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Abstract: The aim of the present paper is to introduce a new class G (α, δ) of analytic functions in the
open unit disk and to study some properties associated with strong starlikeness and close-to-convexity
for the class G (α, δ). We also consider sharp bounds of logarithmic coefficients and Fekete-Szegö
functionals belonging to the class G (α, δ). Moreover, we provide some topics related to the results
reported here that are relevant to outcomes presented in earlier research.
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1. Introduction and Preliminaries

Let U denote the open unit dick in the complex plane C. A function ω : U→ C is called a Schwarz
function if ω is a analytic function in U with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U. Clearly, a Schwarz
function ω is the form

ω(z) = w1z + w2z2 + · · · .

We denote by Ω the set of all Schwarz functions on U.
Let A be consisting of all analytic functions of the following normalized form:

f (z) = z +
∞

∑
n=2

anzn, (1)

in the open unit disk U. An analytic function f is said to be univalent in a domain if it provides
a one-to-one mapping onto its image: f (z1) = f (z2) ⇒ z1 = z2. Geometrically, this means that
different points in the domain will be mapped into different points on the image domain. Also, let S
be the class of functions f ∈ A which are univalent in U. A domain D in the complex plane C is called
starlike with respect to a point w0 ∈ D, if the line segment joining w0 to every other point w ∈ D lies in
the interior of D. In other words, for any w ∈ D and 0 ≤ t ≤ 1, tw0 + (1− t)w ∈ D. A function f ∈ A
is starlike if the image f (D) is starlike with respect to the origin.
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For two analytic functions f and F in U, we say that the function f is subordinate to the function F
in U and we write f (z) ≺ F(z), if there exists a Schwarz function ω such that f (z) = F

(
ω(z)

)
for all

z ∈ U. Specifically, if the function F is univalent in U, then we have the next equivalence:

f (z) ≺ F(z) ⇐⇒ f (0) = F(0) and f (U) ⊂ F(U).

The logarithmic coefficients γn of f ∈ S are defined with the following series expansion:

log
(

f (z)
z

)
= 2

∞

∑
n=1

γn( f )zn, z ∈ U. (2)

These coefficients are an important factor in studying diverse estimates in the theory of univalent
functions. Note that we use γn instead of γn( f ). The concept of logarithmic coefficients inspired
Kayumov [1] to solve Brennan’s conjecture for conformal mappings. The importance of the logarithmic
coefficients follows from Lebedev-Milin inequalities [2] (Chapter 2), see also [3,4], where estimates of
the logarithmic coefficients were used to find bounds on the coefficients of f . Milin [2] conjectured
the inequality

n

∑
m=1

m

∑
k=1

(
k|γk|2 −

1
k

)
≤ 0 (n = 1, 2, 3, · · · ),

which implies Robertson’s conjecture [5], and hence, Bieberbach’s conjecture [6]. This is the famous
coefficient problem in univalent function theory. L. de Branges [7] established Bieberbach’s conjecture
by proving Milin’s conjecture.

Definition 1. Let q, n ∈ N. The qth Hankel determinant is denote by Hq(n) and defined by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

...
. . .

...
an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣
, (3)

where ak (k = 1, 2, . . .) are the coefficients of the Taylor series expansion of a function f of the form (1). Note
that a1 = 1.

The Hankel determinant Hq(n) was defined by Pommerenke [8,9] and for fixed q, n the bounds
of |Hq(n)| have been studied for several subfamilies of univalent functions. Different properties of
these determinants can be observed in [10] (Chapter 4). The Hankel determinants H2(1) = a3 − a2

2
and H2(2) = a2a4 − a2

3, are well-known as Fekete-Szegö and second Hankel determinant functionals,
respectively. In addition, Fekete and Szegö [11] introduced the generalized functional a3 − λa2

2,
where λ is a real number. Recently, Hankel determinants and other problems for various classes of
bi-univalent functions have been studied, see [12–16].

For α ∈ [0, 1), we denote by S∗(α) the subclass of A including of all f ∈ A for which f is a starlike
function of order α in U, with

Re
z f ′(z)

f (z)
> α (z ∈ U).

Also, for α ∈ (0, 1], we denote by S̃∗(α) the subclass of A consisting of all f ∈ A for which f is
a strongly starlike function of order α in U, with∣∣∣∣Arg

(
z f ′(z)

f (z)

)∣∣∣∣ < απ

2
(z ∈ U).

