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Abstract: Picture fuzzy numbers (PFNs), as the generalization of fuzzy sets, are good at fully
expressing decision makers’ opinions with four membership degrees. Since aggregation operators are
simple but powerful tools, this study aims to explore some aggregation operators with PFNs to solve
practical decision-making problems. First, new operational rules, the interaction operations of PFNs,
are defined to overcome the drawbacks of existing operations. Considering that interrelationships
may exist only in part of criteria, rather than all of the criteria in reality, the partitioned Heronian
aggregation operator is modified with PFNs to deal with this condition. Then, desirable properties are
proved and several special cases are discussed. New decision-making methods with these presented
aggregation operators are suggested to process hotel selection issues. Last, their practicability and
merits are certified by sensitivity analyses and comparison analyses with other existing approaches.
The results indicate that our methods are feasible to address such situations where criteria interact in
the same part, but are independent from each other at different parts.

Keywords: picture fuzzy numbers; interaction operations; partitioned Heronian; aggregation
operators; hotel selection

1. Introduction

Decision making refers to selecting the optimal alternative according to some rules [1–3]. Generally,
many uncertain or fuzzy factors may exist in the real decision-making process, which are not able to be
described by crisp numbers [4,5]. In this case, fuzzy set theory [6], which was presented by Zadeh,
can be used to express these uncertainty and vagueness. Nevertheless, because fuzzy set just has a
membership degree, it cannot depict information in some circumstances, specifically where decision
makers (DMs) disagree with each other. Then, Atanassov [7] put forward the concept of intuitionistic
fuzzy sets (IFSs) with membership and non-membership functions, so that both people’s consistency
and inconsistency can be conveyed by IFSs. However, different DMs may have different attitudes
for a certain decision-making issue, not just ‘support’ or ‘opposition’. Hence, there are two inherent
flaws in IFSs. (1) Except for consistent and inconsistent degrees, other possibilities, such as hesitant or
refusal degrees, are not contained in the IFSs. (2) In addition, another shortcoming of IFSs is in their
traditional operations: the interaction between membership degree and non-membership degree is
not considered.

To overcome the first drawback, Cuong [8] first proposed picture fuzzy numbers (PFNs). PFNs can
sufficiently depict DMs’ diverse behaviors using four membership functions, including positive, neutral,
negative, and refusal membership degrees [9]. Since then, the distance/similarity measure [10,11], cross
entropy [12], and projection [13,14] of PFNs have been defined. Moreover, various decision-making
methods based on them have been studied [15,16], such as the multi-attributive border approximation
area comparison (MABAC) method [17] and the Vlsekriterijumska Optimizacija I Kompromisno
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Resenje (VIKOR) method [13]. Clearly, PFNs show greater performances than fuzzy sets and IFSs
in conveying complicated evaluation information. However, there is also an imperfection in the
operations of PFNs: (3) The interactions among four different membership functions of PFNs are not
taken into account fully. Thus, improper results may occur in certain cases, specifically when the
neutral membership degree in a picture fuzzy number (PFN) is zero. When this happens, regardless of
the value(s) of neutral membership degree(s) in other PFN(s), their aggregated neutral membership
degree using the traditional operations is still zero.

To conquer disadvantage (2), He et al. [18] redefined the operational rules of IFSs through making
an interaction between membership function and non-membership function. Likewise, for overcoming
limitation (3), some interaction operational laws of PFNs are proposed.

When it comes to decision-making methods, information aggregation operators are basic and
powerful at dealing with decision-making problems [19,20]. To date, several aggregation operators
have been extended with PFNs. For example, Garg [21] defined the arithmetic weighted averaging,
ordered weighted averaging, and hybrid averaging operators of PFNs; Wang et al. [22] adopted the
geometric aggregation operators to aggregate picture fuzzy information; and Wei [23] integrated the
Hamacher aggregation operators with PFNs to process practical problems. Nevertheless, a common
defect of these operators is that (4) all of these operators presume that the parameters are standalone,
and the interrelations among them are not considered at all. In reality, some inputs may be dependent
on each other, but the above-mentioned operators are unable to deal with this situation. Lately, Xu [24]
discussed the Muirhead mean operator in a picture fuzzy environment. The Muirhead mean operator
is a useful method to capture the interrelationships among inputs. However, it may be difficult for
DMs to determine a vector of parameters in the Muirhead mean operator.

In this case, the Bonferroni averaging [25,26] or Heronian averaging (HA) [27,28] operator may be
a good choice to overcome limitation (4). Both of them can establish the relationships between two
arguments, and only two parameter values need to be assigned by DMs. Compared with the Bonferroni
averaging operator, the great advantages of the HA operator include: the correlation between inputs
and itself is also taken into account, and no redundancy exists in the aggregated values. To date,
the HA operator has been widely extended with various fuzzy sets, such as IFSs [29] and linguistic
neutrosohpic numbers [30]. The limitations of this operator are related to two aspects. (5) Until now,
no HA operator has been modified to aggregate picture fuzzy information; and (6) there is a hypothesis
in the HA operator that each input is relevant with the remaining inputs, but this is not true at all times.
More commonly, parts of arguments have relationships with each other, while no connections exist
among several parts. Apparently, the conventional HA operator is helpless to handle this situation.

For coping with defect (6), the concepts of partitioned HA (PHA) and partitioned geometric HA
(PGHA) operators are put forward by Liu et al. [31]. The function of these operators is to address such
a general circumstance where the inputs are classified into several partitions, and the interrelationships
are just found among the inputs in the same partition but not found among those in distinct partitions.
Motivated by this idea, this study proposes some PHA operators within a picture fuzzy condition to
circumvent weaknesses (5) and (6).

The main contributions of this study are outlined in the following.
First, new operational laws of PFNs are defined to capture the interactions among four membership

degrees, so that limitation (3) is overcome.
Second, some PHA operators are extended with PFNs based on the new interaction operation

rules. They can settle the situation where criteria need to be partitioned, as correlations can be seen
only in the same part rather that in different parts. Special cases and important properties are discussed.
Hence, drawbacks (4), (5), and (6) are all defeated.

Third, novel methods with the proposed aggregation operations are proposed to cope with
complex decision-making issues in picture fuzzy circumstances. In the case study, PFNs are suggested
to describe hotel evaluation information, and our methods are adopted to select the optimal hotel. This
surmounts limitation (1) and justifies the feasibility of the proposed methods.
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Fourth, full discussions with sensitivity analyses and comparison analyses are taken to confirm
the strengths of our methods.

The remainder of this study is arranged as follows. In Section 2, the preliminaries of PFNs and
PHA operators are introduced in brief. Section 3 defines the new interaction operation rules of PFNs,
and several picture fuzzy PHA operators are based on these operations. Then, new decision-making
methods with these aggregation operators are recommended in Section 4. In Section 5, a case of
hotel selection is studied to show the advantages of PFNs and the practicability of our methods.
Section 6 makes some discussions by analyzing the influence of parameters and comparing with other
existing approaches for demonstrating the superiority of the proposed methods. Last, some necessary
conclusions are provided.

2. Preliminaries

2.1. Picture Fuzzy Numbers

Definition 1 ([8]). The PFS (picture fuzzy set) is an object on a universe Ω with a(χ) ={
< χ, pa(χ), ma(χ), na(χ) >

∣∣∣χ ∈ Ω
}
, where pa(χ) ∈ [0, 1] is the positive membership degree, ma(χ) ∈ [0, 1]

is the neutral membership degree, na(χ) ∈ [0, 1] is the negative membership degree, and va(χ) =

1− pa(χ) −ma(χ) − na(χ) ∈ [0, 1] is the refusal membership degree of χ in a.

In particular, the PFS is degenerated to a PFN (picture fuzzy number) a = (pa, ma, na) if Ω has
only one element.

Definition 2 ([22]). Let a = (pa, ma, na) and b = (pb, mb, nb) be two arbitrary PFNs (picture fuzzy numbers),
then the operational laws between them are

(1) a⊕W b = (pa, ma, na) ⊕W (pb, mb, nb) = (1− (1− pa)(1− pb), mamb, (na + ma)(nb + mb) −mamb);
(2) a⊗W b = (pa, ma, na) ⊗W (pb, mb, nb) = ((pa + ma)(pb + mb) −mamb, mamb, 1− (1− na)(1− nb));

(3) δ · a = (1− (1− pa)
δ, (ma)

δ, (na + ma)
δ
− (ma)

δ), δ ∈ (0,+∞);

(4) aδ = ((pa + ma)
δ
− (ma)

δ, (ma)
δ, 1− (1− na)

δ), δ ∈ (0,+∞).

Example 1. Let a1 = (p1, m1, n1) = (0.5, 0.3, 0.1) and a2 = (p2, m2, n2) = (0.6, 0, 0.3) be two PFNs.
According to Definition 2, the aggregation values of a1 and a2 are a1 ⊕ a2 = (0.8, 0, 0.12) and a1 ⊗ a2 =

(0.48, 0, 0.37). That is, because m2 = 0 in a2, the value of m1 in a1 has no influence on the aggregation values of
a1 and a2 Clearly, this is an imperfection.

Definition 3 ([22]). Assume a = (pa, ma, na) is a PFN, the score function and the accuracy function of a are

E(a) = pa − na, (1)

F(a) = pa + ma + na. (2)

Definition 4 ([22]). Given two PFNs a = (pa, ma, na) and b = (pb, mb, nb), the comparison method is

(1) if E(a) < E(b), then a ≺ b;
(2) if E(a) = E(b) and F(a) > F(b), then a � b;
(3) when E(a) = E(b) and F(a) = F(b), then a ∼ b.

