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Abstract: The purpose of this paper is to introduce q-analogues of generalized Lupaş operators,
whose construction depends on a continuously differentiable, increasing, and unbounded function ρ.
Depending on the selection of q, these operators provide more flexibility in approximation and the
convergence is at least as fast as the generalized Lupaş operators, while retaining their approximation
properties. For these operators, we give weighted approximations, Voronovskaja-type theorems, and
quantitative estimates for the local approximation.

Keywords: generalized Lupas. operators; q analogue; Korovkin’s type theorem; convergence
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1. Introduction

Approximation theory rudimentarily deals with the approximation of functions by simpler functions
or more easily calculated functions. Broadly, it is divided into theoretical and constructive approximation.
In 1912, S.N. Bernstein [1] was the first to construct a sequence of positive linear operators to provide
a constructive proof of the prominent Weierstrass approximation theorem [2] using a probabilistic
approach. One can find a detailed monograph about the Bernstein polynomials in [3,4]. Cárdenas
et al. [5] in 2011, defined the Bernstein type operators by Bn( f oτ−1)oτ and showed that its Korovkin
set is

{
e0, τ, τ2} instead of {e0, e1, e2}. These operators present an interesting byproduct sequence of

positive linear operators of polynomial type with nice geometric shape preserving properties, which
converge to the identity, which in a certain sense improves Bn in approximating a number of increasing
functions, and which, apart from the constant functions, fixes suitable polynomials of a prescribed degree.
The notion of convexity with respect to τ plays an important role. Recently, Aral et al. [6] in 2014
defined a similar modification of Szász-Mirakyan type operators obtaining approximation properties
of these operators on the interval [0, ∞).

Very recently motivated by the above work, İlarslan et al. [7] introduced a new modification of
Lupaş operators [8] using a suitable function ρ, which satisfies the following properties:

(ρ1) ρ be a continuously differentiable function on [0, ∞),
(ρ2) ρ(0) = 0 and inf

u∈[0,∞)
ρ
′
(u) ≥ 1.

The generalized Lupaş operators are defined as

Lρ
m( f ; u) = 2−mρ(u)

∞

∑
l=0

(mρ(u))l

2l l!

(
f oρ−1

)( l
m

)
, (1)
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for m ≥ 1, u ≥ 0, and suitable functions f are defined on [0, ∞). If ρ(u) = u then (1) reduces to the
Lupaş operators defined in [8].

İlarslan et al. [7] gave uniform convergence results on a weighted space, where the weight function
is φ(u) = 1 + ρ2(u) satisfying the conditions (ρ1) and and (ρ2) given above, in the sense of Gadjiev’s
results [9,10]. For the rate of convergence, the authors used a weighted modulus of continuity stated by
Holhoş in [11] using the weight function. They obtained a Voronovskaya-type result and monotonicity
of the sequence of operators Lρ

m( f ; u). Moreover, they obtained some quantitative type theorems on
weighted spaces.

The purpose of this paper is to define the q-analogue of operators (1) which depend on ρ.
Before proceeding further, let us recall some basic definitions and notations of quantum calculus [12].

For any fixed real number q > 0, the q-integer [l]q, for l ∈ N (set of natural numbers) are defined as

[l]q :=


(1−ql)
(1−q) , q 6= 1

l, q = 1,

and the q-factorial by

[l]q! :=

{
[l]q[l − 1]q...[1]q, l ≥ 1

l, l = 0.

The q-Binomial expansion is

(u + y)m
q := (u + y)(u + qy)(u + q2y) · · · (u + qm−1y),

and the q-binomial coefficients are as follows:[
m
l

]
q

:=
[m]q!

[l]q![m− l]q!
.

The Gauss-formula is defined as:

(u + y)m
q =

m

∑
j=0

[
m
l

]
q

qj(j−1)/2yjum−j.

After development of q-calculus, Lupaş [13] introduced the q-Lupaş operator (rational) as follows:

Lm,q( f ; u) =
m

∑
l=0

f
(

[l]q
[m]q

) [
m
l

]
q

q
l(l−1)

2 ul (1− u)m−l

m
∏
j=1
{(1− u) + qj−1u}

, (2)

and studied its approximation properties.
Similarly, Phillips [14] constructed another q-analogue of Bernstein operators (polynomials)

as follows:

Bm,q( f ; u) =
m

∑
l=0

[
m
l

]
q

ul
m−l−1

∏
s=0

(1− qsu) f
(

[l]q
[m]q

)
, u ∈ [0, 1] (3)

where Bm,q : C[0, 1]→ C[0, 1] defined for any m ∈ N and any function f ∈ C[0, 1], where C[0, 1] denotes
the set of all continuous functions on [0, 1].

