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Abstract: Time consistency is a property of the solution to a cooperative dynamic game which
guarantees that this solution remains stable with respect to its revision by players over time.
The fulfillment of this property is directly related to the characteristic function and its behavior
with the course of the game as any solution is based on this function. In this paper, we will examine
the characteristic functions for two economic models with network externalities represented by a
two-stage network game using the theory developed for this class of games. For a network game with
positive externalities represented by a public goods provision model, we demonstrate a sufficient
condition for time consistency. For a network game with negative externalities represented by a
market competition model, we show that the cooperative solution is always time consistent.
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1. Introduction

One of the main features of the solution to a cooperative dynamic game is its stability with
respect to its revision by players over time. Failure to meet this property may eventually lead to a
refusal of cooperation and an inability to implement the cooperative agreement. In the literature, this
property of the solution is called time consistency. The time consistency problem for the first time
was addressed in [1] for a class of differential games. Later on, this issue was also studied for other
classes of cooperative dynamic games. It is important to note that the time consistency of the solution
applies only to dynamic games, and it has no special meaning for static games. The fulfillment of the
time consistency property is directly related to the characteristic function and its behavior with the
course of the game. This function is defined for each coalition of players and reflects how the worth or
strength of that coalition changes over time. Moreover, any cooperative solution to the game is based
on the characteristic function and, therefore, a change in this function may lead to a change in the
cooperative solution itself resulting in time inconsistency.

In this paper, we will examine the time consistency problem for two models with network
externalities represented by a two-stage network game. The theoretical fundamentals of cooperative
two-stage network games including time consistency were introduced in [2–4]. Is it supposed that
players create a network at the first game stage by announcing potential partners they wish to be
connected with, and at the second stage players choose actions. Thus, having made their choices,
players are rewarded according to given payoff functions. Under this setting, the sufficient condition
for the cooperative solution to be time consistent is that the worth of any coalition is constant over time.
Put differently, the characteristic functions in the two-stage game and its one-stage subgame under
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the cooperative agreement must coincide. For this reason, we study the characteristic functions in the
game. We will do it for two economic models. First, we start with an asymmetric cooperative model of
public goods provision in a network based on [5–8]. We will show that in this model players benefit
from adding more links as links create positive externalities, and provide conditions guaranteeing the
time consistency of a cooperative solution. Second, we examine an asymmetric cooperative model of
market competition. There we will demonstrate that, under the cooperative agreement, players are not
interested in establishing links between each other, thus forming the empty network as links create
negative externalities. However, any cooperative solution is time consistent in the latter model.

When players cooperate, they maximize the sum of their payoffs in the game. So, assuming
a revenue-minus-cost structure of a player’s payoff function, the total costs of the grand coalition
amount to the sum of its members’ costs. This is a so-called model without transferable technologies
(see, for example [9,10] with respect to market competition), which is in line with the classical
idea of maximizing the sum of players’ payoffs. We will also draw on it in our analysis. As for
determining the characteristic function, we will use the maximin approach [11], although there
are other approaches [10,12–16] in the same context of the model under consideration. Since the
characteristic function is key in sustaining the cooperative agreement during its implementation, we
study when this function does not change over time under the two economic models as cooperative
two-stage games with network externalities.

The paper is organized as follows. The next section briefly summarizes the basic concepts of the
theory of cooperative two-stage network games and provides definitions of characteristic functions
during the implementation of the cooperative agreement. Then, Section 3 analyzes the behavior of
these functions within the framework of a network model of public goods provision with positive
externalities. Section 4 provides an analysis of the characteristic functions in a network model of
market competition with negative externalities. Finally, Section 5 concludes.