2.2. Partitioned Heronian Averaging Operators

HA operator is a powerful tool to explore the relationship among inputs. The definitions of HA
and geometric HA (GHA) operators are given in the following.
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Definition 5 ([29]). Suppose αi (i = 1, 2, . . . , y) is a group of non-negative real numbers and β, η ≥ 0, then the
HA aggregation operator is

HAβ,η(α1,α2, · · · ,αy) = (
2

y(y + 1)

∑y

i=1

∑y

j=1
(αi)

β(α j)
η)

1
β+η

, (3)

and the GHA operator is

GHAβ,η(α1,α2, · · · ,αy) =
1

β+ η
(
∏y

i=1

∏y

j=1
βαi + ηα j)

2
y(y+1) . (4)

To reflect a situation where argument values in the same group correlate with each other and
the inputs in different groups are dissociated, Liu et al. [31] put forward the concepts of the PHA
aggregation operator and PGHA operator as follows.

Definition 6 ([31]). Assume αi (i = 1, 2, . . . , y) is a set of non-negative real numbers, and they are divided into
x independent groups S1, S2, . . . , Sx, where Sk =

{
αk1,αk2, . . . αk|Sk |

}
(k = 1, 2, . . . , x), the cardinality of Sk is

|Sk| and
∑x

k=1|Sk| = y. Let β, η ≥ 0, then the PHA operator is

PHAβ,η(α1,α2, · · · ,αy) =
1
x
(
∑x

k=1
(

2∣∣∣Sk
∣∣∣(∣∣∣Sk

∣∣∣+1)

∑
|Sk |

i=1

∑
|Sk |

j=1
(αki)

β(αkj)
η)

1
β+η

), (5)

and the PGHA operator is

PGHAβ,η(α1,α2, · · · ,αy) = (
∏x

k=1
(

1
β+ η

(
∏
|Sk |

i=1

∏
|Sk |

j=1
βαki + ηαkj)

2
|Sk |(|Sk |+1)

))

1
x

. (6)

3. Some Picture Fuzzy Interaction Partitioned Heronian Averaging Operators

In this section, the interaction operational rules of PNFs are first defined. Thereafter, some picture
fuzzy interaction PHA operators are presented based on the new rules.

3.1. Interaction Operational Laws of Picture Fuzzy Numbers

The In this subsection, new operational laws—the interaction operational laws of PFNs—are
proposed to overcome the limitations of the existing operations mentioned in Section 2.2.

The interaction operations take the interaction among true, hesitant and false membership degrees
into account, which are shown as follows.

Definition 7. Given two PFNs a1 = (p1, m1, n1) and a2 = (p2, m2, n2), then the interaction operational laws
are defined as

(1) a1⊕a2 =
(
1−

∏2
i=1 (1−pi),

∏2
i=1 (1−pi)−

∏2
i=1 (1−pi −mi),

∏2
i=1 (1−pi −mi)−

∏2
i=1 (1−pi −mi −ni)

)
;

(2) a1⊗a2 =
(∏2

i=1 (1−ni −mi)−
∏2

i=1 (1−ni −mi −pi),
∏2

i=1 (1−ni)−
∏2

i=1 (1−ni −mi), 1−
∏2

i=1 (1−ni)
)
;

(3) δ · a1 =
(
1− (1− p1)

δ, (1− p1)
δ
− (1− p1 −m1)

δ, (1− p1 −m1)
δ
− (1− p1 −m1 −n1)

δ
)
, δ ∈ (0,+∞);

(4) (a1)
δ =

(
(1−n1 −m1)

δ
− (1−n1 −m1 −p1)

δ, (1−n1)
δ
− (1−n1 −m1)

δ, 1− (1−n1)
δ
)
, δ ∈ (0,+∞).

Example 2. Let a1 = (0.5, 0.3, 0.1) and a2 = (0.6, 0, 0.3), which are the same as Example 1. Based on
Definition 7, the interaction aggregation values of a1 and a2 are a1 ⊕ a2 = (0.8, 0.12, 0.07) and a1 ⊗ a2 =

(0.41, 0.21, 0.37), which are more reasonable than the results in Example 1.
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3.2. Picture Fuzzy Interaction Partitioned Heronian Averaging Operator

In this subsection, the picture fuzzy interaction PHA (PFIPHA) and picture fuzzy weighted
interaction PHA (PFWIPHA) operators are defined, and some important properties are proved.

Definition 8. Assume ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a set of PFNs, and they can be partitioned into x
distinct sorts S1, S2, . . . , Sx, where Sk =

{
ak1, ak2, . . . , ak|sK |

}
(k = 1, 2, . . . , x). Then the PFIPHA operator is

defined as

PFIPHAβ,η(a1, a2, . . . , ay) =
1
x


x∑

k=1

 2∣∣∣Sk
∣∣∣(∣∣∣Sk

∣∣∣+1)

|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β
⊗ (akj)

η


1
β+η

 (7)

where β, η ≥ 0, |Sk| is the cardinality of Sk, and
x∑

k=1
|Sk| = y.

Theorem 1. If ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a group of PFNs, and β, η ≥ 0, then their aggregated result
using Equation (7) is still a PFN, and the following is true:

PFIPHAβ,η(a1, a2, . . . , ay) =1−
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η + (Mβ,η

k )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η + (Mβ,η

k )
1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

−

(
x∏

k=1

(
(Mβ,η

k )
1
β+η

)) 1
x


(8)

where Mβ,η
k =

 |Sk |∏
i=1, j=i

Aβ,η
k

tk

, Nβ,η
k =

 |Sk |∏
i=1, j=i

Bβ,η
k

tk

, Oβ,η
k =

 |Sk |∏
i=1, j=i

Cβ,η
k

tk

, tk = 2
|Sk|(|Sk|+1)

, Aβ,η
k =

(vki)
β(vkj)

η, Bβ,η
k = 1 − (uki)

β(ukj)
η + (vki)

β(vkj)
η, Cβ,η

k = 1 + (vki)
β(vkj)

η
− (rki)

β(rkj)
η, rki = 1 − nki,

rkj = 1− nkj, uki = 1− nki −mki, ukj = 1− nkj −mkj, vki = 1− nki −mki − pki and vkj = 1− nkj −mkj − pkj.

Note that the Proof of Theorem 1 can be seen in the Appendix A.
For the PFIPHA operator, the following properties should be satisfied.

Property 1. (Idempotency) Suppose ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a collection of PFNs, and ai = a =

(p, m, n) for all i = 1, 2, . . . , y, then PFIPHAβ,η(a1, a2, . . . , ay) = a.

Proof. Because a1 = a2 = · · · = ay = (p, m, n), then for all i = 1, 2, . . . , y, ri = 1 − ni = r,

ui = 1− ni −mi = u and vi = 1− ni −mi − pi = v⇒Aβ,η
k = (vki)

β(vkj)
η = vβ+η, Bβ,η

k = 1− (uki)
β(ukj)

η+

(vki)
β(vkj)

η = 1 − uβ+η + vβ+η and Cβ,η
k = 1 + (vki)

β(vkj)
η
− (rki)

β(rkj)
η = 1 + vβ+η − rβ+η ⇒

Mβ,η
k =

 |Sk |∏
i=1, j=i

Aβ,η
k

tk

=

 |Sk |∏
i=1, j=i

vβ+η
tk

= vβ+η, Nβ,η
k =

 |Sk |∏
i=1, j=i

Bβ,η
k

tk

=

 |Sk |∏
i=1, j=i

(1− uβ+η + vβ+η)

tk

=

1 − uβ+η + vβ+η and Oβ,η
k =

 |Sk |∏
i=1, j=i

Cβ,η
k

tk

=

 |Sk |∏
i=1, j=i

(1 + vβ+η − rβ+η)

tk

= 1 + vβ+η − rβ+η, then

PFIPHAβ,η(a1, a2, . . . , ay) =1−
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η

+ (Mβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η

+ (Mβ,η
k )

1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

−

(
x∏

k=1

(
(Mβ,η

k )
1
β+η

)) 1
x


=
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1−
(

x∏
k=1

(
1−

(
1− (1− uβ+η + vβ+η) + vβ+η

) 1
β+η + (vβ+η)

1
β+η

)) 1
x

,(
x∏

k=1

(
1−

(
1− (1− uβ+η + vβ+η) + vβ+η

) 1
β+η + (vβ+η)

1
β+η

)) 1
x

−

(
x∏

k=1

(
1 + (vβ+η)

1
β+η −

(
1− (1 + vβ+η − rβ+η) + vβ+η

) 1
β+η

)) 1
x

,(
x∏

k=1

(
1 + (vβ+η)

1
β+η −

(
1− (1 + vβ+η − rβ+η) + vβ+η

) 1
β+η

)) 1
x

−

(
x∏

k=1

(
(vβ+η)

1
β+η

)) 1
x


=1−
(

x∏
k=1

(
1− (uβ+η)

1
β+η + (vβ+η)

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (uβ+η)

1
β+η + (vβ+η)

1
β+η

)) 1
x

−

(
x∏

k=1

(
1 + (vβ+η)

1
β+η − (rβ+η)

1
β+η

)) 1
x

,(
x∏

k=1

(
1 + (vβ+η)

1
β+η − (rβ+η)

1
β+η

)) 1
x

−

(
x∏

k=1

(
(vβ+η)

1
β+η

)) 1
x


=

1−
(

x∏
k=1

(1− u + v)
) 1

x

,
(

x∏
k=1

(1− u + v)
) 1

x

−

(
x∏

k=1
(1 + v− r)

) 1
x

,
(

x∏
k=1

(1 + v− r)
) 1

x

−

(
x∏

k=1
(v)

) 1
x


= (1− (1− u + v), (1− u + v) − (1 + v− r), (1 + v− r) − v) = (u− v, r− u, 1− r)
= ((1− n−m) − (1− n−m− p), (1− n) − (1− n−m), 1− (1− n)) = (p, m, n) = a. �

Now, the Proof is completed.