The basis of these operators have been used in Computer Aided Geometric Design (CAGD) to
study curves and surfaces. Then it became an active area of research in approximation theory as well
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as CAGD [15–17]. In the recent past, q-analogues of various operators were investigated by several
researchers (see [18–23]).

The q-analogue is a very interesting idea. It can also be used in statistical and biological
physics, multi- type directed scalefree percolation, and modeling epidemic spread with awareness and
heterogeneous transmission rates in networks.

Persuaded by the above mentioned work, we introduce the q-analogue of operators (1) which
depends on a suitable function ρ, as follows:

Definition 1. Let 0 < q < 1 and m ∈ N. For f : [0, ∞) → R, we define q-analogue of generalized Lupaş
operators as

Lρ
m,q( f ; u) = 2−[m]qρ(u)

∞

∑
l=0

([m]qρ(u))l

2l [l]q!

(
f oρ−1

)( [l]q
[m]q

)
, (4)

where ([m]qρ(u))l is the rising factorial defined as:

([m]qρ(u))0 = 1,

([m]qρ(u))l = ([m]qρ(u))([m]qρ(u) + 1)([m]qρ(u) + 2) · · · ([m]qρ(u) + l − 1), l ≥ 0.

The operators (4) are linear and positive. For q = 1, the operators (4) turn out to be generalized
Lupaş operators defined in (1). Next, we prove some auxiliary results for (4).

Lemma 1. Let Lρ
m,q be given by (4). Then for each u ≥ 0 and m ∈ N we have

(i) Lρ
m,q(1; u) = 1,

(ii) Lρ
m,q(ρ; u) = ρ(u),

(iii) Lρ
m,q(ρ

2; u) = ρ2(u) + (1+q)
[m]q

ρ(u),

(iv) Lρ
m,q(ρ

3; u) = ρ3(u)q3 + (3q3+q2+2q)
[m]q

ρ2(u) + (2q3+q2+2q+1)
[m]2q

ρ(u),

(v) Lρ
m,q(ρ

4; u) = ρ4(u)q6 + (6q6+q5+2q4+3q3)
[m]q

ρ3(u) + (11q6+3q5+6q4+1oq3+3q2+3q)
[m]2q

ρ2(u)

+ (6q6+2q5+4q4+7q3+3q2+3q+1)
[m]3q

ρ(u).

Proof. By taking into account the recurrence relation ([m]qρ(u))0 = 1, ([m]qρ(u))l = ([m]qρ(u))
([m]qρ(u) + 1)l−1, l ≥ 1, we have

(i)

Lρ
m,q(1; u) = 2−[m]qρ(u)

∞

∑
l=0

([m]qρ(u))l

2l [l]q!
= 1.

(ii)

Lρ
m,q(ρ; u) = 2−[m]qρ(u)

∞

∑
l=0

([m]qρ(u))l

[l]q!2l

[l]q
[m]q

=
2−([m]qρ(u)+1)[m]qρ(u)

[m]q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l

= ρ(u).
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(iii)

Lρ
m,q(ρ

2; u) = 2−[m]qρ(u)
∞

∑
l=0

([m]qρ(u))l

[l]q!2l

[l]2q
[m]2q

=
2−[m]qρ(u)

[m]2q

∞

∑
l=0

([m]qu)l

[l]q!2l [l]2q

=
2−([m]qρ(u)+1)[m]qρ(u)

[m]2q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l [l]q

= ρ2(u) +
(1 + q)
[m]q

ρ(u).

(iv)

Lρ
m,q(ρ

3; u) = 2−[m]qρ(u)
∞

∑
l=0

([m]qρ(u))l

[l]q!2l

[l]3q
[m]3q

Now by using [l + 1]q = (1 + q[l]q) and shifting l to l + 1, we have

Lρ
m,q(ρ

3; u) =
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l [l + 1]2q

=
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l (1 + q[l]q)2

=
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l ,

+
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l q2[l]2q

+
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 2q[l]q,

= A + B + C(Say).

Now, let us calculate the values of A, B, and C

A =
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l ,

=
ρ(u)
[m]2q

.

B =
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l q2[l]2q

=
2−([m]qρ(u)+2)([m]qρ(u) + 1)ρ(u)

[m]2q
q2

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l [l + 1]q

=
2−([m]qρ(u)+2)([m]qρ(u) + 1)ρ(u)

[m]2q
q2

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l (1 + q[l]q)

= ρ3(u)q3 +
3ρ2(u)q3

[m]q
+

2ρ(u)q3

[m]2q
+

ρ2(u)q2

[m]q
+

ρ(u)q2

[m]2q
.
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Also,

C =
2−([m]qρ(u)+1)[m]qρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 2q[l]q,

=
2ρ2(u)q
[m]q

+
2ρ(u)q
[m]2q

.