2. Preliminaries

Let N = {1, . . . , n} be a finite set of players with n > 3. Players may be connected in a network
(N, g) where N is the set of its nodes coinciding with the player set and g ⊆ {(i, j) : i, j ∈ N, i 6= j} is a
collection of undirected pairs of players called links. For brevity, we associate network (N, g) with the
set g. Neighbors of a player i ∈ N in g are players from Ni(g) = {j ∈ N : (i, j) ∈ g}. Following [4], we
consider a two-stage model. At its first stage, players by binary profiles of actions gi = (gi1, . . . , gin),
i ∈ N, simultaneously choose partners they wish to establish connections with from specified set
Li ⊂ N \ {i}, i ∈ N, being also limited in the number of offers `i, i ∈ N. If both players wish to
establish a connection between themselves, a link is formed. Thus, a network g is created. Next, at the
second stage once the network is formed each player i ∈ N may revise it by deleting some of the
established links, i.e., by choosing a binary profile di(g) = (di1(g), . . . , din(g)), and also she chooses an
action from a given set Ui. A player i ∈ N is rewarded by a real-valued payoff function hi(ui, uNi(gd)),

which depends on her action ui ∈ Ui and the profile of actions uNi(gd) = {uj : j ∈ Ni(gd)} of her

neighbors in the network gd ⊆ g, which appears after the revision of links. An example of network g
of eight nodes and ten links is shown in Figure 1 (left), whereas a possible network gd is shown in the
same figure (right).

Figure 1. An example of networks g (left) and gd (right).

In a cooperative scenario, players wish to maximize their total payoff, i.e., to maximize
∑i∈N hi(ui, uNi(gd)) by choosing actions jointly at both stages followed by allocation of the maximum
value among them. The profile of actions that maximizes the aforementioned sum is called a
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cooperative strategy profile. The corresponding players’ actions at both stages will be denoted
by ḡi, i ∈ N, at the first stage (resulting in network ḡ), and (d̄i(ḡ), ūi), i ∈ N, at the second stage of
the game. To determine an allocation, we require the characteristic function, which is a real-valued
function defined over all subsets of the player set. For any subset S ⊆ N, a coalition, characteristic
function v1(S) measures its worth in the two-stage game. Following [11], it is the maximum payoff
that this coalition can guarantee for itself (the maximin value) in a two-stage zero-sum game between
two players: coalition S maximizing the sum of the payoffs of its members and its complement N \ S
minimizing the payoff to S. Having determined v1, we can allocate the maximum total payoff, v1(N),
among the players according to an appropriate cooperative solution, which is a rule specifying how
this value is allocated. When implementing the cooperative agreement and creating feasible network ḡ
at the first game stage, it is important that no player decides to abandon the agreement at the second
stage of the game after (possible) re-evaluation of the worths of coalitions and the cooperative solution
itself. This leads us to a characteristic function v2(ḡ, S) in the one-stage subgame resulting to this
solution. In the subgame, the value v2(ḡ, S) amounts to the maximin value in a one-stage zero-sum
game between coalition S maximizing the sum of the payoffs of its members and its complement
N \ S minimizing the payoff to S given that network ḡ has been formed. Finding characteristic
functions v1 and v2 has been reduced to solving associated maximization problems when meeting
the next property (P): for any two feasible networks g, g̃, such that g̃ ⊂ g, and a player i ∈ N the
inequality hi(ui, uNi(g)) > hi(ui, uNi(g̃)) holds true for any profiles (ui, uNi(g)) ∈ Ui × ∏j∈Ni(g) Uj
and (ui, uNi(g̃)) ∈ Ui × ∏j∈Ni(g̃) Uj (see [4] for details). If the aforementioned property is met,
then characteristic function v1 is given by:

v1(S) =


∑

i∈N
hi(ūi, ūNi(ḡ)), S = N,

max
gi ,i∈S

max
ui∈Ui ,i∈S

∑
i∈S

hi(ui, uNi(g)∩S), S ⊂ N,

0, S = ∅,

whereas if network ḡ is formed at the first game stage by the actions from the cooperative strategy
profile, characteristic function v2 is of the form:

v2(ḡ, S) =


∑

i∈N
hi(ūi, ūNi(ḡ)), S = N,

max
ui∈Ui ,i∈S

∑
i∈S

hi(ui, uNi(ḡ)∩S), S ⊂ N,

0, S = ∅.