Note that S̃∗(1) = S∗(0) = S∗, the class of starlike functions in U.
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For α ∈ (0, 1], we denote by C̃(α) the subclass of A including all of f ∈ A for which∣∣Arg
(

f ′(z)
)∣∣ < απ

2
(z ∈ U).

Note that C̃(1) = C, the subclass of close-to-convex functions in U. Here we understand that Arg w
is a number in (−π, π].

For α ∈ (0, 1], Nunokawa and Saitoh in [17] defined the more general class G(α) consisting of all
f ∈ A satisfying

Re
(

1 +
z f ′′(z)
f ′(z)

)
< 1 +

α

2
(z ∈ U).

They proved that G(α) is a subclass of S∗. Ozaki in [18] showed that every function G(1) is
univalent in the unit disk U. In the following, Umezawa [19], Sakaguchi [20] and Singh and Singh [21]
obtained some geometric properties of G(1) including, convex in one direction, close-to-convex and
starlike, respectively. Obradović et al. in [22] proved the sharp coefficient bounds for the moduli of the
Taylor coefficients an of f ∈ G(α) and determined the sharp bound for the Fekete-Szegö functional for
functions in G(α) with complex parameter λ. Also, Ponnusamy et al. [22,23] studied bounds for the
logarithmic coefficients for functions in G(α).

Here, we introduce a class as follows:

Definition 2. For α, δ ∈ (0, 1], we define the subclass G (α, δ) of A as the following:

G (α, δ) :=
{

f ∈ A :
∣∣∣Arg

(
2 + α

α
− 2

α

(
1 +

z f ′′(z)
f ′(z)

)) ∣∣∣ < δπ

2
(z ∈ U )

}
.

It is clear that G (α, 1) = G(α) for α ∈ (0, 1]. Let α, δ ∈ (0, 1], identity function on U belongs to
G (α, δ) which implies that G (α, δ) 6= ∅. By means of the principle of subordination between analytic
functions, we deduce

G (α, δ) :=

{
f ∈ A : 1 +

z f ′′(z)
f ′(z)

≺ −α

2

(
1 + z
1− z

)δ

+
2 + α

2
:= φ(z) (z ∈ U)

}
. (4)

Since the function f defined by

f (z) =
∫ z

0
exp

∫ x

0

− α
2

(
1+t
1−t

)δ
+ α

2

t
dt

dx (z ∈ U)

satisfies

1 +
z f ′′(z)
f ′(z)

= φ(z) ≺ φ(z),

we deduce f ∈ G (α, δ).
The aim of the present paper is to study some geometric properties for the class G (α, δ) such

as strongly starlikeness and close-to-convexity. Also we investigate sharp bounds on logarithmic
coefficients and Fekete-Szegö functionals for functions belonging to the class G (α, δ), which incorporate
some known results as the special cases.
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2. Some Properties of the Class G (α, δ)

We denote by Q the class of all complex-valued functions q for which q is univalent at each
U \ E(q) and q′(ξ) 6= 0 for all ξ ∈ ∂U \ E(q) where

E(q) =
{

ξ ∈ ∂U : lim
z→ξ

q(z) = ∞
}

.

The following lemmas will be required to establish our main results.

Lemma 1 ([24] (Lemma 2.2d (i))). Let q ∈ Q with q(0) = a and let p(z) = a + pnzn + . . . be analytic in U
with p(z) 6≡ 1 and n ≥ 1. If p is not subordinate to q in U then there exist z0 ∈ U and ξ0 ∈ ∂U \ E(q) such
that

{
p (z) : z ∈ U, |z| < |z0|

}
⊂ q(U),

p(z0) = q(ξ0).

Lemma 2. (see [25,26]) Let the function p given by

p(z) = 1 +
∞

∑
n=1

cnzn

be analytic in U with p(0) = 1 and p(z) 6= 0 for all z ∈ U. If there exists a point z0 ∈ U with

∣∣ arg
(

p(z)
)∣∣ < βπ

2
(|z| < |z0|)

and ∣∣ arg
(

p(z0)
)∣∣ = βπ

2
,

for some β > 0, then
z0 p′(z0)

p(z0)
= ikβ (i =

√
−1),

where

k ≥ a + a−1

2
≥ 1 when arg

(
p(z0)

)
=

βπ

2
(5)

and

k ≤ − a + a−1

2
≤ −1 when arg

(
p(z0)

)
= − βπ

2
, (6)

where
[p(z0)]

1/β = ±ia and a > 0.