On adding A, B, and C we have,

Lρ
m,q(ρ

3; u) = ρ3(u)q3 +
(3q3 + q2 + 2q)

[m]q
ρ2(u) +

(2q3 + q2 + 2q + 1)
[m]2q

ρ(u).

(v)

Lρ
m,q(ρ

4; u) = 2−[m]qρ(u)
∞

∑
l=0

([m]qρ(u))l

[l]q!2l

[l]4q
[m]4q.

Now, by using [l + 1]q = (1 + q[l]q) and shifting l to l + 1, we have

Lρ
m,q(ρ

4; u) =
2−([m]qρ(u)+1)[m]qρ(u)

[m]4q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l [l + 1]3q

=
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l (1 + q[l]q)3

=
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l

+
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l q3[l]3q

+
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 3q2[l]2q

+
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 3q[l]q,

= D + E + F + G(Say).

Now, let us calculate the values of D, E, F, and G

D =
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l

=
ρ(u)
[m]3q

.
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E =
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l q3[l]3q

=
2−([m]qρ(u)+2)ρ(u)([m]qρ(u) + 1)

[m]3q
q3

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l [l + 1]2q

=
2−([m]qρ(u)+2)ρ(u)([m]qρ(u) + 1)

[m]3q
q3

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l (1 + q[l]q)2

=
2−([m]qρ(u)+2)ρ(u)([m]qρ(u) + 1)

[m]3q
q3

∞

∑
l=0

([m]qρ(u) + 2)l

[l]q!2l (1 + q2[l]2q + 2q[l]q)

=

(
ρ4(u) +

6ρ3(u)
[m]q

+
11ρ2(u)
[m]2q

+
6ρ(u)
[m]3q

)
q6 +

(
ρ3(u)
[m]q

+
3ρ2(u)
[m]2q

+
2ρ(u)
[m]3q

)
q5

+

(
2ρ3(u)
[m]q

+
6ρ2(u)
[m]2q

+
4ρ(u)
[m]3q

)
q4 +

(
ρ2(u)
[m]2q

+
ρ(u)
[m]3q

)
q3.

Similarly,

F =
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 3q2[l]2q

=

(
3ρ3(u)
[m]q

+
9ρ2(u)
[m]2q

+
6ρ(u)
[m]3q

)
q3 +

(
3ρ2(u)
[m]2q

+
3ρ(u)
[m]3q

)
q2.

Also,

G =
2−([m]qρ(u)+1)ρ(u)

[m]3q

∞

∑
l=0

([m]qρ(u) + 1)l

[l]q!2l 3q[l]q

=

(
3ρ2(u)
[m]2q

+
3ρ(u)
[m]3q

)
q.

On adding D, E, F, and G we have,

Lρ
m,q(ρ

4; u) = ρ4(u)q6 +
(6q6 + q5 + 2q4 + 3q3)

[m]q
ρ3(u)

+
(11q6 + 3q5 + 6q4 + 1oq3 + 3q2 + 3q)

[m]2q
ρ2(u)

+
(6q6 + 2q5 + 4q4 + 7q3 + 3q2 + 3q + 1)

[m]3q
ρ(u).

Corollary 1. For n = 1, 2, 3, 4 the nth order central moments of Lρ
m,q defined as µ

ρ
n,m(q; u) = Lρ

m,q((ρ(t)−
ρ(u))n

q ; u), by using linearity of operators (4) and by Lemma 1 we have

(i) Lρ
m,q(ρ(t)− ρ(u); u) = Lρ

m,q(ρ(t); u)− ρ(u)Lρ
m,q(1; u) = 0,

(ii) Lρ
m,q((ρ(t)− ρ(u))2; u) = Lρ

m,q(ρ
2(t); u) + ρ2(u)Lρ

m,q(1; u)− 2ρ(u)Lρ
m,q(ρ(t); u) = (1+q)