Property 2. (Commutativity) Let ai = (pi, mi, ni) and a∗i = (p∗i , m∗i , n∗i ) (i = 1, 2, . . . , y) be two sets of
PFNs. If (a∗1, a∗2, · · · , a∗y) is an arbitrary permutation of (a1, a2, · · · , ay), then PFIPHAβ,η(a1, a2, . . . , ay) =

PFIPHAβ,η(a∗1, a∗2, · · · , a∗y).

Proof. According to Equation (8), PFIPHAβ,η(a1, a2, . . . , ay) =1−
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η

+ (Mβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η

+ (Mβ,η
k )

1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

−

(
x∏

k=1

(
(Mβ,η

k )
1
β+η

)) 1
x


,

and PFIPHAβ,η(a∗1, a∗2, · · · , a∗y) =1−
(

x∏
k=1

(
1− (1−N∗β,η

k + M∗β,η
k )

1
β+η

+ (M∗β,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−N∗β,η

k + M∗β,η
k )

1
β+η

+ (M∗β,η
k )

1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (M∗β,η

k )
1
β+η
− (1−O∗β,η

k + M∗β,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (M∗β,η

k )
1
β+η
− (1−O∗β,η

k + M∗β,η
k )

1
β+η

)) 1
x

−

(
x∏

k=1

(
(M∗β,η

k )
1
β+η

)) 1
x
.

.

As (a∗1, a∗2, · · · , a∗y) is an arbitrary permutation of (a1, a2, · · · , ay), it is clearly that
PFIPHAβ,η(a1, a2, . . . , ay) = PFIPHAβ,η(a∗1, a∗2, · · · , a∗y). �

Several special cases of the PFIPHAβ,η operator are discussed as follows.

Special case 1:

When η→ 0 , PFIPHAβ,0(a1, a2, . . . , ay) =1−

 x∏
k=1

1−

1−
(
|Sk |∏
i=1

(
1− (uki)

β + (vki)
β
))tk

+

(
|Sk |∏
i=1

(vki)
β
)tk


1
β

+

( |Sk |∏
i=1

(vki)
β
)tk


1
β




1
x

,

 x∏
k=1

1−

1−
(
|Sk |∏
i=1

(
1− (uki)

β + (vki)
β
))tk

+

(
|Sk |∏
i=1

(vki)
β
)tk


1
β

+

( |Sk |∏
i=1

(vki)
β
)tk


1
β




1
x

−

 x∏
k=1

1 +

( |Sk |∏
i=1

(vki)
β
)tk


1
β

−

1−
(
|Sk |∏
i=1

(
1 + (vki)

β
− (rki)

β
))tk

+

(
|Sk |∏
i=1

(vki)
β
)tk


1
β




1
x

,

 x∏
k=1

1 +

( |Sk |∏
i=1

(vki)
β
)tk


1
β

−

1−
(
|Sk |∏
i=1

(
1 + (vki)

β
− (rki)

β
))tk

+

(
|Sk |∏
i=1

(vki)
β
)tk


1
β




1
x

−

 x∏
k=1


( |Sk |∏

i=1
(vki)

β
)tk


1
β




1
x
.
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Special case 2:

When β→ 0 , then PFIPHA0,η(a1, a2, . . . , ay) =1−

 x∏
k=1

1−

1−

 |Sk |∏
i=1, j=i

(
1− (ukj)

η + (vki)
η
)tk

+

 |Sk |∏
i=1, j=i

(vkj)
η

tk


1
η

+


 |Sk |∏

i=1, j=i
(vkj)

η

tk


1
η



1
x

,

 x∏
k=1

1−

1−

 |Sk |∏
i=1, j=i

(
1− (ukj)

η + (vkj)
η
)tk

+

 |Sk |∏
i=1, j=i

(vkj)
η

tk


1
η

+


 |Sk |∏

i=1, j=i
(vkj)

η

tk


1
η



1
x

−

 x∏
k=1

1 +


 |Sk |∏

i=1, j=i
(vkj)

η

tk


1
η

−

1−

 |Sk |∏
i=1, j=i

(
1 + (vkj)

η
− (rkj)

η
)tk

+

 |Sk |∏
i=1, j=i

(vkj)
η

tk


1
η



1
x

,

 x∏
k=1

1 +


 |Sk |∏

i=1, j=i
(vkj)

η

tk


1
η

−

1−

 |Sk |∏
i=1, j=i

(
1 + (vkj)

η
− (rkj)

η
)tk

+

 |Sk |∏
i=1, j=i

(vkj)
η

tk


1
η



1
x

−

 x∏
k=1



 |Sk |∏

i=1, j=i
(vkj)

η

tk


1
η



1
x


Special case 3:

When β = 1 and η→ 0 , then PFIPHA1,0(a1, a2, . . . , ay) =1−

 x∏
k=1

 |Sk |∏
i=1

(1− uki + vki)

tk


1
x

,

 x∏
k=1

 |Sk |∏
i=1

(1− uki + vki)

tk


1
x

−

 x∏
k=1

 |Sk |∏
i=1

(1 + vki − rki)

tk


1
x

,

 x∏
k=1

 |Sk |∏
i=1

(1 + vki − rki)

tk


1
x

−

 x∏
k=1

 |Sk |∏
i=1

vki

tk


1
x
.

Special case 4:

When β = η = 1, then PFIPHA1,0(a1, a2, . . . , ay) =1−

 x∏
k=1

1−

1−

 |Sk |∏
i=1, j=i

(1− ukiukj + vkivkj)

tk

+

 |Sk |∏
i=1, j=i

vkivkj

tk


1
2

+


 |Sk |∏

i=1, j=i
vkivkj

tk


1
2



1
x

,

 x∏
k=1

1−

1−

 |Sk |∏
i=1, j=i

(1− ukiukj + vkivkj

tk

+

 |Sk |∏
i=1, j=i

vkivkj

tk


1
2

+


 |Sk |∏

i=1, j=i
vkivkj

tk


1
2



1
x

−

 x∏
k=1

1 +


 |Sk |∏

i=1, j=i
vkivkj

tk


1
2

−

1−

 |Sk |∏
i=1, j=i

(1 + vkivkj − rkirkj)

tk

+

 |Sk |∏
i=1, j=i

vkivkj

tk


1
2



1
x

,

 x∏
k=1

1 +


 |Sk |∏

i=1, j=i
vkivkj

tk


1
2

−

1−

 |Sk |∏
i=1, j=i

(1 + vkivkj − rkirkj)

tk

+

 |Sk |∏
i=1, j=i

vkivkj

tk


1
2



1
x

−

 x∏
k=1



 |Sk |∏

i=1, j=i
vkivkj

tk


1
2



1
x
.

Definition 9. If ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a set of PFNs, and they can be partitioned into x distinct
sorts S1, S2, . . . , Sx, where Sk =

{
ak1, ak2, . . . , ak|sK |

}
(k = 1, 2, . . . , x); (w1, w2, · · · , wy) is the weight vector of

(a1, a2, · · · , ay), where wi ∈ [0, 1] and
y∑

i=1
wi = 1, then the PFWIPHA operator is defined as

PFWIPHAβ,η(a1, a2, . . . , ay) =
1
x


x∑

k=1

 2∣∣∣Sk
∣∣∣(∣∣∣Sk

∣∣∣+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β
⊗ (w jakj)

η


1
β+η

 (9)

where β, η ≥ 0, |Sk| is the cardinality of Sk, and
x∑

k=1
|Sk| = y.
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Theorem 2. Suppose ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a group of PFNs, (w1, w2, · · · , wy) is the weight

vector of (a1, a2, · · · , ay), wi ∈ [0, 1],
y∑

i=1
wi = 1 and β, η ≥ 0, then their aggregated result using Equation (9) is

still a PFN, and the following is true:

PFWIPHAβ,η(a1, a2, . . . , ay) =1−
(

x∏
k=1

(
1− (1 + Jβ,η

k − Lβ,η
k )

1
β+η + (Jβ,η

k )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1 + Jβ,η

k − Lβ,η
k )

1
β+η + (Jβ,η

k )
1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Jβ,η

k )
1
β+η
− (1−Qβ,η

k + Jβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Jβ,η

k )
1
β+η
− (1−Qβ,η

k + Jβ,η
k )

1
β+η

)) 1
x

−

(
x∏

k=1

(
(Jβ,η

k )
1
β+η

)) 1
x


(10)

where Jβ,η
k =

 |Sk |∏
i=1, j=i

Gβ,η
k

tk

, Lβ,η
k =

 |Sk |∏
i=1, j=i

(
1−Hβ,η

k + Gβ,η
k

)tk

, Qβ,η
k =

 |Sk |∏
i=1, j=i

(
1 + Gβ,η

k − Iβ,η
k

)tk

,

tk = 2
|Sk|(|Sk|+1)

, Gβ,η
k =

(
(vki)

wi
)β(

(vkj)
w j

)η
, Hβ,η

k =
(
1 + (vki)

wi − (eki)
wi

)β(
1 + (vkj)

w j − (ekj)
w j

)η
,

Iβ,η
k =

(
1− ( fki)

wi + (vki)
wi

)β(
1− ( fkj)

w j + (vkj)
w j

)η
, eki = 1 − pki, ekj = 1 − pkj, fki = 1 − pki − mki,

fkj = 1− pkj −mkj, vki = 1− pki −mki − nki and vkj = 1− pkj −mkj − nkj.

Note that the Proof of Theorem 2 can be seen in the Appendix B.

3.3. Picture Fuzzy Interaction Partitioned Geometric Heronian Averaging Operator

In this subsection, the picture fuzzy interaction partitioned geometric HA (PFIPGHA) and the
picture fuzzy weighted interaction partitioned geometric HA (PFWIPGHA) operators are discussed.
Different from arithmetic aggregation operators, the geometric aggregation operators emphasize
the equilibrium of all inputs and the harmonization (rather than the complementarity) among their
individual values [32]. Therefore, the following discussion of PFIPGHA and PFWIPGHA operators are
also necessary.