These functions are key in sustaining the cooperative agreement during its implementation,
i.e., the time consistency of a cooperative solution (a rule prescribing the way in which the total
cooperative payoff is allocated). When these functions coincide, the cooperative solution is time
consistent, and players will not need to review it at the second stage of the game, thus continuing to
adhere to the cooperative agreement. It is worth noting that certain cooperative solutions are time
consistent even if the values of the characteristic functions differ for some (but not all) coalitions.
Since we do not stipulate the choice of the cooperative solution, we will examine the coincidence of
these functions. We will do this for two important economic applications of the two-stage network
game theory.

3. Positive Externalities: Public Goods Provision

First, we examine a model of public goods provision. Let an action ui of player i expressing her
level of effort belong to set Ui = [0, ∞). Following [6,7], we assume that a player’s payoff function is
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defined as the difference between benefits from her own and neighbors’ effort and her costs associated
with the choice:

hi(ui, uNi(g)) = f
(

ui + ∑
j∈Ni(g)

uj

)
− ciui, ci > 0, i ∈ N.

Function f is twice-differentiable, strictly concave with f (0) = 0, f ′ > 0, and f ′′ < 0. The addition
of new links creates positive externalities, i.e., hi(ui, uNi(g)) > hi(ui, uNi(g̃)) for any profile (u1, . . . , un),
feasible networks g, g̃ and a player i such that such that g̃ ⊂ g and |Ni(g)| > |Ni(g̃)|. That is, property
(P) holds. Indeed, owing the monotonicity of function f , we have

hi(ui, uNi(g))− hi(ui, uNi(g̃)) = f
(

ui + ∑
j∈Ni(g)

uj

)
− f

(
ui + ∑

j∈Ni(g̃)
uj

)
> 0.

The common objective of players is to maximize

∑
i∈N

hi(ui, uNi(g)) = ∑
i∈N

[
f
(

ui + ∑
j∈Ni(g)

uj

)
− ciui

]
. (1)

Following [4], when players follow their cooperative strategies, they choose actions ḡi, i ∈ N,
at the first stage of the game, thus creating a network ḡ and not changing the network at the second
stage. In addition, at the second stage, players choose actions ūi, i ∈ N, maximizing the sum in (1).
We write a corresponding optimization problem. First, gij is a binary variable, so gij(1− gij) = 0 for
any i, j ∈ N, i 6= j. Second, the link is formed only if both players agree to form it, so gij = gji. Third,
players can offer links only to players from Li ⊆ N \ {i}, i ∈ N; thus, gij = 0 for any j /∈ Li. Next,
the number of offers is limited, so ∑j∈Li :i∈Lj

gij 6 `i, i ∈ N, recalling that both players must agree
on the link between them. Finally, ui > 0 for any i ∈ N. Therefore, to maximize (1) given the above
constraints, we use the Karush–Kuhn–Tucker theorem. We write the Lagrangian function:

∑
i∈N

[
f
(

ui + ∑
j∈Li : i∈Lj

gijuj

)
− ciui + λiui + µi

(
`i − ∑

j∈Li : i∈Lj

gij

)
+ ∑

j∈Li : i∈Lj

(
νij(gij − gji) + σijgij(1− gij)

)]
,

where {λi}, {µi}, {νij}, and {σij} are some constants. We arrive at the following result.

Proposition 1. If {ḡij} and ū compose a cooperative strategy profile, then there exist constants {λi} > 0,
{µi} > 0, {νij}, and {σij} such that {ḡij} and ū are feasible, and

∂ f
(
ūi + ∑j∈Li : i∈Lj

ḡijūj
)

∂ui
+ ∑

j∈Li : i∈Lj

∂ f
(
ūj + ∑k∈Lj : j∈Lk

ḡjkūk
)

∂ui
ḡji − ci + λi = 0, i ∈ N,

∂ f
(
ūi + ∑k∈Li : i∈Lk

ḡikūk
)

∂gij
ūj − µi + νij − νji + σij(1− 2ḡij) = 0, i, j ∈ N : i ∈ Lj, j ∈ Li,

λiūi = 0, i ∈ N,

µi

(
`i − ∑

j∈Li : i∈Lj

ḡij

)
= 0, i ∈ N.