[m]q
ρ(u),

(iii) Lρ
m,q((ρ(t)− ρ(u))3; u) = Lρ

m,q(ρ
3(t); u) − ρ3(u)Lρ

m,q(1; u) − 3ρ(u)Lρ
m,q(ρ

2(t); u) − 3ρ2(u)Lρ
m,q

(ρ(t); u) = (q3 − 1)ρ3(u) + (3q3+q2−q−3)
[m]q

ρ2(u) + (2q3+q2+2q+1)
[m]2q

ρ(u),

(iv) Lρ
m,q((ρ(t)− ρ(u))4; u) = Lρ

m,q(ρ
4(t); u) + ρ4(u)Lρ

m,q(1; u) + 6ρ2(u)Lρ
m,q(ρ

2(t); u) − 4ρ3(u)Lρ
m,q

(ρ(t); u) − 4ρ(u)Lρ
m,q(ρ

3(t); u) = (q6 − 4q3 + 3)ρ4(u) + (6q6+q5+2q4−9q3−4q2−2q+6)
[m]q

ρ3(u) +

(11q6+3q5+6q4+2q3−q2−5q−4)
[m]2q

ρ2(u) + (6q6+2q5+4q4+7q3+3q2+3q+1)
[m]3q

ρ(u).
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Remark 1. We observe from Lemma 1 and Corollary 1, that for q = 1, we get the moments and central moments
of generalized Lupaş operators [7].

2. Weighted Approximation

We start by noting that ρ not only defines a Korovkin-type set {1, ρ, ρ2} but also characterizes
growth of the functions that are approximated.

Let φ(u) = 1+ ρ2(u) be a weight function satisfying the conditions (ρ1) and and (ρ2) given above
let Bφ[0, ∞) be the weighted space defined by

Bφ[0, ∞) = { f : [0, ∞)→ R
∣∣| f (u)| ≤ K f φ(u), u ≥ 0},

where K f is a constant which depends only on f . Bφ[0, ∞) is a normed linear space equipped with
the norm

‖ f ‖φ= sup
u∈[0,∞)

| f (u)|
φ(u)

.

Also, we define the following subspaces of Bφ[0, ∞) as

Cφ[0, ∞) = { f ∈ Bφ[0, ∞) : f is continuous on [0, ∞)},

C∗φ[0, ∞) =

{
f ∈ Cφ[0, ∞) : lim

u→∞

f (u)
φ(u)

= K f

}
,

where K f is a constant depending on f and

Uφ[0, ∞) = { f ∈ Cφ[0, ∞) :
f (u)
φ(u)

is uniformly continuous on [0, ∞)}.

Obviously,
C∗φ[0, ∞) ⊂ Uφ[0, ∞) ⊂ Cφ[0, ∞) ⊂ Bφ[0, ∞).

For the weighted uniform approximation by linear positive operators acting from Cφ[0, ∞) to
Bφ[0, ∞), we state the following results due to Gadjiev in [9,10].

Lemma 2 ([9]). Let (Am)m≥1 be a sequence of positive linear operators which acts from Cφ[0, ∞) to Bφ[0, ∞)

if and only if the inequality
|Am(φ; u)| ≤ Kmφ(u), u ≥ 0,

holds, where Km > 0 is a constant depending on m.

Theorem 1 ([10]). Let (Am)m≥1 be a sequence of positive linear operators, acting from Cφ[0, ∞) to Bφ[0, ∞)

and satisfying
lim

m→∞
‖ Lmρi − ρi ‖φ= 0, i = 0, 1, 2.

Then we have

lim
m→∞

‖ Lm( f )− f ‖φ= 0, for any f ∈ C∗φ[0, ∞).

Remark 2. It is clear from Lemma 1 and Lemma 2 that the operatorsLρ
m,q act from Cφ[0, ∞) to Bφ[0, ∞). Also the

convergence of these operators are applicable in studying switched linear systems, see: Subspace confinement for
switched linear systems, also see in [24,25].
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Theorem 2. Let qm be a sequence in (0, 1), such that qm → 1 as m→ ∞. Then for each function f ∈ C∗φ[0, ∞)

we have
lim

m→∞
‖ Lρ

m,qm( f )− f ‖φ= 0.

Proof. By Lemma 1 (i) and (ii), it is clear that

‖ Lρ
m,qm(1; u)− 1 ‖φ= 0.

‖ Lρ
m,qm(ρ; u)− ρ ‖φ= 0.

and by Lemma 1 (iii), we have

‖ Lρ
m,qm(ρ

2; u)− ρ2 ‖φ= sup
u∈[0,∞)

(1 + q)ρ(u)
[m]q(1 + ρ2(u))

≤ 1 + q
[m]q

. (5)

Then from Lemma 1 and (5) we get lim
m→∞

‖ Lρ
m,qm(ρ

i)− ρi ‖φ= 0, i = 0, 1, 2. Hence, the proof

is completed.