Theorem 1. Let α, β ∈ (0, 1]. If f ∈ A satisfies the condition∣∣∣Arg
(

2 + α

α
− 2

α

(
1 +

z f ′′(z)
f ′(z)

)) ∣∣∣ < Arctan
(

4β

2 + α

)
, (7)

then ∣∣Arg
( z f ′(z)

f (z)

)∣∣ < βπ

2
(z ∈ U).

Proof. Let f ∈ A and define the function p : U→ C by

p(z) =
z f ′(z)

f (z)
= 1 +

∞

∑
n=1

cnzn (z ∈ U).
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Then it follows that p is analytic in U, p(0) = 1,

1 +
z f ′′(z)
f ′(z)

= p(z) +
zp′(z)
p(z)

(z ∈ U)

and p(z) 6= 0 for all z ∈ U. In fact, if p has a zero z0 ∈ U of order m, then we may write

p(z) = (z− z0)
m p1(z) (m ∈ N = 1, 2, 3, · · · ),

where p1 is analytic in U with p1(z0) 6= 0. Then

2 + α

α
− 2

α

(
p(z) +

zp′(z)
p(z)

)
=

2 + α

α
− 2

α

(
p(z) +

zp′1(z)
p1(z)

+
mz

z− z0

)
.

Thus, choosing z → z0, suitably the argument of the right-hand of the above equality can take
any value between −π and π, which contradicts (7).

Define the function q : U \ {1} → C by

q(z) =
(

1 + z
1− z

)β

(z ∈ U \ {1}).

Then q ∈ Q, q(0) = 1 and E(q) = {1}. It is clear that
∣∣Arg

(
p(z)

)∣∣ < βπ

2
for all z ∈ U if and only

if p ≺ q on U. Let
∣∣Arg

(
p(z1)

)∣∣ ≥ βπ

2
for some z1 ∈ U. Then p is not subordinate to q. By Lemma 1

there exists z0 ∈ U and ξ0 ∈ ∂U \ {1} such that
{

p (z) : z ∈ U, |z| < |z0|
}
⊂ q(U) and p(z0) = q(ξ0).

Therefore, ∣∣Arg
(

p(z)
)∣∣ < βπ

2
,

for all z ∈ U with |z| < |z0| and ∣∣Arg
(

p(z0)
)∣∣ = βπ

2
.

Then, Lemma 2, gives us that
z0 p′(z0)

p(z0)
= ikβ,

where [p(z0)]
1
β = ±ia (a > 0) and k is given by (5) or (6).

Define the function g : (0, a)→ R by

g(t) =
2

2+α

(
tβ sin( βπ

2 ) + β
)

1− 2
2+α tβ cos βπ

2

t ∈ (0, a).

Then g is a differentiable function on (0, a) and g′(t) > 0 for all t ∈ (0, a). This implies that the
function h : (0, a)→ R defined by

h(t) = Arctan (g(t)) t ∈ (0, a),

is a non-decreasing function on (0, a). Thus

h(a) ≥ lim
t→0+

h(t) = Arctan
(

2β

2 + α

)
.
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Therefore, we have

Arctan

 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2

 ≥ Arctan
(

2β

2 + α

)
. (8)

Now we consider six cases for estimation of Arg
(

p(z0)
)

as follows:

Case 1. Arg
(

p(z0)
)
=

βπ

2
and 1− 2

2+α aβ cos βπ
2 > 0. In this case we have [p(z0)]

1
β = ia (a > 0),

and k ≥ 1. Therefore,

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α
aβ cos

βπ

2
− i

2
2 + α

(
aβ sin

βπ

2
+ kβ

))

= Arctan

− 2
2+α

(
aβ sin βπ

2 + kβ
)

1− 2
2+α aβ cos βπ

2


≤ Arctan

− 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2


= −Arctan

 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2


= −h(a)

≤ −Arctan
(

2β

2 + α

)
. (9)

Now applying (8) and (9) we get

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

))
= Arg

(
1− 2

2 + α

(
1 +

z0 f ′′(z0)

f ′(z0)

))

≤ −Arctan

 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2


≤ −Arctan

(
2β

2 + α

)
,

which contradicts (7).