Definition 10. Assume ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a set of PFNs, and they can be partitioned into x
distinct sorts S1, S2, . . . , Sx, where Sk =

{
ak1, ak2, . . . , ak|sK |

}
(k = 1, 2, . . . , x). Then the PFIPGHA operator is

defined as

PFIPGHAβ,η(a1, a2, . . . , ay) =


x∏

k=1

 1
β+ η

 |Sk |∏
i=1, j=i

(βaki ⊕ ηakj)


2

|Sk |(|Sk |+1)



1
x

(11)

where β, η ≥ 0, |Sk| is the cardinality of Sk and
x∑

k=1
|Sk| = y.

Theorem 3. If ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a group of PFNs, and β, η ≥ 0, then their aggregated result
using Equation (11) is still a PFN, and the following is true:

PFIPGHAβ,η(a1 , a2 , . . . , ay) =
 x∏

k=1

1 +
(
(Rβ,η

k )
tk
) 1
β+η
−

(
1− (Uβ,η

k )
tk
+ (Rβ,η

k )
tk
) 1
β+η


1
x

−

 x∏
k=1

((Rβ,η
k )

tk
) 1
β+η


1
x

,

 x∏
k=1

1−
(
1 + (Rβ,η

k )
tk
− (Vβ,η

k )
tk
) 1
β+η

+
(
(Rβ,η

k )
tk
) 1
β+η


1
x

−

 x∏
k=1

1 +
(
(Rβ,η

k )
tk
) 1
β+η
−

(
1− (Uβ,η

k )
tk
+ (Rβ,η

k )
tk
) 1
β+η


1
x

, 1−

 x∏
k=1

1−
(
1 + (Rβ,η

k )
tk
− (Vβ,η

k )
tk
) 1
β+η

+
(
(Rβ,η

k )
tk
) 1
β+η


1
x


,
(12)
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here Rβ,η
k =

|Sk |∏
i=1, j=i

(
(vki)

β(vkj)
η
)
, Uβ,η

k =
|Sk |∏

i=1, j=i

(
1 + (vki)

β(vkj)
η
− (eki)

β(ekj)
η
)
, Vβ,η

k =

|Sk∏
i=1, j=i

(
1− ( fki)

β( fkj)
η + (vki)

β(vkj)
η
)
, tk = 2

|Sk|(|Sk|+1)
, eki = 1 − pki, ekj = 1 − pkj, fki = 1 − pki −mki,

fkj = 1− pkj −mkj, vki = 1− pki −mki − nki and vkj = 1− pkj −mkj − nkj.

Note that the Proof of Theorem 1 can be seen in the Appendix C.
For the PFIPGHA operator, the following properties should be satisfied.

Property 3. (Idempotency) Suppose ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a collection of PFNs, and ai = a =

(p, m, n) for all i = 1, 2, . . . , y, then PFIPGHAβ,η(a1, a2, . . . , ay) = a.

Property 4. (Commutativity) Let ai = (pi, mi, ni) and a∗i = (p∗i , m∗i , n∗i ) (i = 1, 2, . . . , y) be two sets of
PFNs. If (a∗1, a∗2, · · · , a∗y) is an arbitrary permutation of (a1, a2, · · · , ay), then PFIPGHAβ,η(a1, a2, . . . , ay) =

PFIPGHAβ,η(a∗1, a∗2, · · · , a∗y).

Note that the proofs of Property 3 and 4 are similar to those of Property 1 and 2, respectively.
Thus, they are omitted to save space in this study.

Several special cases of the PFIPGHAβ,η operator are discussed as follows.

Special case 1:

When η→ 0 , PFIPGHAβ,0(a1, a2, . . . , ay) =
 x∏

k=1

1 +


 |Sk |∏

i=1

(
(gki)

β
)tk


1
β

−

1−

 |Sk |∏
i=1

(
1 + (gki)

β
− (eki)

β
)tk

+

 |Sk |∏
i=1

(
(gki)

β
)tk


1
β




1
x

−

 x∏
k=1



 |Sk |∏

i=1

(
(gki)

β
)tk


1
β




1
x

,

 x∏
k=1

1−

1 +

 |Sk |∏
i=1

(
(gki)

β
)tk

−

 |Sk∏
i=1

(
1− ( fki)

β + (gki)
β
)tk


1
β

+


 |Sk |∏

i=1

(
(gki)

β
)tk


1
β




1
x

−

 x∏
k=1

1 +


 |Sk |∏

i=1

(
(gki)

β
)tk


1
β

−

1−

 |Sk |∏
i=1

(
1 + (gki)

β
− (eki)

β
)tk

+

 |Sk |∏
i=1

(
(gki)

β
)tk


1
β




1
x

,

1−

 x∏
k=1

1−

1 +

 |Sk |∏
i=1

(
(gki)

β
)tk

−

 |Sk∏
i=1

(
1− ( fki)

β + (gki)
β
)tk


1
β

+


 |Sk |∏

i=1

(
(gki)

β
)tk


1
β




1
x
.

Special case 2:

When β→ 0 , then PFIPGHA0,η(a1, a2, . . . , ay) =
 x∏

k=1

1 +


 |Sk |∏

i=1, j=i

(
(gkj)

η
)tk


1
η

−

1−

 |Sk |∏
i=1, j=i

(
1 + (gkj)

η
− (ekj)

η
)tk

+

 |Sk |∏
i=1, j=i

(
(gkj)

β
)tk


1
η




1
x

−

 x∏
k=1



 |Sk |∏

i=1, j=i

(
(gkj)

η
)tk


1
η




1
x

,

 x∏
k=1

1−

1 +

 |Sk |∏
i=1, j=i

(
(gkj)

η
)tk

−

 |Sk∏
i=1, j=i

(
1− ( fkj)

η + (gkj)
η
)tk


1
η

+


 |Sk |∏

i=1, j=i

(
(gkj)

η
)tk


1
η




1
x

−

 x∏
k=1

1 +


 |Sk |∏

i=1, j=i

(
(gkj)

η
)tk


1
η

−

1−

 |Sk |∏
i=1, j=i

(
1 + (gkj)

η
− (ekj)

η
)tk

+

 |Sk |∏
i=1, j=i

(
(gkj)

η
)tk


1
η




1
x

,

1−

 x∏
k=1

1−

1 +

 |Sk |∏
i=1, j=i

(
(gkj)

η
)tk

−

 |Sk∏
i=1, j=i

(
1− ( fkj)

η + (gkj)
η
)tk


1
η

+


 |Sk |∏

i=1, j=i

(
(gkj)

η
)tk


1
η




1
x
.
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Special case 3:

When β = 1 and η→ 0 , then PFIPGHA1,0(a1, a2, . . . , ay) =
 x∏

k=1

(
|Sk |∏
i=1

(1 + gki − eki)

)tk


1
x

−

 x∏
k=1

(
|Sk |∏
i=1

gki

)tk


1
x

,

 x∏
k=1

(
|Sk∏
i=1

(1− fki + gki)

)tk


1
x

−

 x∏
k=1

(
|Sk |∏
i=1

(1 + gki − eki)

)tk


1
x

, 1−

 x∏
k=1

(
|Sk∏
i=1

(1− fki + gki)

)tk


1
x
.

Special case 4:

When β = η = 1, then PFIPHA1,0(a1, a2, . . . , ay) =
 x∏

k=1

1 +


 |Sk |∏

i=1, j=i

(
(gki)(gkj)

)tk


1
2

−

1−

 |Sk |∏
i=1, j=i

(
1 + (gki)(gkj) − (eki)(ekj)

)tk

+

 |Sk |∏
i=1, j=i

(
(gki)(gkj)

)tk


1
2



1
x

−

 x∏
k=1



 |Sk |∏

i=1, j=i

(
(gki)(gkj)

)tk


1
2



1
x

,

 x∏
k=1

1−

1 +

 |Sk |∏
i=1, j=i

(
(gki)(gkj)

)tk

−

 |Sk∏
i=1, j=i

(
1− ( fki)( fkj) + (gki)(gkj)

)tk


1
2

+


 |Sk |∏

i=1, j=i

(
(gki)(gkj)

)tk


1
2



1
x

−

 x∏
k=1

1 +


 |Sk |∏

i=1, j=i

(
(gki)(gkj)

)tk


1
2

−

1−

 |Sk |∏
i=1, j=i

(
1 + (gki)(gkj) − (eki)(ekj)

)tk

+

 |Sk |∏
i=1, j=i

(
(gki)(gkj)

)tk


1
2



1
x

,

1−

 x∏
k=1

1−

1 +

 |Sk |∏
i=1, j=i

(
(gki)(gkj)

)tk

−

 |Sk∏
i=1, j=i

(
1− ( fki)( fkj) + (gki)(gkj)

)tk


1
2

+


 |Sk |∏

i=1, j=i

(
(gki)(gkj)

)tk


1
2



1
x
.

Definition 11. If ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a set of PFNs, and they can be partitioned into x distinct
sorts S1, S2, . . . , Sx, where Sk =

{
ak1, ak2, . . . , ak|sK |

}
(k = 1, 2, . . . , x); (w1, w2, · · · , wy) is the weight vector of

(a1, a2, · · · , ay), where wi ∈ [0, 1] and
y∑

i=1
wi = 1, then the PFWIPGHA operator is defined as

PFWIPGHAβ,η(a1, a2, . . . , ay) =


x∏

k=1

 1
β+ η

 |Sk |∏
i=1, j=i

β(aki)
wi ⊕ η(akj)

w j


2

|Sk |(|Sk |+1)



1
x

, (13)

here β, η ≥ 0, |Sk| is the cardinality of Sk and
x∑

k=1
|Sk| = y.