3. Rate of Convergence or Order of Approximation

In this section, we determine the rate of convergence for Lρ
m,q by weighted modulus of continuity

ωρ( f ; δ) which was recently considered by Holhoş [11] as follows:

ωρ( f ; δ) = sup
u,z∈[0,∞),|ρ(z)−ρ(u)|≤δ

| f (z)− f (u)|
φ(z) + φ(u)

, δ > 0, (6)

where f ∈ Cφ[0, ∞), with the following properties:

(i) ωρ( f ; 0) = 0,

(ii) ωρ( f ; δ) ≥ 0, δ ≥ 0 for f ∈ Cφ[0, ∞),

(iii) limδ→0 ωρ( f ; δ) = 0, for each f ∈ Uφ[0, ∞).

Theorem 3 ([11]). Let Am : Cφ[0, ∞)→ Bφ[0, ∞) be a sequence of positive linear operators with

‖ Am(ρ
0)− ρ0 ‖φ0 = am, (7)

‖ Am(ρ)− ρ ‖
φ

1
2

= bm, (8)

‖ Am(ρ
2)− ρ2 ‖φ = cm, (9)

‖ Am(ρ
3)− ρ3 ‖

φ
3
2

= dm, (10)

where the sequences am, bm, cm, and dm converge to zero as m→ ∞. Then

‖ Am( f )− f ‖
φ

3
2
≤ (7 + 4am + 2cm)ωρ( f ; δm)+ ‖ f ‖φ am, (11)

for all f ∈ Cφ[0, ∞), where

δm = 2
√
(am + 2bm + cm)(1 + am) + am + 3bm + 3cm + dm.

Theorem 4. Let for each f ∈ Cφ[0, ∞) with 0 < q < 1. Then we have

‖ Lρ
m,q( f )− f ‖

φ
3
2
≤
(

7 +
2(1 + q)
[m]q

)
ωρ( f ; δm,q),
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where ωρ is the weighted modulus of continuity defined in (6) and

δm,q = 2

√
(1 + q)
[m]q

+
3(1 + q)
[m]q

+

(
(q3 − 1) +

(3q3 + q2 + 2q)
[m]q

+
(2q3 + q2 + 2q + 1)

[m]2q

)
.

Proof. By using Lemma 1, we have

‖ Lρ
m,q(ρ

0)− ρ0 ‖φ0= am,q = 0,

‖ Lρ
m,q(ρ)− ρ ‖

φ
1
2
= bm,q = 0,

and

‖ Lρ
m,q(ρ

2)− ρ2 ‖φ≤
(1 + q)
[m]q

= cm,q.

Finally,

‖ Lρ
m,q(ρ

3)− ρ3 ‖
φ

3
2
≤ (q3 − 1) +

(3q3 + q2 + 2q)
[m]q

+
(2q3 + q2 + 2q + 1)

[m]2q
= dm,q.

Thus, the sequences am,q, bm,q, cm,q, and dm,q are calculated. The sequences am, bm, cm, and dm

converge to zero as m→ ∞. Then

‖ Lρ
m,q( f )− f ‖

φ
3
2
≤ (7 + 4am,q + 2cm,q)ωρ( f ; δm,q)+ ‖ f ‖φ am,q, (12)

for all f ∈ Cφ[0, ∞), where

δm,q = 2
√
(am,q + 2bm,q + cm,q)(1 + am,q) + am,q + 3bm,q + 3cm,q + dm,q.

Hence, by substituting the values of am,q, bm,q, cm,q and dm,q we obtain the desired result.

Remark 3. For lim
δ→0

ωρ( f ; δ) = 0 in Theorem 4, we find

lim
m→∞

‖ Lρ
m,q( f )− f ‖

φ
3
2
= 0, for f ∈ Uφ[0, ∞).

4. Voronovskaya-Type Theorem

In this section, using a technique developed in [5] by Cardenas-Morales, Garrancho and Raşa, we
prove pointwise convergence of Lρ

m,q by obtaining Voronovskaya-type theorems.

Theorem 5. Let f ∈ Cφ[0, ∞), u ∈ [0, ∞) with 0 < qm < 1, qm → 1 as m→ ∞. Suppose that
(

f oρ−1)′ and(
f oρ−1)′′ exist at ρ(u). If

(
f oρ−1)′′ is bounded on [0, ∞), then we have

lim
m→∞

[m]qm

[
Lρ

m,qm( f ; u)− f (u)
]
= ρ(u)

(
f oρ−1

)′′
(ρ(u)).

