞ such
that τi+ζn = τi for each i in bounded intervals of integers and |τζn+ηn − τηn | ≥ ε0 = |1− 3| = 2 for each
natural number n.

Let Ω(t) : R → R be the function defined through the equation Ω(t) = τi for t ∈ [θi, θi+1), i ∈ Z.
We will show that Ω(t) is a discontinuous unpredictable function in the sense of Definition 1.

One can show that if t ∈ [θi, θi+1), i ∈ Z, then t + tn ∈ [θi+ζn , θi+1+ζn), i ∈ Z. For t ∈ [θ′i , θ′i+1), i ∈ Z,
it can be verified that θ′i ≤ t < θ′i+1, and θ′i + tn ≤ t + tn < θ′i+1 + tn, then θ′i+ζn

≤ t + tn < θ′i+1+ζn
. That is,

the discontinuity points of Ω(t + tn) are that ones for Ω(t). Let us denote them θ′i = θi+ζn − tn. Accordingly,
for each i ∈ Z, n ∈ N the value of function Ω(t + tn) is equal to τi+ζn . Hence, by using the unpredictability τi,
we have that Ω(t + tn) → Ω(t) as n → ∞ in B-topology on each bounded interval. Moreover, the values of
functions Ω(t) and Ω(t + tn), on the corresponding intervals [θηn , θηn+1), and [θηn+ζn , θηn+1+ζn), for fixed n,
are respectively equal to τηn and τηn+ζn . Consequently, we have that |Ω(t + tn)−Ω(t)| =

∣∣τηn+ζn − τηn

∣∣ ≥
ε0 = 2.

Thus, Ω(t) is a discontinuous unpredictable function with positive numbers ε0 = 2, σ = 3
2 and sequences

tn = 4ζn, sn =
θηn+θηn+1

2 . The graph of the function Ω(t) is represented in Figure 1.

Figure 1. The graph of discontinuous unpredictable function Ω(t).

Example 2. Let us consider the impulsive system,

x′1 = −x2 + 2Ω3(t), t 6= θi,

x′2 = x1 − 7Ω(t), t 6= θi,

∆x1|t=θi = −
15
16

x1 + 3γi,

∆x2|t=θi = −
15
16

x2 − 2γi, (23)
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where Ω(t) is the d.u.f. from Example 1, and

A =

(
0 −1
1 0

)
, B =

(
− 15

16 0
0 − 15

16

)
.

The couple ( f (t), Ii) =

((
2(Ω(t))3

−7Ω(t)

)
,

(
3γi
−2γi

))
is unpredictable in the sense of Definition 2

according to (Lemmas 1.4 and 1.5 [17]).
The matrices A and B commute, and the matrix

A +
1
T

ln (I + B) =

(
−ln 2 −1

1 −ln 2

)
,

has the eigenvalues λ1,2 = −ln 2± i. One can show that

X(t, u) = P

(
cos(t− u) −sin(t− u)
sin(t− u) cos(t− u)

)
P−1(I + B)i(u,t),

where P =

(
0 1
1 0

)
. Inequality (5) is satisfied for system (23) with α = 0.5 and K = 2. According to

Theorem 2, there exists the unique asymptotically stable discontinuous unpredictable solution of system (23).
It is worth noting that the simulation of an unpredictable function is not possible, since the initial value is

not known. That is why, we will simulate a solution φ(t) = (φ1(t), φ2(t)) which approaches to the unpredictable
solution x(t) as time increases. Instead of the curve describing the unpredictable solution, one can take the graph
of φ(t). We depict in Figure 2 the graph of the solution with initial values φ1(0) = 1, φ2(0) = 0.5. Moreover,
Figure 3 presents the orbit of the solution φ(t).

0 5 10 15 20 25 30 35 40

0

1

2

3

 t

 φ
1

0 5 10 15 20 25 30 35 40

−2

−1

0

1

2

 t

 φ
2

Figure 2. The time series of the coordinates φ1, φ2 of the solution of system (23) with the initial
conditions φ1(0) = 1.0, φ2(0) = 0.5.
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Figure 3. The trajectory of the solution φ(t), which approximates the discontinuous unpredictable
solution x(t).

6. Conclusions

In this study, we present sufficient conditions for the existence and uniqueness of asymptotically
stable discontinuous unpredictable solutions. To determine the presence of unpredictability at
discontinuity moments of the solutions, we introduced the concepts of unpredictable discrete set and
discontinuous unpredictable function. Our approach can be applied in studies of the unpredictability
of various types of impulsive differential equations.
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