Theorem 4. Suppose ai = (pi, mi, ni) (i = 1, 2, . . . , y) is a group of PFNs, (w1, w2, · · · , wy) is the weight

vector of (a1, a2, · · · , ay), wi ∈ [0, 1],
y∑

i=1
wi = 1 and β, η ≥ 0, then their aggregated result using Equation (13)

is still a PFN, and the following is true:

PFWIPGHAβ,η(a1, a2, . . . , ay) =((
x∏

k=1

(
1− (Oβ,η

k )
1
β+η
−

(
1− Pβ,η

k + Oβ,η
k

) 1
β+η

)) 1
x

−

(
x∏

k=1

(
(Oβ,η

k )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1−

(
1 + Oβ,η

k −Yβ,η
k

) 1
β+η + (Oβ,η

k )
1
β+η

)) 1
x

−

(
x∏

k=1

(
1− (Oβ,η

k )
1
β+η
−

(
1− Pβ,η

k + Oβ,η
k

) 1
β+η

)) 1
x

, 1−
(

x∏
k=1

(
1−

(
1 + Oβ,η

k −Yβ,η
k

) 1
β+η + (Oβ,η

k )
1
β+η

)) 1
x


(14)

where Oβ,η
k =

 |Sk |∏
i=1, j=i

Gβ,η
k

tk

, Pβ,η
k =

 |Sk |∏
i=1, j=i

(
1 + Gβ,η

k − Tβ,η
k

)tk

, Yβ,η
k =

 |Sk |∏
i=1, j=i

(
1−Zβ,η

k + Gβ,η
k

)tk

, tk =

2
|Sk|(|Sk|+1)

, Gβ,η
k =

(
(vki)

wi
)β(

(vkj)
w j

)η
, Tβ,η

k =
(
1− (uki)

wi + (vki)
wi

)β(
1− (ukj)

w j + (vkj)
w j

)η
, Zβ,η

k =(
1 + (vki)

wi − (rki)
wi

)β(
1 + (vkj)

w j − (rkj)
w j

)η
, rki = 1 − nki, rkj = 1 − nkj, uki = 1 − nki − mki, ukj =

1− nkj −mkj, vki = 1− nki −mki − pki and vkj = 1− nkj −mkj − pkj.
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Note that the Proof of Theorem 4 can be seen in the Appendix D.

4. Decision Making Methods with the Proposed Aggregation Operators

In this section, decision making methods with the proposed aggregation operators are explored to
address complex decision making issues in a picture fuzzy environment.

4.1. Problem Description

With respect to a group decision making problem with picture fuzzy information, assume that there
are h alternatives, denoted as {π1,π2, · · · ,πh}, and l criteria, denoted as

{
φ1,φ2, · · · ,φl

}
. The weight

vector of these criteria is {w1, w2, · · · , wl}, where w1 + w2 + · · ·+ wl = 1 and 0 ≤ w1, w2, · · · , wl ≤ 1.
Then, the decision makers are asked to rank all the alternatives or select the best alternative. Suppose
the evaluation matrix provided by decision makers is A = (ai j)h×l, where ai j = (pi j, mi j, ni j), which is a
PFN, represents the evaluation value of alternative πi (i = 1, 2, · · · , h) under criterion φ j ( j = 1, 2, · · · , l).

4.2. Decision Making Procedures

In this subsection, decision making methods based on the proposed aggregation operators are
suggested to solve the decision making problem described in Section 4.1. The specific decision-making
procedures are stated as follows.

Step 1: Normalize the initial decision making matrix.
Because benefit and cost criteria may be contained in an initial evaluation matrix at the same time,

they are usually transferred into the same type in the first step. The normalization equation of PFNs is

bi j =

{
(pi j, mi j, ni j) f or bene f it criteria φ j
(ni j, mi j, pi j) f or cos t criteria φ j

. (15)

Thus, the normalized evaluation matrix can be denoted as B = (bi j)h×l.
Step 2: Calculate the overall preference degree of each alternative.
Based on the PFWIPHA or PFWIPGHA operator defined in Section 3, the evaluation values in each

row of evaluation matrix B are aggregated, and then the overall preference degree of each alternative is
calculated as

ai = PFWIPHAβ,η(ai1, ai2, . . . , ail) (i = 1, 2, · · · , h), (16)

or
ai = PFWIPGHAβ,η(ai1, ai2, . . . , ail) (i = 1, 2, · · · , h). (17)

Step 3: Compute the score function or accuracy function.
Based on Equation (1), the score function E(ai) can be calculated. If two score function values are

equal, then the accuracy function F(ai) should be computed using Equation (2).
Step 4: Obtain the ranking order.
According to the comparison method defined in Definition 4, the ranking order of all the

alternatives is obtained, and the best alternative is selected as π∗.

5. Case Study

In this section, a hotel selection case is studied to justify the practicability of the proposed method.
Recently, five college students plan to book a hotel in advance for their trip next week. They browse

hotel evaluation information in TripAdvisor.com. As a very popular tourism website, TripAdvisor.com
has many true comments about hotels, restaurants and tourist attractions. Accordingly, they choose
four satisfactory hotels based on their price, comfortability, service, location, and convenience. In the
following, the presented methods are suggested to select the optimal hotel. The program codes of
the presented method run under the MATLAB R2016b software. The operation platform is a laptop
with a Windows 10 operating system, an Intel(R) Core(TM) i5-8250U CPU with 1.80 GHz, and 12G
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random-access memory (RAM). The advantage of MATLAB lies in numerical calculation. It can
efficiently solve complex problems, dynamically simulate the system, and display the numerical results
with powerful graphics functions.

First, they need to fill out a questionnaire of selected hotels (See Appendix E) for giving their
respective opinions of these four alternatives (denoted as π1,π2,π3,π4) under six evaluation criteria.
They are φ1 (price), φ2 (comfortability), φ3 (service), φ4 (location) and φ5 (convenience). Then, their
answers can be counted and represented by PFNs. For example, if two students think the price of hotel
π1 is high, one student holds that the price is medium, and two students believe that the price is low,
then their evaluations can be described by a PFN a11 = (0.4, 0.2, 0.4). Thus, when they give their all
evaluations, an original evaluation matrix A with PFNs can be obtained, as shown in Table 1.

Table 1. Initial decision making matrix A.

A φ1 φ2 φ3 φ4 φ5

π1 (0.4, 0.2, 0.4) (0.6, 0.2, 0.2) (0.4, 0.2, 0.2) (0.6, 0, 0.2) (0.6, 0, 0.4)
π2 (0.2, 0.4, 0.4) (0.8, 0.2, 0) (0.4, 0.4, 0.2) (0.6, 0.4, 0) (0.4, 0.2, 0.2)
π3 (0.4, 0.4, 0.2) (0.6, 0, 0.4) (0.8, 0, 0.2) (0.6, 0.2, 0.2) (0.4, 0.2, 0.2)
π4 (0.2, 0.4, 0.2) (0.4, 0.4, 0.2) (0.6, 0.4, 0) (0.4, 0.2, 0.4) (0.8, 0.2, 0)

Case 1: Select the best hotel with the method based on the PFWIPHA operator.
Step 1: Normalize the initial decision making matrix.
Since φ2, φ3, φ4 and φ5 are benefit criteria, while φ1 belongs to cost criterion, they should be

normalized based on Equation (15). The normalized evaluation matrix B is shown in Table 2.

Table 2. Normalized evaluation matrix B.

B φ1 φ2 φ3 φ4 φ5

π1 (0.4, 0.2, 0.4) (0.6, 0.2, 0.2) (0.4, 0.2, 0.2) (0.6, 0, 0.2) (0.6, 0, 0.4)
π2 (0.4, 0.4, 0.2) (0.8, 0.2, 0) (0.4, 0.4, 0.2) (0.6, 0.4, 0) (0.4, 0.2, 0.2)
π3 (0.2, 0.4, 0.4) (0.6, 0, 0.4) (0.8, 0, 0.2) (0.6, 0.2, 0.2) (0.4, 0.2, 0.2)
π4 (0.2, 0.4, 0.2) (0.4, 0.4, 0.2) (0.6, 0.4, 0) (0.4, 0.2, 0.4) (0.8, 0.2, 0)

Step 2: Calculate the overall preference degree of each alternative.
Suppose β = η = 1, and all criteria have the same importance, namely, w1 = w2 = w3 = w4 =

w5 = 0.2. In general, a higher price means a large probability of good comfortability and service.
Likewise, the convenience of transport may have great relations with the location of a hotel. Thus,
according to this correlation pattern, these criteria are partitioned into two parts: S1 =

{
φ1,φ2,φ3

}
and S2 =

{
φ4,φ5

}
. Then, based on the PFWIPHA operator in Equation (16), the overall preference

degree of each hotel is computed as: a2 = (0.2492, 0.7506, 0), a3 = (0 .2526, 0.0859, 0 .6615) and
a4 = (0.2142, 0.7858, 0).

Step 3: Compute the score function.
Using Equation (1), the score function values are calculated as: E(a1) = −0.2809, E(a2) = 0.2494,

E(a3) = −0.4088 and E(a4) = 0.2142.
Step 4: Obtain the ranking order.
since E(a2) > E(a4) > E(a1) > E(a3), the final ranking order is π2 � π4 � π1 � π3, and the optimal

hotel is π2.
Case 2: Select the best hotel with the method based on the PFWIPGHA operator.

Step 1: Normalize the initial decision making matrix.
The normalized evaluation matrix is the same as matrix B, which is shown in Table 2.
Step 2: Calculate the overall preference degree of each alternative.
Suppose β = η = 1, and all criteria have the same importance, namely, w1 = w2 = w3 =

w4 = w5 = 0.2. In accordance with the correlation pattern, these criteria are partitioned into two
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parts: S1 =
{
φ1,φ2,φ3

}
and S2 =

{
φ4,φ5

}
. Then using the PFWIPGHA operator in Equation (17),

the overall preference degree of each hotel is computed as: a1 = (0.7502, 0.0511, 0.1987), a2 =

(0.7884, 0.1197, 0.0919), a3= (0 .7675, 0.1094, 0 .1231) and a4 = (0.7805, 0.1251, 0.0943).
Step 3: Compute the score function and accuracy function.
Using Equation (1), the score function values are calculated as: E(a1) = 0.5514, E(a2) = 0.6965,

E(a3) = 0.6443 and E(a4) = 0.6862.
Step 4: Obtain the ranking order.
Since E(a2) > E(a4) > E(a3) > E(a1), the final ranking order is π2 � π4 � π3 � π1, and the optimal

hotel is π2.
It can be seen that the best alternative is always π2 no matter which aggregation operator

(PFWIPHA or PFWIPGHA) is used.