Proof. By using the q-Taylor expansion of
(

f oρ−1) at ρ(u) ∈ [0, ∞), there exist a point w lying between
u and z, then we have

f (w) =
(

f oρ−1
)
(ρ(w)) =

(
f oρ−1

)
(ρ(u)) +

(
f oρ−1

)′
(ρ(u)) (ρ(w)− ρ(u)) (13)

+

(
f oρ−1)′′ (ρ(u)) (ρ(w)− ρ(u))2

[2]q
+ λ

q
u(w) (ρ(w)− ρ(u))2 ,
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where

λ
q
u(w) =

(
f oρ−1)′′ (ρ(w))−

(
f oρ−1)′′ (ρ(u))

[2]q
. (14)

Therefore, by (14) together with the assumption on f ensures that

|λq
u(w)| ≤ K, for all w ∈ [0, ∞)

and is convergent to zero as w→ u. Now applying the operators (4) to the equality (13), we obtain[
Lρ

m,qm( f ; u)− f (u)
]

=
(

f oρ−1
)′

(ρ(u))Lρ
m,qm ((ρ(w)− ρ(u)); u)

+

(
f oρ−1)′′ (ρ(u))Lρ

m,qm

(
(ρ(w)− ρ(y))2; u

)
[2]q

(15)

+ Lρ
m,qm

(
λ

q
u(w) ((ρ(w)− ρ(u))2 ; u)

)
.

By Lemma 1 and Corollary 1, we get

lim
m→∞

[m]qmL
ρ
m,qm ((ρ(w)− ρ(u)); u) = 0, (16)

and
lim

m→∞
[m]qmL

ρ
m,qm

(
(ρ(w)− ρ(u))2; u

)
= [2]qρ(u). (17)

By estimating the last term on the right hand side of equality (15), we will get the proof.
Since from (14), for every ε > 0, lim

w→u
λ

qm
u (w) = 0. Let δ > 0 such that |λqm

u (w)| < ε for every

w ≥ 0. Using a Cauchy-Schwartz inequality, we have

lim
m→∞

[m]qmL
ρ
m,qm

(
|λqm

u (w)| (ρ(w)− ρ(u))2 ; u
)
≤ ε lim

m→∞
[m]qmL

ρ
m,qm

(
(ρ(w)− ρ(u))2

qm ; u
)

+
K
δ2 lim

m→∞
[m]qmL

ρ
m,qm

(
(ρ(w)− ρ(u))4

qm ; u
)

.

Since
lim

m→∞
[m]qmL

ρ
m,qm

(
(ρ(w)− ρ(u))4

qm ; u
)
= 0, (18)

we obtain
lim

m→∞
[m]qmL

ρ
m,qm

(
|λqm

u (w)| (ρ(w)− ρ(y))2
qm

; y
)
= 0. (19)

Thus, by using Equations (16), (17) and (19) to Equation (15) the proof is completed.

5. Local Approximation

In this section, we present local approximation theorems for the operators Lρ
m,q. By CB[0, ∞),

we denote the space of real-valued continuous and bounded functions f defined on the interval [0, ∞).
The norm ‖ · ‖ on the space CB[0, ∞) is given by

‖ f ‖= sup
0≤u<∞

| f (x) | .

For δ > 0 and W2 = {s ∈ CB[0, ∞) : s
′
, s
′′ ∈ CB[0, ∞)}. The K-functional is defined as

K2( f , δ) = inf
s∈W2
{‖ f − s ‖ +δ ‖ g

′′ ‖},
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By Devore and Lorentz ([26], p. 177, Theorem 2.4), there exists an absolute constant C > 0 such
that

K( f , δ) ≤ Cω2( f ,
√

δ). (20)

The second order modulus of smoothness is as follows,

ω2( f ,
√

δ) = sup
0<h≤

√
δ

sup
u∈[0,∞)

| f (u + 2h)− 2 f (u + h) + f (u) |

where f ∈ CB[0, ∞). The usual modulus of continuity of f ∈ CB[0, ∞) is defined by

ω( f , δ) = sup
0<h≤δ

sup
u∈[0,∞)

| f (u + h)− f (u) | .

Theorem 6. Let f ∈ CB[0, ∞) with 0 < q < 1. Let ρ be a function satisfying the conditions (ρ1), (ρ2), and
||ρ′′|| is finite. Then, there exists an absolute constant C > 0 such that

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤ CK( f ,
(1 + q)
[m]q

ρ(u)
)

.