Hence, v1(N) = ∑i∈N
[

f
(
ūi + ∑j∈Li : i∈Lj

ḡijūj
)
− ciūi

]
.

Proof. The proof immediately follows from the Karush–Kuhn–Tucker theorem adapted for the
optimization problem under consideration. If we substitute the cooperative strategy profile into (1),
we get v1(N).
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We can rewrite v1(N) in a more convenient way in terms of network ḡ formed at the first game
stage as v1(N) = ∑i∈N

[
f
(
ūi + ∑j∈Li : i∈Lj

ḡijūj
)
− ciūi

]
= ∑i∈N

[
f
(
ūi + ∑j∈Ni(ḡ) ūj

)
− ciūi

]
. To find the

value v1(S) for a nonempty coalition S ⊂ N, we use the following reasoning. The complement N \ S
acts against S; thus, it does not establish links with players from S as links create positive externalities.
Therefore, players from S being disconnected from N \ S maximize the sum of their payoffs. Hence,
we get the result similar to Proposition 1, which also draws on the Karush–Kuhn–Tucker theorem.

Proposition 2. If {gS
ij} and uS compose a profile maximizing the total payoff to coalition S ⊂ N, then there

exist constants {λi} > 0, {µi} > 0, {νij}, and {σij} such that {gS
ij}i,j∈S and {uS

i }i∈S are feasible, and

∂ f
(
uS

i + ∑j∈Li∩S: i∈Lj
gS

iju
S
j
)

∂uS
i

+ ∑
j∈Li∩S: i∈Lj

∂ f
(
uS

j + ∑k∈Lj∩S: j∈Lk
gS

jkuS
k
)

∂uS
i

gS
ji − ci + λi = 0, i ∈ S,

∂ f
(
uS

i + ∑k∈Li∩S: i∈Lk
gS

ikuS
k
)

∂gS
ij

uS
j − µi + νij − νji + σij(1− 2gS

ij) = 0, i, j ∈ S : i ∈ Lj, j ∈ Li,

λiuS
i = 0, i ∈ S,

µi

(
`i − ∑

j∈Li∩S: i∈Lj

gS
ij

)
= 0, i ∈ S.

Hence, v1(S) = ∑i∈S
[

f
(
uS

i + ∑j∈Li∩S: i∈Lj
gS

iju
S
j
)
− ciuS

i
]
.

Now, we can determine characteristic function v2. For the coalition N, equality v2(ḡ, N) = v1(N)

holds true by the Bellman optimality principle. To get v2(ḡ, S), S ⊂ N, we note that players from S
cannot establish new links at the second stage. Players from S will also not delete any links between
them as links create positive externalities. As for the players from N \ S, they will delete all links
connecting them with players from S. Therefore, given feasible network ḡ formed at the first game
stage, S will maximize

∑
i∈S

hi(ui, uNi(ḡ)∩S) = ∑
i∈S

[
f
(

ui + ∑
j∈Ni(ḡ)∩S

uj

)
− ciui

]
, (2)

over actions ui ∈ Ui, i ∈ S. The next result characterizes the optimal solution of the above problem.

Proposition 3. If ûS compose a profile maximizing (2) when network ḡ is formed at the first game stage,
then there exist constants {λi} > 0, such that {ûS

i }i∈S are feasible, and

∂ f
(
ûS

i + ∑j∈Ni(ḡ)∩S ûS
j
)

∂uS
i

+ ∑
j∈Ni(ḡ)∩S

∂ f
(
ûS

j + ∑k∈Nj(ḡ)∩S ûS
k
)

∂uS
i

− ci + λi = 0, i ∈ S,

λiûS
i = 0, i ∈ S.

Hence, v2(ḡ, S) = ∑i∈S
[

f
(
ûS

i + ∑j∈Ni(ḡ)∩S ûS
j
)
− ciûS

i
]
.

From Propositions 2 and 3, we conclude that characteristic functions v1(S) and v2(ḡ, S) may not
coincide, which implies that a cooperative solution may not be time consistent (see [1,4,17] for more
details). However, in some instances, these functions coincide. We provide a sufficient condition when
it is the case.