6. Discussions

In this section, the influence of parameters in the proposed method is investigated by sensitivity
analyses and the advantages of our method are demonstrated through comparison analyses

6.1. Sensitivity Analyses

In this subsection, the impacts of parameters β and η on the final ranking orders under PFWIPHA
and PFWIPGHA operators are discussed, respectively.

First, the score function values of each alternative under PFWIPHA and PFWIPGHA operators
are calculated by assigning different β and η values, as shown in Figures 1 and 2.Mathematics 2020, 8, x FOR PEER REVIEW 16 of 27 
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From Figure 1, it can be seen that the ranking orders may change when dissimilar β or η values
are allocated under the PFWIPHA operator. Even though, the best alternative is π2 in many cases, and
the worst alternative is always π3. And the preference relations between alternative π1 and π3 (that is,
π1 � π3), and that among π2, π3 and π4 (that is, π2 � π4 � π3) are always true.

From Figure 2, similar conclusions can be reached under the PFWIPGHA operator. For example,
dissimilar rankings are derived with different values of β and η, but the optimal alternative is still π2

in most circumstances whereas the worst alternative is always π1. Likewise, the preference relations
between alternative π1 and π4 (that is, π4 � π1), and that among π1, π2 and π3 (that is, π2 � π3 � π1)
always exist.

All of these indicate that both PFWIPHA and PFWIPGHA operators have a certain degree of
stability, and do not lose flexibility at the same time. Moreover, an interesting phenomenon is that with
the growth of β or η value, the score function of the aggregated values increase under the PFWIPHA
operator, while they decrease under the PFWIPGHA operator. Thus, for an optimistic DM, he/she
can choose a larger β or η value under the PFWIPHA operator, or a smaller β or η value under the
PFWIPGHA operator. In contrast, for a pessimistic DM, he/she can choose a smaller β or η value under
the PFWIPHA operator, or a larger β or η value under the PFWIPGHA operator.

6.2. Comparison Analyses

In this subsection, different approaches based on the existing aggregation operators of PFNs
are compared in terms of ranking results and other characteristics to demonstrate the advantages of
our method.

(1) Comparisons in terms of ranking results

First, the ranking results using the existing approaches with dissimilar aggregation operators (the
picture fuzzy weighted averaging (PFWA), picture fuzzy weighted geometric averaging (PFWGA),
PFWIPHA and PFWIPGHA operators) are listed in Table 3.
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Table 3. Ranking orders with dissimilar aggregation operators.

Aggregation Operators Score Function Values Ranking Orders Best Alternatives

PFWA operator [33] E(a1) = 0.1519, E(a2) = 0.3488,
E(a3) = 0.1067, E(a4) = 0.3886. π4 � π2 � π1 � π3 φ2

PFWGA operator [22] E(a1) = 0.3486, E(a2) = 0.3226,
E(a3) = 0.4169, E(a4) = 0.3023. π3 � π1 � π2 � π4 π3

PFWIPHA operator E(a1) = −0.2809, E(a2) = 0.2494,
E(a3) = −0.4088, E(a4) = 0.2142. π2 � π4 � π1 � π3 π2

PFWIPGHA operator E(a1) = 0.5514, E(a2) = 0.6965,
E(a3) = 0.6443, E(a4) = 0.6862. π2 � π4 � π3 � π1 π2

It is clear that the four ranking orders in Table 3 are dissimilar with each other. For seeking out
the optimal ranking order among them, the technique proposed by Jahan et al. [34] is employed. As
exhibited in Table 4, the numbers of times a host is assigned to diverse ranks is counted. For example,
the hotel π1 has once a ranking of 2, twice a ranking of 3 and once a ranking of 4.

Table 4. Numbers of times a hotel assigned to diverse ranks.

Hotels
Ranks

1 2 3 4

π1 1 2 1
π2 2 1 1
π3 1 1 2
π4 1 2 1

Then, based on Table 4, the smoothing of hotels assignment over ranks is computed (See Table 5).

Table 5. Smoothing of hotels assignment over ranks ΛiZ.

Hotels
Ranks

1 2 3 4

π1 0 1 3 4
π2 2 3 4 4
π3 1 1 2 4
π4 1 3 3 4

According to Table 5, the following maximizing objective function is performed:

Max Θ =
4∑

i=1

4∑
z=1

(Λiz ·
42

z · ∇iz)

s.t.



4∑
i=1
∇iz = 1, z = 1, 2, 3, 4

4∑
z=1
∇iz = 1, i = 1, 2, 3, 4

∇iz = 0 or 1, ∀i, z

(18)

Through solving the programming model (18), the optimal ranking order π2 � π4 � π1 � π3

is derived.
For clarity, the optimal ranking order and four ranking orders in Table 3 are simultaneously

depicted in the same figure (See Figure 3). It is clear that the optimal ranking is the same with the
ranking order through adopting PFWIPHA operator. The difference between the optimal ranking and
the ranking result by utilizing PFWIPGHA operator is small. Conversely, a larger discrepancy can
be seen among the optimal ranking order, the ranking order with PFWA operator, and the ranking
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order with PFWGA operator. All of these indicate that the presented method is more suitable than the
existing methods in disposing decision making problems with interactions and partitions of inputs.
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(2) Further comparisons in terms of other features

In view of other characteristics (such as whether consider the relationships among membership
functions, the correlations among criteria, and the partition the inputs), further comparisons are made
in Table 6.

Table 6. Further comparisons in terms of other features.

Aggregation Operators Operational Rules Interactions among
Membership Functions

Interrelationships
among Aggregating

Arguments

Partition of the
Inputs

PFWA operator [33] Tradition Unconsidered Unconsidered Unconsidered
PFWGA operator [22] Tradition Unconsidered Unconsidered Unconsidered
PFWIPHA operator Interaction Considered Considered Considered

PFWIPGHA operator Interaction Considered Considered Considered

From Table 6, it can be seen that both the PFWA [21] and PFWGA [8] operators are based on the
traditional operational laws of PFNs, where the interactions among membership functions are not
considered. They cannot guarantee the accuracy of aggregated values when ‘zero’ occurs in the neutral
membership degrees. In contrast, the present method (the PFWIPHA or PFWIPGHA operator) is based
on new interaction operational rules of PFNs, which considers the interactions among membership
functions. Furthermore, interrelationships among criteria are considered in our method. It is true
that traditional HA and GHA operators take the interrelationships among aggregating arguments
into account as well, but they hold the supposition that each argument is in relation to the rest of the
arguments. Compared with them, a great advantage of our method is that the partition of the input
arguments is allowed, so that the interactions of inputs are only considered in the same part rather
than different parts.

(3) Strengths analyses and summary

Based on the above comparison analyses, the strengths of our method are summarized as follows.
First, the PFWIPHA and PFWIPGHA operators suggested in this study are based on new

interaction operational rules of PFNs. That is, they consider the interactions among dissimilar
membership functions, and can avoid irrational outcomes even when the neutral membership degree
is allocated as zero.
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Second, the proposed method borrows from the ideas of PHA and PGHA operators, so that it
can do well with the situation where arguments are divided into several portions. Thus, when the
interaction operations are combined, our method can weigh the interrelationships of relevant inputs
in the same panel, and prevent any consideration of the interrelationships of uncorrelated inputs in
different panels.

Third, as our method under the PFWIPHA or PFWIPGHA operator is modified by two parameters,
it is more flexible than the PFWA and PFWGA operators. On the other hand, when only one part exists
in the inputs, the PFWIPGA or PFWIPGHA operator is regarded as the IHA or GHA operator with
PFNs, respectively. In this sense, our method is more universal and powerful.

7. Conclusions

HA operators are effective aggregation operators to dispose interrelationships among criteria,
while PHA operators aim to do with such correlations only in the same partition. As a result,
several aggregation operators, such as PFIPHA, PFWIPHA, PFIPGHA and PFWIPGHA operators
were presented by combining the PHA operators with picture fuzzy information. Many significant
properties, such as the properties of idempotency and commutativity, were proved. Four special cases
of PFIPHA and PFIPGHA with different parameter values were discussed, respectively. Moreover, the
interaction operational rules of PFNs were first proposed to overcome the shortcoming of the existing
operations. Then, the new decision-making methods based on these operators were used to solve the
hotel selection problem by a case study. Sensitivity analyses and comparison analyses revealed that
our methods are more flexible and general when processing complicated evaluation issues within a
picture fuzzy environment.

However, one weakness of our methods is that the criteria weights are assigned previously and
directly. This may be not very reasonable in some cases. Thus, it is worth exploring the weights
determination methods in the future. On the other hand, the extended PHA operators can be well used
to solve other real problems under picture fuzzy conditions. It is something that we are heading toward.
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Appendix A. The Proof of Theorem 1

Proof. Based on the interaction operational laws defined in Definition 7, (aki)
β

=
(
(1− nki −mki)

β
− (1− nki −mki − pki)

β, (1− nki)
β
− (1− nki −mki)

β, 1− (1− nki)
β
)

and (akj)
η =(

(1− nkj −mkj)
η
− (1− nkj −mkj − pkj)

η, (1− nkj)
η
− (1− nkj −mkj)

η, 1− (1− nkj)
η
)
.