Case 2. Arg
(

p(z0)
)
=

βπ

2
and 1− 2

2+α aβ cos βπ
2 = 0. In this case, we have p(z0) = aβ(cos βπ

2 +

i sin βπ
2 ) and k ≥ 1. Thus − 2

2+α

(
aβ sin βπ

2 + kβ
)
< 0 and so

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
−i

2
2 + α

(
aβ sin

βπ

2
+ kβ

))
= −π

2
< −Arctan

(
2β

2 + α

)
,

which contradicts (7).

Case 3. Arg
(

p(z0)
)
=

βπ

2
and 1− 2

2+α aβ cos βπ
2 < 0. In this case, we have p(z0) = aβ(cos βπ

2 +

i sin βπ
2 ) and k ≥ 1. Thus

− 2
2+α

(
aβ sin βπ

2 + kβ
)

1− 2
2+α aβ cos βπ

2

> 0.



Mathematics 2020, 8, 88 7 of 14

Therefore,

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α
aβ cos

βπ

2
− i

2
2 + α

(
aβ sin

βπ

2
+ kβ

))

= −π + Arctan

− 2
2+α

(
aβ sin βπ

2 + kβ
)

1− 2
2+α aβ cos βπ

2


< −π +

π

2

= −π

2

< −Arctan
(

2β

2 + α

)
,

which contradicts (7).

Case 4. Arg
(

p(z0)
)
= − βπ

2
and 1− 2

2+α aβ cos βπ
2 > 0. In this case we have p(z0) = aβ(cos βπ

2 −

i sin βπ
2 ) and k ≤ −1. Thus − 2

2+α

(
−aβ sin βπ

2 + kβ
)
< 0. Now , applying (8) we get

Arg
(

2 + α

α

(
1− α

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α

(
aβe

−iβπ
2 + ikβ

))

= Arctan

− 2
2+α

(
−aβ sin βπ

2 + kβ
)

1− 2
2+α aβ cos βπ

2


≥ Arctan

− 2
2+α

(
−aβ sin βπ

2 − β
)

1− 2
2+α aβ cos βπ

2


= Arctan

 2
2+α

(
aβ sin βπ

2 + β
)

1− 2
2+α aβ cos βπ

2


≥ Arctan

(
2β

2 + α

)
,

which contradicts (7).
For other cases applying the same method in Case 2. and Case 3. with k ≤ −1 we obtain

Arg
(

2 + α

α

(
1− 2

2 + α

(
p(z0) +

z0 p′(z0)

p(z0)

)))
≥ Arctan

(
2β

2 + α

)
,

which contradicts (7). Hence the proof is completed.

Corollary 1. Let α, β ∈ (0, 1] and δ = 2
π Arctan

(
2β

2+α

)
. If f ∈ G (α, δ), then f ∈ S̃∗(β).

Theorem 2. Let α, β ∈ (0, 1]. If f ∈ A and∣∣∣Arg
(

2 + α

α
− 2

α

(
1 +

z f ′′(z)
f ′(z)

)) ∣∣∣ < Arctan
(

2β

α

)
, (10)

then ∣∣Arg
(

f ′(z)
)∣∣ < βπ

2
(z ∈ U).
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Proof. Define the function p : U→ C by

p(z) = f ′(z) = 1 +
∞

∑
n=1

cnzn (z ∈ U).

Then p is analytic in U, p(0) = 1,

1 +
z f ′′(z)
f ′(z)

= 1 +
zp′(z)
p(z)

.

and p(z) 6= 0 for all z ∈ U. If there exists a point z0 ∈ U such that

∣∣Arg
(

p(z)
)∣∣ < βπ

2
,

for all z ∈ U with |z| < |z0| and ∣∣Arg
(

p(z0)
)∣∣ = βπ

2
.

Then, Lemma 2, gives us that
z0 p′(z0)

p(z0)
= ikβ,

where [p(z0)]
1
β = ±ia (a > 0) and k is given by (5) or (6).