Proposition 4. When `i = n− 1 for any i ∈ N, that is, each player can offer any number of links (but not
necessarily to all players), it holds that v1(S) = v2(ḡ, S) for any S ⊂ N.
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Proof. Since a link addition creates positive externalities, when forming network ḡ at the first game
stage in a cooperative manner, any link (i, j) such that i ∈ Lj and j ∈ Li will be established as players
are not restricted in the number of offers. Next, when determining v1(S) for S ⊂ N, players from S
will establish links (i, j) such that i ∈ Lj ∩ S and j ∈ Li ∩ S. So, gS

ij = ḡij for any pair of players from
S. Hence, v1(S) = v2(ḡ, S) for any S ⊂ N by Propositions 2 and 3, and the equality of characteristic
functions implies the time consistency of any cooperative solution.

Example 1. Consider a five-person game with N = {1, 2, 3, 4, 5}, function f (x) = ln(1 + x), and the
following parameters: c1 = 0.1, c2 = 0.5, c3 = c5 = 0.3, c4 = 0.2. Further, let Li = N \ {i} for all i ∈ N
and `1 = `5 = 2, `2 = `4 = 3, `3 = 4. By Proposition 1–3, we conclude that under cooperation players form
network ḡ = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)} demonstrated in Figure 2 and choose actions
from the profile ū = (21.7679, 0, 0, 12.8965, 0), and hence v1(N) = v2(ḡ, N) = 10.7808. To demonstrate
the difference in characteristic functions, we take coalition {1, 2, 5} and obtain v1({1, 2, 5}) = 7.3036,
but v2(ḡ, {1, 2, 5}) = 4.5954. For coalition, say, {1, 2, 3}, the values of characteristic functions coincide:
v1({1, 2, 3}) = v2(ḡ, {1, 2, 3}) = 7.3036.

1

2

3

4

5

Figure 2. Network ḡ.

4. Negative Externalities: Market Competition

We now examine a model of market competition. Consider an industry of firms (players)
producing homogeneous goods with outputs ui ∈ Ui = [0, qi], i ∈ N, for some qi > 0. The payoff to
player i ∈ N (firm’s profit) is given by:

hi(ui, uNi(g)) = p
(

ui + ∑
j∈Ni(g)

uj

)
ui − ciui, ci > 0,

where p is the inverse demand function, and it is twice-differentiable, non-negative, nonincreasing,
and convex; ci is unit cost. The inverse demand function depends on the outputs of a player
and her neighbors, which becomes natural when customers account for the location of players.
Here, the network is incorporated into the inverse demand function and not the player’s
costs, as opposed to [18,19]. We note that new links create negative externalities for players,
i.e., hi(ui, uNi(g)) 6 hi(ui, uNi(g̃)) for any profile (u1, . . . , un), feasible networks g, g̃, and a player i
such that g̃ ⊂ g and |Ni(g)| > |Ni(g̃)|, and property (P) does not hold. Indeed,

hi(ui, uNi(g))− hi(ui, uNi(g̃)) =
[

p
(

ui + ∑
j∈Ni(g)

uj

)
− p

(
ui + ∑

j∈Ni(g̃)
uj

)]
ui 6 0.

This fact does not allow us directly to use the theory developed in [4] so as propositions from the
previous section for determining the cooperative strategy profile ū and the characteristic functions
v1(S) and v2(g, S) for S ⊆ N. However, since the addition of links creates negative externalities, players
never agree on establishing them, thus forming the empty network under cooperation. To prove this
claim, we consider two feasible profiles: a profile at which players form the empty network g∗ = ∅ and
choose u∗, in which i’s component maximizes hi(ui), i ∈ N, (thus, u∗ maximizes the sum ∑i∈N hi(ui)),
and a profile at which players form a feasible network g, do not revise it at the second stage, and
choose u. Consider the difference in player i’s payoffs:
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hi(u∗i )− hi(ui, uNi(g)) = p(u∗i )u
∗
i − ciu∗i − p

(
ui + ∑

j∈Ni(g)
uj

)
ui + ci ui

> p(u∗i )u
∗
i − ciu∗i − p(ui)ui + ciui = hi(u∗i )− hi(ui),

which is non-negative as u∗i maximizes hi(ui) for all i ∈ N. Therefore, ∑i∈N hi(u∗i ) > ∑i∈N hi(ui, uNi(g))

for any g and u. This means that the profile at which players form the empty network and choose u∗ is
the cooperative strategy profile. To find the maximum total payoff to players from N, that is, v1(N),
we write the Lagrangian function: ∑i∈N [(p(ui)− ci)ui + λiui + µi(qi − ui)], where {λi} and {µi} are
some constants.