Proof. Let s ∈W2 and u, z ∈ [0, ∞). Using Taylor’s formula we have

s(z) = s(u) +
(

soρ−1
)′

(ρ(u))(ρ(z)− ρ(u)) +
∫ ρ(z)

ρ(u)
(ρ(z)− v)

(
soρ−1

)′′
(v)dv. (21)

Using the equality (
soρ−1

)′′
(ρ(u)) =

s′′(u)

(ρ′(u))2 − s′′(u)
ρ′′(u)

(ρ′(u))3 . (22)

Now, put v = ρ(y) in the last term in equality (21), we get

∫ ρ(z)

ρ(u)
(ρ(z)− v)

(
soρ−1

)′′
(v)dv =

∫ z

u
(ρ(z)− ρ(y))

[
s′′(y)ρ′(y)− s′(y)ρ′′(v)

(ρ′(y))2

]
dy

=
∫ ρ(z)

ρ(u)
(ρ(z)− v)

s′′(ρ−1(v))
(ρ′(ρ−1(v))2 dv (23)

−
∫ ρ(z)

ρ(u)
(ρ(z)− v)

s′(ρ−1(v))ρ′′(ρ−1(v))
(ρ′(ρ−1(v))3 dv.

By using Lemma 1 and (23) and applying the operator (4) to the both sides of equality (21), we
deduce

Lρ
m,q(s; u) = s(u) + Lρ

m,q

( ∫ ρ(z)

ρ(u)
(ρ(z)− v)

s′′(ρ−1(v))
(ρ′(ρ−1(v))2 dv; u

)
− Lρ

m,q

( ∫ ρ(z)

ρ(u)
(ρ(z)− v)

s′(ρ−1(v))ρ′′(ρ−1(v))
(ρ′(ρ−1(v))3 dv; u

)
.

As we know ρ is strictly increasing on [0, ∞) and with condition (ρ2), we have∣∣Lρ
m,q(s; u)− s(u)

∣∣≤Mρ
m,2(u)

(
‖s′′‖+ ‖s′‖‖ρ′′‖

)
,

where
Mρ

m,2(u) = L
ρ
m,q((ρ(t)− ρ(u))2; u).
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For f ∈ CB[0, ∞), we have

∣∣Lρ
m,q(s; u)

∣∣ ≤ ‖ f oρ−1‖2−[m]qρ(u)
∞

∑
l=0

([m]qρ(u))l

2l [l]q!

≤ ‖ f ‖Lρ
m,q(1; u) = ‖ f ‖. (24)

Hence we have∣∣Lρ
m,q( f ; u)− f (u)

∣∣ ≤ ∣∣Lρ
m,q( f − s; u)

∣∣+∣∣Lρ
m,q(s; u)− s(u)

∣∣+∣∣s(u)− f (u)
∣∣

≤ 2‖ f − g‖+ (1 + q)
[m]q

ρ(u)
(
‖s′′‖+ ‖s′‖‖ρ′′‖

)
.

If we choose C = max{2, ‖ρ′′‖}, then

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤ C(2‖ f − g‖+ (1 + q)
[m]q

ρ(u)‖s′′‖W2

)
.

Taking infimum over all s ∈W2 we obtain

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤ CK( f ,
(1 + q)
[m]q

ρ(u)
)

.

Now, we recall local approximation in terms of α order Lipschitz-type maximal functions given
in [27]. Let ρ be a function satisfying the conditions (ρ1), (ρ2), 0 < α ≤ 1 and LipM(ρ(u); α), M≥ 0 is
the set of functions f satisfying the inequality∣∣ f (z)− f (u)

∣∣≤M∣∣ρ(z)− ρ(u)
∣∣α, u, z ≥ 0.

Moreover, for a bounded subset E ⊂ [0, ∞), we say that the function f ∈ CB[0, ∞) belongs to
LipM(ρ(u); α), 0 < α ≤ 1 on E if∣∣ f (z)− f (u)

∣∣≤Mα, f
∣∣ρ(z)− ρ(u)

∣∣α, u ∈ E and z ≥ 0,

whereMα, f is a constant depending on α and f .

Theorem 7. Let ρ be a function satisfying the conditions (ρ1), (ρ2.) Then for any f ∈ LipM(ρ(u); α),
0 < α ≤ 1 with 0 < q < 1 and for every u ∈ (0, ∞), m ∈ N, we have

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤M(
(1 + q)
[m]q

ρ(u)
) α

2
, (25)

Proof. Assume that α = 1. Then, for f ∈ LipM(α; 1) and u ∈ (0, ∞), we have

|Lρ
m,q( f ; u)− f (u)| ≤ Lρ

m,q(| f (z)− f (u)|; u)

≤ MLρ
m,q(|ρ(z)− f (u)|; u).
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By applying the Cauchy–Schwartz inequality, we find

|Lρ
m,q( f ; u)− f (u)| ≤ M

[
Lρ

m,q((ρ(t)− ρ(u))2; u)
] 1

2

≤ M
√

(1 + q)ρ(u)
[m]q

.