For the case Arg
(

p(z0)
)
=

απ

2
when

p(z0)]
1
β = ia (a > 0)

and k ≥ 1, we have

Arg
(

2 + α

α

(
1− 2

2 + α

(
1 +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α

(
1 +

z0 p′(z0)

p(z0)

))
= Arg

(
1− 2

2 + α
(1 + ikβ)

)
= Arctan

(
−2kβ

α

)
≤ −Arctan

(
2β

α

)
,

which contradicts (10).
Next, for the case Arg

(
p(z0)

)
= −απ

2
when

p(z0) = −ia (a > 0)

and k ≤ −1, using the same method as before, we can obtain

Arg
(

2 + α

α

(
1− 2

2 + α

(
1 +

z0 p′(z0)

p(z0)

)))
= Arg

(
1− 2

2 + α

(
1 +

z0 p′(z0)

p(z0)

))
= Arg

(
1− 2

2 + α
(1 + ikβ)

)
= Arctan

(
−2kβ

α

)
≥ Arctan

(
2β

α

)
,
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which is a contradicts (10).
Consequently, from the two above-discussed contradictions, it follows that

∣∣Arg
(

f ′(z)
)∣∣ < βπ

2
(z ∈ U).

and hence the proof is completed.

Corollary 2. Let α, β ∈ (0, 1] and δ = 2
π Arctan

(
2β
α

)
. If f ∈ G (α, δ), then f ∈ C̃(β). In other words, if

f ∈ G (α, δ), then f (z) is close-to-convex (univalent) in U.

3. Coefficient Bounds

In this section, we give a the general problem of coefficients in the class G (α, δ) like the estimates
of coefficients for membership of this, bounds of logarithmic coefficients and the Fekete-Szegö problem
with sharp inequalities. In order to achieve our aim we need to establish some knowledge.

Lemma 3 ([27] (p. 172)). Let ω ∈ Ω with ω(z) =
∞
∑

n=1
wnzn for all z ∈ U. Then |w1| ≤ 1 and

|wn| ≤ 1− |w1|2 for all n ∈ N with n ≥ 2.

Lemma 4 ([28] (Inequality 7, p. 10)). Let ω ∈ Ω with ω(z) =
∞
∑

n=1
wnzn for all z ∈ U. Then

|w2 − tw2
1| ≤ max{1, |t|} for all t ∈ C.

The inequality is sharp for the functions ω(z) = z2 or ω(z) = z.

Lemma 5 ([29]). If ω ∈ Ω with ω(z) =
∞
∑

n=1
wnzn (z ∈ U), then for any real numbers q1 and q2, we have the

following sharp estimate:
|p3 + q1w1w2 + q2w3

1| ≤ H(q1; q2),

where

H(q1; q2) =



1 if (q1, q2) ∈ D1 ∪ D2 ∪ {(2, 1)},
|q2| if (q1, q2) ∈ ∪7

k=3Dk,

2
3 (|q1|+ 1)

(
|q1|+1

3(|q1|+1+q2)

) 1
2 if (q1, q2) ∈ D8 ∪ D9,

q2
3

(
q2

1−4
q2

1−4q2

)(
q2

1−4
3(q2−1)

) 1
2

if (q1, q2) ∈ D10 ∪ D11 \{(2, 1)},

2
3 (|q1| − 1)

(
|q1|−1

3(|q1|−1−q2)

) 1
2 if (q1, q2) ∈ D12,

and the sets Dk, k = 1, 2, . . . , 12 are stated as given below:

D1 =

{
(q1, q2) : |q1| ≤

1
2

, |q2| ≤ 1
}

,

D2 =

{
(q1, q2) :

1
2
≤ |q1| ≤ 2,

4
27

(
(|q1|+ 1)3

)
− (|q1|+ 1) ≤ q2 ≤ 1

}
,

D3 =

{
(q1, q2) : |q1| ≤

1
2

, q2 ≤ −1
}

,
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D4 =

{
(q1, q2) : |q1| ≥

1
2

, |q2| ≤ −
2
3
(|q1|+ 1)

}
,

D5 = {(q1, q2) : |q1| ≤ 2, q2 ≥ 1} ,

D6 =

{
(q1, q2) : 2 ≤ |q1| ≤ 4, q2 ≥

1
12

(q2
1 + 8)

}
,

D7 =

{
(q1, q2) : |q1| ≥ 4, q2 ≥

2
3
(|q1| − 1)