Let rki = 1 − nki, rkj = 1 − nkj, uki = 1 − nki − mki, ukj = 1 − nkj − mkj, vki = 1 − nki −

mki − pki and vkj = 1 − nkj − mkj − pkj, then (aki)
β =

(
(uki)

β
− (vki)

β, (rki)
β
− (uki)

β, 1− (rki)
β
)
, (akj)

η

=
(
(ukj)

η
− (vkj)

η, (rkj)
η
− (ukj)

η, 1− (rkj)
η
)

and

(aki)
β
⊗ (akj)

η =
(
(uki)

β(ukj)
η
− (vki)

β(vkj)
η, (rki)

β(rkj)
η
− (uki)

β(ukj)
η, 1− (rki)

β(rkj)
η
)
,

⇒

|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β
⊗ (akj)

η =1−
|Sk |∏

i=1, j=i

(
1− (uki)

β(ukj)
η + (vki)

β(vkj)
η
)
,
|Sk |∏

i=1, j=i

(
1− (uki)

β(ukj)
η + (vki)

β(vkj)
η
)
−

|Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η
− (rki)

β(rkj)
η
)
,

|Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η
− (rki)

β(rkj)
η
)
−

|Sk |∏
i=1, j=i

(
(vki)

β(vkj)
η
).
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Let tk = 2
|Sk|(|Sk|+1)

, Aβ,η
k = (vki)

β(vkj)
η, Bβ,η

k = 1 − (uki)
β(ukj)

η + (vki)
β(vkj)

η and Cβ,η
k = 1 +

(vki)
β(vkj)

η
− (rki)

β(rkj)
η, then

2
|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β
⊗ (akj)

η =1−

 |Sk |∏
i=1, j=i

Bβ,η
k

tk

,

 |Sk |∏
i=1, j=i

Bβ,η
k

tk

−

 |Sk |∏
i=1, j=i

Cβ,η
k

tk

,
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Cβ,η
k

tk
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 |Sk |∏
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tk
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k + Mβ,η
k )

1
β+η

)
,

x∏
k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)
−

x∏
k=1

(
(Mβ,η

k )
1
β+η

)) ,

⇒
1
x

 x∑
k=1

 2
|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(aki)
β
⊗ (akj)

η


1
β+η

 =1−
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η

+ (Mβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η

+ (Mβ,η
k )

1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

−

(
x∏

k=1

(
(Mβ,η

k )
1
β+η

)) 1
x


.

Thus, PFIPHAβ,η(a1, a2, . . . , ay) =1−
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η + (Mβ,η

k )
1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1−Nβ,η

k + Mβ,η
k )

1
β+η + (Mβ,η

k )
1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Mβ,η

k )
1
β+η
− (1−Oβ,η

k + Mβ,η
k )

1
β+η

)) 1
x

−

(
x∏

k=1

(
(Mβ,η

k )
1
β+η

)) 1
x


. �

Appendix B. The Proof of Theorem 2

Proof. According to the interaction operational laws defined in Definition 7,
wiaki =

(
1− (1− pki)

wi , (1− pki)
wi − (1− pki −mki)

wi , (1− pki −mki)
wi − (1− pki −mki − nki)

wi
)
, w jakj =(

1− (1− pkj)
w j , (1− pkj)

w j − (1− pkj −mkj)
w j , (1− pkj −mkj)

w j − (1− pkj −mkj − nkj)
w j

)
, (wkiaki)

β =((
1 + (1− pki −mki − nki)

wi − (1− pki)
wi

)β
−

(
(1− pki −mki − nki)

wi
)β

,
(
1− (1− pki −mki)

wi + (1− pki −mki − nki)
wi

)β
−(

1 + (1− pki −mki − nki)
wi − (1− pki)

wi
)β

, 1−
(
1− (1− pki −mki)

wi + (1− pki −mki − nki)
wi

)β)
and (w jakj)

η =((
1 + (1− pkj −mkj − nkj)

w j − (1− pkj)
w j

)η
−

(
(1− pkj −mkj − nkj)

w j
)η

,
(
1− (1− pkj −mkj)

w j + (1− pkj −mkj − nkj)
w j

)η
−(

1 + (1− pkj −mkj − nkj)
w j − (1− pkj)

w j
)η

, 1−
(
1− (1− pkj −mkj)

w j + (1− pkj −mkj − nkj)
w j

)η) .

Let eki = 1 − pki, ekj = 1 − pkj, fki = 1 − pki −mki, fkj = 1 − pkj −mkj, vki = 1 − pki −mki − nki and
vkj = 1− pkj −mkj − nkj, then
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(wkiaki)
β =

((
1 + (vki)

wi − (eki)
wi

)β
−

(
(vki)

wi
)β

,
(
1− ( fki)

wi + (vki)
wi

)β
−

(
1 + (vki)

wi − (eki)
wi

)β
, 1−

(
1− ( fki)

wi + (vki)
wi

)β),
(w jakj)

η =
((

1 + (vkj)
w j − (ekj)

w j
)η
−

(
(vkj)

w j
)η

,
(
1− ( fkj)

w j + (vkj)
w j

)η
−

(
1 + (vkj)

w j − (ekj)
w j

)η
, 1−

(
1− ( fkj)

w j + (vkj)
w j

)η),
and (wiaki)

β
⊗ (w jakj)

η =((
1 + (vki)

wi − (eki)
wi

)β(
1 + (vkj)

w j − (ekj)
w j

)η
−

(
(vki)

wi
)β(

(vkj)
w j

)η
,
(
1− ( fki)

wi + (vki)
wi

)β(
1− ( fkj)

w j + (vkj)
w j

)η
−(

1 + (vki)
wi − (eki)

wi
)β(

1 + (vkj)
w j − (ekj)

w j
)η

, 1−
(
1− ( fki)

wi + (vki)
wi

)β(
1− ( fkj)

w j + (vkj)
w j

)η) .

Let Gβ,η
k =

(
(vki)

wi
)β(

(vkj)
w j

)η
, Hβ,η

k =
(
1 + (vki)

wi − (eki)
wi

)β(
1 + (vkj)

w j − (ekj)
w j

)η
and

Iβ,η
k =

(
1− ( fki)

wi + (vki)
wi

)β(
1− ( fkj)

w j + (vkj)
w j

)η
, then (wiaki)

β
⊗ (w jakj)

η =
(
Hβ,η

k −Gβ,η
k , Iβ,η

k −

Hβ,η
k , 1− Iβ,η

k

)
,⇒

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β
⊗ (w jakj)

η =

1−
|Sk |∏

i=1, j=i

(
1−Hβ,η

k + Gβ,η
k

)
,
|Sk |∏

i=1, j=i

(
1−Hβ,η

k + Gβ,η
k

)
−

|Sk |∏
i=1, j=i

(
1 + Gβ,η

k − Iβ,η
k

)
,
|Sk |∏

i=1, j=i

(
1 + Gβ,η

k − Iβ,η
k

)
−

|Sk |∏
i=1, j=i

(
Gβ,η

k

).

Let tk =
2

|Sk|(|Sk|+1)
, then 2

|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β
⊗ (w jakj)

η =1−

 |Sk |∏
i=1, j=i

(1−Hβ,η
k + Gβ,η

k )

tk

,

 |Sk |∏
i=1, j=i

(1−Hβ,η
k + Gβ,η

k )

tk

−

 |Sk |∏
i=1, j=i

(1 + Gβ,η
k − Iβ,η

k )

tk

,

 |Sk |∏
i=1, j=i

(1 + Gβ,η
k − Iβ,η

k )

tk

−

 |Sk |∏
i=1, j=i

Gβ,η
k

tk
⇒ 2

|Sk |(|Sk |+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β
⊗ (w jakj)

η


1
β+η

=
1 +

 |Sk |∏
i=1, j=i

Gβ,η
k

tk

−

 |Sk |∏
i=1, j=i

(
1−Hβ,η

k + Gβ,η
k

)tk


1
β+η

−


 |Sk |∏

i=1, j=i
Gβ,η

k

tk


1
β+η

,

1−

 |Sk |∏
i=1, j=i

(
1 + Gβ,η

k − Iβ,η
k

)tk

+

 |Sk |∏
i=1, j=i

Gβ,η
k

tk


1
β+η

−

1 +

 |Sk |∏
i=1, j=i

Gβ,η
k

tk

−

 |Sk |∏
i=1, j=i

(
1−Hβ,η

k + Gβ,η
k

)tk


1
β+η

, 1−

1−

 |Sk |∏
i=1, j=i

(
1 + Gβ,η

k − Iβ,η
k

)tk

+

 |Sk |∏
i=1, j=i

Gβ,η
k

tk


1
β+η


.

Let Jβ,η
k =

 |Sk |∏
i=1, j=i

Gβ,η
k

tk

, Lβ,η
k =

 |Sk |∏
i=1, j=i

(
1−Hβ,η

k + Gβ,η
k

)tk

and Qβ,η
k =

 |Sk |∏
i=1, j=i

(
1 + Gβ,η

k − Iβ,η
k

)tk

,

then

 2
|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β
⊗ (w jakj)

η


1
β+η

=

(
(1 + Jβ,η

k − Lβ,η
k )

1
β+η
− (Jβ,η

k )
1
β+η , (1−Qβ,η

k + Jβ,η
k )

1
β+η
−

(1 + Jβ,η
k − Lβ,η

k )
1
β+η , 1− (1−Qβ,η

k + Jβ,η
k )

1
β+η

)
,⇒

x∑
k=1

 2
|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β
⊗ (w jakj)

η


1
β+η

=(
1−

x∏
k=1

(
1− (1 + Jβ,η

k − Lβ,η
k )

1
β+η

+ (Jβ,η
k )

1
β+η

)
,

x∏
k=1

(
1− (1 + Jβ,η

k − Lβ,η
k )

1
β+η

+ (Jβ,η
k )

1
β+η

)
−

x∏
k=1

(
1 + (Jβ,η

k )
1
β+η
− (1−Qβ,η

k + Jβ,η
k )

1
β+η

)
,

x∏
k=1

(
1 + (Jβ,η

k )
1
β+η
− (1−Qβ,η

k + Jβ,η
k )

1
β+η

)
−

x∏
k=1

(
(Jβ,η

k )
1
β+η

)) ⇒

1
x

 x∑
k=1

 2
|Sk|(|Sk|+1)

|Sk |∑
i=1

|Sk |∑
j=i

(wiaki)
β
⊗ (w jakj)

η


1
β+η

 =

1−
(

x∏
k=1

(
1− (1 + Jβ,η

k − Lβ,η
k )

1
β+η

+ (Jβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1 + Jβ,η

k − Lβ,η
k )

1
β+η

+ (Jβ,η
k )

1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Jβ,η

k )
1
β+η
− (1−Qβ,η

k + Jβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Jβ,η

k )
1
β+η
− (1−Qβ,η

k + Jβ,η
k )

1
β+η

)) 1
x

−

(
x∏

k=1

(
(Jβ,η

k )
1
β+η

)) 1
x


.