Let us assume that α ∈ (0, 1). Then, for f ∈ LipM(α; 1) and u ∈ (0, ∞), we have

|Lρ
m,q( f ; u)− f (u)| ≤ Lρ

m,q(| f (z)− f (u)|; u)

≤ MLρ
m,q(|ρ(z)− f (u)|α; u).

From Hölder’s inequality with p = 1
α and q = 1

1−α , for f ∈ LipM(ρ(u); α), we have

|Lρ
m,q( f ; u)− f (u)| ≤ M

[
Lρ

m,q(|(ρ(t)− ρ(u)|; u)
]α.

Finally by the Cauchy–Schwartz inequality, we get

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤M(
(1 + q)
[m]q

ρ(u)
) α

2
.

A relationship between local smoothness of functions and the local approximation was given by
Agratini in [28]. Here we will prove the similar result for operators Lρ

m,q (m ∈ N) for functions from
LipM(ρ(u)) on a bounded subset.

Theorem 8. Let E be a bounded subset of [0, ∞) and ρ be a function satisfying the conditions (ρ1), (ρ2). Then for
any f ∈ LipM(ρ(u); α), 0 < α ≤ 1 on E α ∈ (0, 1], we have

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤Mα, f

{[
(1 + q)ρ(u)

[m]q

] α
2

+ 2[ρ′(u)]αdα(u, E)
}

, u ∈ [0, ∞), m ∈ N,

where d(u, E) = in f {‖u− y‖ : y ∈ E} andMα, f is a constant depending on α and f .

Proof. Let E be the closure of E in [0, ∞). Then, there exists a point u0 ∈ E such that d(u, E) = |u− u0|.
Using the monotonicity of Lρ

m,q and the hypothesis of f , we obtain

|Lρ
m,q( f ; u)− f (u)| ≤ Lρ

m,q (| f (z)− f (u0)|; u) + Lρ
m,q (| f (u)− f (u0)|; u)

≤ Mα, f

{
Lρ

m,q (|ρ(z)− ρ(u0)|α; u) + |ρ(u)− ρ(u0)|α
}

≤ Mα, f

{
Lρ

m,q (|ρ(z)− ρ(u)|α; u) + 2|ρ(u)− ρ(u0)|α
}

.

By choosing p = 2
α and q = 2

2−α , as well as the fact |ρ(u)− ρ(u0)| = ρ′(u)|ρ(u)− ρ(u0)| in the
last inequality. Then by using Hölder’s inequality we easily conclude

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤Mα, f

{[
Lρ

m,q((ρ(z)− ρ(u))2; u)
] 1

2 + 2[ρ′(u)|ρ(u)− ρ(u0)|]α
}

.

Hence, by Corollary 1 we get the proof.
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Now, for f ∈ CB[0, ∞), we recall local approximation in terms of α order generalized Lipschitz-
type maximal function given by Lenze [29] as

ω̃
ρ
α( f ; u) = sup

z 6=u,z∈(0,∞)

| f (z)− f (u)|
|z− u|α , u ∈ [0, ∞) and α ∈ (0, 1]. (26)

Then we get the next result

Theorem 9. Let f ∈ CB[0, ∞) and α ∈ (0, 1] with 0 < q < 1. Then, for all u ∈ [0, ∞), we have

∣∣Lρ
m,q( f ; u)− f (u)

∣∣≤ ω̃
ρ
α( f ; u)

(
(1 + q)
[m]q

ρ(u)
) α

2
.

Proof. We know that

|Lρ
m,q( f ; u)− f (u)| ≤ Lρ

m,q(| f (t)− f (u)|; u).

From Equation (26), we have

|Lρ
m,q( f ; u)− f (u)| ≤ ω̃

ρ
α( f ; u)Lρ

m,q(|ρ(z)− ρ(u)|α; u).

From Hölder’s inequality with p = 2
α and q = 2

2−α , we have

|Lρ
m,q( f ; u)− f (u)| ≤ ω̃

ρ
α( f ; u)

[
Lρ

m,q((ρ(t)− ρ(u))2; u)
] α

2

≤ ω̃
ρ
α( f ; u)

(
(1 + q)
[m]q

ρ(u)
) α

2
.

which proves the desired result.

6. Conclusions

Here, the q-analogue of the generalized Lupaş operators are constructed. We have investigated
convergence properties, order of approximation, Voronovskaja-type results and also quantitative estimates
for the local approximation. The constructed operators provide better flexibility in approximating functions
and rate of convergence which are dependent on the selection of the function ρ and extra parameter q.
These operators also possess interesting properties and depending on the selection of q, can obtain
better approximation while q 6= 1. The basis of these operators can be used to draw curves and surfaces
in Computer Aided Geometric Design (CAGD).
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