}
,

D8 =

{
(q1, q2) :

1
2
≤ |q1| ≤ 2, − 2

3
(|q1|+ 1) ≤ q2 ≤

4
27

(
(|q1|+ 1)3

)
− (|q1|+ 1)

}
,

D9 =

{
(q1, q2) : |q1| ≥ 2, − 2

3
(|q1|+ 1) ≤ q2 ≤

2|q1|(|q1|+ 1)
q2

1 + 2|q1|+ 4

}
,

D10 =

{
(q1, q2) : 2 ≤ |q1| ≤ 4,

2|q1|(|q1|+ 1)
q2

1 + 2|q1|+ 4
≤ q2 ≤

1
12

(q2
1 + 8)

}
,

D11 =

{
(q1, q2) : |q1| ≥ 4,

2|q1|(|q1|+ 1)
q2

1 + 2|q1|+ 4
≤ q2 ≤

2|q1|(|q1| − 1)
q2

1 − 2|q1|+ 4

}
,

D12 =

{
(q1, q2) : |q1| ≥ 4,

2|q1|(|q1| − 1)
q2

1 − 2|q1|+ 4
≤ q2 ≤

2
3
(|q1| − 1)

}
.

We assume that ϕ is a univalent function in the unit disk U satisfying ϕ(0) = 1 such that it has
the power series expansion of the following form

ϕ(z) = 1 + B1z + B2z2 + B3z3 + . . . , z ∈ U, with B1 6= 0. (11)

Lemma 6 ([30] (Theorem 2)). Let the function f ∈ K(ϕ). Then the logarithmic coefficients of f satisfy the
inequalities

|γ1| ≤
|B1|

4
, (12)

|γ2| ≤


|B1|
12

if |4B2 + B2
1 | ≤ 4|B1|,

|4B2 + B2
1 |

48
if |4B2 + B2

1 | > 4|B1|,

(13)

and if B1, B2, and B3 are real values,

|γ3| ≤
|B1|
24

H(q1; q2), (14)

where H(q1; q2) is given by Lemma 5, q1 =
B1+

4B2
B1

2 and q2 =
B2+

2B3
B1

2 . The bounds (12) and (13) are sharp.

Theorem 3. Let f ∈ G (α, δ). Then

|a2| ≤
αδ

2
, |a3| ≤

αδ

6
, |a4| ≤

αδ

12
H(q1; q2),

where H(q1; q2) is given by Lemma 5,

q1 =
−3αδ

2
+ 2δ and q2 = δ2

(
−3α

2
+

α2

2
+

2
3

)
+

1
3

.

The first two bounds are sharp.
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Proof. Set g(z) =: z f ′(z), where f ∈ G (α, δ) and suppose that g(z) = z +
∞
∑

n=2
bnzn. Hence bn = nan

for n ≥ 1. Then from (4), it follows that

zg′(z)
g(z)

≺ −α

2

(
1 + z
1− z

)δ

+
2 + α

2
=: φ(z)

= 1− αδz− αδ2z2 − 1
3

αδ(2δ2 + 1)z3 + · · ·

:= 1 + B1z + B2z2 + B3z3 + · · · .

Now, by the definition of the subordination, there is a ω ∈ Ω with ω(z) = ∑∞
n=1 wnzn so that

zg′(z)
g(z)

=φ(ω(z))

=1 + B1w1z + (B1w2 + B2w2
1)z

2 + (B1w3 + 2w1w2B2 + B3w3
1)z

3 + · · · .

From the above equality, it concludes that
b2 = B1w1

2b3 − b2
2 = B1w2 + B2w2

1
3b4 − 3b2b3 + b3

2 = B1w3 + 2w1w2B2 + B3w3
1.

First, for b2, from Lemma 3 we get |b2| ≤ αδ, and so |a2| ≤ αδ
2 . Next, utilizing Lemma 3 for b3 and

using |B2 + B2
1 | ≤ |B1|, we have

|b3| ≤
|B1|(1− |w1|2) + |B2 + B2

1 ||w1|2
2

=
|B1|+

[
|B2 + B2

1 | − |B1|
]
|w1|2

2

≤|B1|
2

=
αδ

2
.