Proposition 5. If ū is a part of a cooperative strategy profile, then there exist constants {λi} > 0, {µi} > 0
such that ū is feasible, and

dp(ūi)

dui
ūi + p(ūi)− ci + λi − µi = 0, λiūi = 0, µi(qi − ūi) = 0, i ∈ N.

Hence, v1(N) = v2(ḡ, N) = ∑i∈N [p(ūi)− ci]ūi.

Proof. The statement follows from the Karush–Kuhn–Tucker theorem adapted for the optimization
problem under consideration.

To find values v1(S) and v2(g, S) for S ⊂ N, we have to solve optimization problems similar to
the problem from Proposition 5, but for |S| players, noting that players do not establish links under
cooperation. Thus, we arrive at the result.

Proposition 6. If uS is a part of a profile maximizing the total payoff to coalition S ⊂ N, then there exist
constants {λi} > 0, {µi} > 0 such that uS is feasible, and

dp(uS
i )

dui
uS

i + p(uS
i )− ci + λi − µi = 0, λiuS

i = 0, µi(qi − uS
i ) = 0, i ∈ S.

Hence, uS
i = ūi for any player i ∈ S, and v1(S) = v2(ḡ, S) = ∑i∈S[p(ūi)− ci]ūi.

Proof. Since players from S do not form links in the two-stage game under cooperation, ḡ = ∅ and
v1(S) = v2(ḡ, S). The remaining part of the proof follows from the Karush–Kuhn–Tucker theorem.

Noting that the characteristic functions v1 and v2 coincide, any cooperative solution to the
two-stage game (within the context of the market competition model) is time consistent.

Example 2. Consider the player set N and function p(x) = a− x with ci < a, qi 6 a for all i ∈ N. We
have demonstrated that players do not create links when cooperating, so the values `i and sets Li, i ∈ N do not
influence the cooperative behavior. For this reason, we do not specify them. Assuming a non-negative value of
the inverse demand function at the cooperative strategy profile, by Proposition 5, we conclude that players form
the empty network ḡ = ∅ and choose actions from ū, where

ūi =

qi, qi 6
a− ci

2
,

a− ci
2

, qi >
a− ci

2
.

So, v1(N) = v2(ḡ, N) = ∑i∈N(a− ci − ūi)ūi. Similarly, Proposition 6 implies that v1(S) = v2(ḡ, S) =

∑i∈S(a− ci − ūi)ūi for any coalition S ⊂ N. Additionally, if qi = a for all i ∈ N (see, for example, [15]), then
ūi = (a− ci)/2, which implies that v1(S) = v2(ḡ, S) = ∑i∈S(a− ci)

2/4 for any coalition S ⊆ N.
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5. Conclusions

In the models under consideration (so-called models without transferable technologies),
we supposed that the costs of a coalition amount to the sum of its members’ costs. However, in case
of transferable technologies, the unit costs for each player in the coalition becomes the minimum
unit costs among the players from it (assuming linearity). Clearly, a more general type of costs may
be introduced, but even in this case, the models under consideration will retain their positive and
negative externalities, respectively. This will only require adapting the corresponding optimality
conditions. The possibility of calculating the characteristic functions allows us to find a variety of
cooperative solutions and perform their comparative analysis. For example, when it comes to the issue
of the time consistency of a cooperative solution, we can definitely conclude that the solution will
meet this property in the examined model with negative externalities. At the same time, depending
on the chosen cooperative solution, the (possible) difference in characteristic functions in the model
with positive externalities can, nevertheless, lead to its time consistency; but, even if it is not the case,
there are known methods of game regularization in the literature.
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