Ultimately, utilizing Lemma 5 for a4, we have

|b4| ≤
B1

3

∣∣∣∣c3 +

(
3
2

B1 +
2B2

B1

)
w1w2 +

(
3
2

B2 +
1
2

B2
1 +

B3

B1

)
w3

1

∣∣∣∣
≤B1

3
H(q1; q2),

where

q1 =
3
2

B1 +
2B2

B1
=
−3αδ

2
+ 2δ and q2 =

3
2

B2 +
1
2

B2
1 +

B3

B1
= δ2

(
−3α

2
+

α2

2
+

2
3

)
+

1
3

.

The extremal functions for the initial coefficients an (n = 2, 3) are of the form:

fn(z) =
∫ z

0
exp

(∫ x

0

φ(tn)− 1
t

dt
)

dx = z− αβ

n(n + 1)
zn+1 +

αβ2(α/n− 1)
2n(2n + 1)

z2n+1 + · · · ,

obtained by taking ω(z) = zn in (4). Therefore, this completes the proof.

Theorem 4. Let f ∈ G (α, δ). Then

|γ1| ≤
αδ

4
, |γ2| ≤

αδ

12
, |γ3| ≤

αδ

24
H(q1; q2),
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where H(q1; q2) is given by Lemma 5, q1 = −αδ+4δ
2 , and q2 =

−αδ2+ 2(2δ2+1)
3

2 . The first two bounds are sharp.

Proof. The results are concluded from Theorem 6 by setting ϕ := φ. Also, two first bounds are sharp
for fn(z) for n = 1, 2, respectively. Therefore, this completes the proof.

Theorem 5. Let f ∈ G (α, δ). Then we have sharp inequalities for complex parameter µ

∣∣∣a3 − µa2
2

∣∣∣ ≤


αδ2

6

∣∣∣1− α + 3µ
2 α
∣∣∣ f or

∣∣µ + 2
3α (1− α)

∣∣ ≥ 2
3αδ ,

αδ
6 f or

∣∣µ + 2
3α (1− α)

∣∣ < 2
3αδ .

Proof. Let f ∈ G (α, δ), then from (4), by the definition of the subordination, there is a ω ∈ Ω with
ω(z) = ∑∞

n=1 wnzn so that

1 +
z f ′′(z)
f ′(z)

= φ(ω(z)) = 1 + B1w1z + (B1w2 + B2w2
1)z

2 + · · · .

Therefore, we get that

2a2 = B1w1 and 6a3 − 4a2
2 = B1w2 + B2w2

1.

Form the above equalities, we have∣∣∣a3 − µa2
2

∣∣∣ = 1
6
|B1|

∣∣∣w2 + νw2
1

∣∣∣ .

The results are obtained by the application of Lemma 4 with ν =
[

B2
B1

+ B1(1− 3µ
2 )
]
, where

B1 = −αδ and B2 = −αδ2. Equality is attained in the first inequality by the function f = f1 and in the
second inequality for f = f2.

Remark 1.

(i) Taking into account δ = 1 in Theorem 3, we get the result obtained in [31] (Theorem 1) for n = 2, 3, 4.
(ii) Setting δ = 1 in Theorem 3, we have the result obtained in [23] (Theorem 2.10).

(iii) Letting δ = 1 in Theorem 4, we obtain a correction of the result presented in [31] (Theorem 2).
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16. Motamednezhad, A.; Bulboacă, T.; Adegani, E.A.; Dibagar, N. Second Hankel determinant for a subclass of

analytic bi-univalent functions defined by subordination. Turk. J. Math. 2018, 42, 2798–2808. [CrossRef]
17. Nunokawa, M.; Saitoh, H. On certain starlike functions. Srikaisekikenkysho Kkyroku 1996, 963, 74–77.
18. Ozaki, S. On the theory of multivalent functions, II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 1941, 4, 45–87.
19. Umezawa, T. Analytic functions convex in one direction. J. Math. Soc. Jpn. 1952, 4, 194–202. [CrossRef]
20. Sakaguchi, K. A property of convex functions and an application to criteria for univalence. Bull. Nara Univ.

Ed. Nat. Sci. 1973, 22, 1–5.
21. Singh, R.; Singh, S. Some sufficient conditions for univalence and starlikeness. Colloq. Math. 1982, 47, 309–314.

[CrossRef]
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