Thus, PFWIPHAβ,η(a1, a2, . . . , ay) =1−
(

x∏
k=1

(
1− (1 + Jβ,η

k − Lβ,η
k )

1
β+η

+ (Jβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1− (1 + Jβ,η

k − Lβ,η
k )

1
β+η

+ (Jβ,η
k )

1
β+η

)) 1
x

−(
x∏

k=1

(
1 + (Jβ,η

k )
1
β+η
− (1−Qβ,η

k + Jβ,η
k )

1
β+η

)) 1
x

,
(

x∏
k=1

(
1 + (Jβ,η

k )
1
β+η
− (1−Qβ,η

k + Jβ,η
k )

1
β+η

)) 1
x

−

(
x∏

k=1

(
(Jβ,η

k )
1
β+η

)) 1
x


. �
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Appendix C. The proof of Theorem 3

Proof. According to the interaction operational laws defined in Definition 7, βaki ⊕ ηakj =(
1− (1− pki)

β(1− pkj)
η, (1− pki)

β(1− pkj)
η
− (1− pki −mki)

β(1− pkj −mkj)
η, (1− pki −mki)

β(1− pkj −mkj)
η
−

(1− pki −mki − nki)
β(1− pkj −mkj − nkj)

η
)

Let eki = 1− pki, ekj = 1− pkj, fki = 1− pki −mki, fkj = 1− pkj −mkj, vki = 1− pki −mki −nki and vkj =

1− pkj −mkj − nkj, then βaki ⊕ ηakj =
(
1− (eki)

β(ekj)
η, (eki)

β(ekj)
η
− ( fki)

β( fkj)
η, ( fki)

β( fkj)
η
− (vki)

β(vkj)
η
)
,

⇒

|Sk |∏
i=1, j=i

(βaki ⊕ ηakj) = |Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η
− (eki)

β(ekj)
η
)
−

|Sk |∏
i=1, j=i

(
(vki)

β(vkj)
η
)
,
|Sk |∏

i=1, j=i

(
1− ( fki)

β( fkj)
η + (vki)

β(vkj)
η
)
−

|Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η
− (eki)

β(ekj)
η
)
, 1−

|Sk∏
i=1, j=i

(
1− ( fki)

β( fkj)
η + (vki)

β(vkj)
η
) .

Let tk =
2

|Sk|(|Sk|+1)
, then

 |Sk |∏
i=1, j=i

(βaki ⊕ ηakj)


2

|Sk |(|Sk |+1)

=
 |Sk |∏

i=1, j=i

(
1 + (vki)

β(vkj)
η
− (vki)

β(vkj)
η
)tk

−

 |Sk |∏
i=1, j=i

(
(vki)

β(vkj)
η
)tk

,

 |Sk∏
i=1, j=i

(
1− ( fki)

β( fkj)
η + (vki)

β(vkj)
η
)tk

− |Sk |∏
i=1, j=i

(
1 + (vki)

β(vkj)
η
− (eki)

β(ekj)
η
)tk

, 1−

 |Sk∏
i=1, j=i

(
1− ( fki)

β( fkj)
η + (vki)

β(vkj)
η
)tk


.

Let Rβ,η
k =

|Sk |∏
i=1, j=i

(
(vki)

β(vkj)
η
)
, Uβ,η

k =
|Sk |∏

i=1, j=i

(
1 + (vki)

β(vkj)
η
− (eki)

β(ekj)
η
)

and Vβ,η
k =

|Sk |∏
i=1, j=i

(
1− ( fki)

β( fkj)
η + (vki)

β(vkj)
η
)
, then 1

β+η

 |Sk |∏
i=1, j=i

(βaki ⊕ ηakj)


2

|Sk |(|Sk |+1)

=1−
(
1− (Uβ,η

k )
tk
+ (Rβ,η

k )
tk
) 1
β+η

,
(
1− (Uβ,η

k )
tk
+ (Rβ,η

k )
tk
) 1
β+η

−

(
1 + (Rβ,η

k )
tk
− (Vβ,η

k )
tk
) 1
β+η

,
(
1 + (Rβ,η

k )
tk
− (Vβ,η

k )
tk
) 1
β+η
−

(
(Rβ,η

k )
tk
) 1
β+η

,
⇒

x∏
k=1

 1
β+η

 |Sk |∏
i=1, j=i

(βaki ⊕ ηakj)


2

|Sk |(|Sk |+1)
 = x∏

k=1

1 +
(
(Rβ,η

k )
tk
) 1
β+η
−

(
1− (Uβ,η

k )
tk
+ (Rβ,η

k )
tk
) 1
β+η

− x∏
k=1

((Rβ,η
k )

tk
) 1
β+η

,
x∏

k=1

1−
(
1 + (Rβ,η

k )
tk
− (Vβ,η

k )
tk
) 1
β+η

+
(
(Rβ,η

k )
tk
) 1
β+η

−
x∏

k=1

1 +
(
(Rβ,η

k )
tk
) 1
β+η
−

(
1− (Uβ,η

k )
tk
+ (Rβ,η

k )
tk
) 1
β+η

, 1−
x∏

k=1

1−
(
1 + (Rβ,η

k )
tk
− (Vβ,η

k )
tk
) 1
β+η

+
(
(Rβ,η

k )
tk
) 1
β+η

 ⇒

 x∏
k=1

 1
β+η

 |Sk |∏
i=1, j=i

(βaki ⊕ ηakj)


2

|Sk |(|Sk |+1)



1
x

=


 x∏

k=1

1 +
(
(Rβ,η

k )
tk
) 1
β+η
−

(
1− (Uβ,η

k )
tk
+ (Rβ,η

k )
tk
) 1
β+η


1
x

−

 x∏
k=1

((Rβ,η
k )

tk
) 1
β+η


1
x

,

 x∏
k=1

1−
(
1 + (Rβ,η

k )
tk
− (Vβ,η

k )
tk
) 1
β+η

+
(
(Rβ,η

k )
tk
) 1
β+η


1
x

−

 x∏
k=1

1 +
(
(Rβ,η

k )
tk
) 1
β+η
−

(
1− (Uβ,η

k )
tk
+ (Rβ,η

k )
tk
) 1
β+η


1
x

, 1−

 x∏
k=1

1−
(
1 + (Rβ,η

k )
tk
− (Vβ,η

k )
tk
) 1
β+η

+
(
(Rβ,η

k )
tk
) 1
β+η


1
x


.

�

Appendix D. The Proof of Theorem 4

Proof. Based on the interaction operational laws defined in Definition 7, (aki)
wi =(

(1− nki −mki)
wi − (1− nki −mki − pki)

wi , (1− nki)
wi − (1− nki −mki)

wi , 1− (1− nki)
wi

)
and (akj)

w j =(
(1− nkj −mkj)

w j − (1− nkj −mkj − pkj)
w j , (1− nkj)

w j − (1− nkj −mkj)
w j , 1− (1− nkj)

w j
)
.

Let rki = 1 − nki, rkj = 1 − nkj, uki = 1 − nki −mki, ukj = 1 − nkj −mkj, vki = 1 − nki −mki − pki and
vkj = 1− nkj −mkj − pkj, then
β(aki)

wi =
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(
1−

(
1− (uki)

wi + (vki)
wi

)β
,
(
1− (uki)

wi + (vki)
wi

)β
−

(
1 + (vki)

wi − (rki)
wi

)β
,
(
1 + (vki)

wi − (rki)
wi

)β
−

(
(vki)

wi
)β)

and η(akj)
w j

=
(
1−

(
1− (ukj)

w j + (vkj)
w j

)η
,
(
1− (ukj)

w j + (vkj)
w j

)η
−

(
1 + (vkj)

w j − (rkj)
w j

)η
,
(
1 + (vkj)

w j − (rkj)
w j

)η
−

(
(vkj)

w j
)η)

, ⇒

β(aki)
wi ⊕ η(akj)

w j =(
1−

(
1− (uki)

wi + (vki)
wi

)β(
1− (ukj)

w j + (vkj)
w j

)η
,
(
1− (uki)

wi + (vki)
wi

)β(
1− (ukj)

w j + (vkj)
w j

)η
−(

1 + (vki)
wi − (rki)

wi
)β(

1 + (vkj)
w j − (rkj)

w j
)η

,
(
1 + (vki)

wi − (rki)
wi

)β(
1 + (vkj)

w j − (rkj)
w j

)η
−

(
(vki)

wi
)β(

(vkj)
w j

)η) .

Let Gβ,η
k =

(
(vki)

wi
)β(

(vkj)
w j

)η
, Tβ,η

k =
(
1− (uki)

wi + (vki)
wi

)β(
1− (ukj)

w j + (vkj)
w j

)η
and Zβ,η

k =(
1 + (vki)

wi − (rki)
wi

)β(
1 + (vkj)

w j − (rkj)
w j

)η
, then

|Sk |∏
i=1, j=i

β(aki)
wi ⊕ η(akj)

w j =

 |Sk |∏
i=1, j=i

(
1 + Gβ,η

k − Tβ,η
k

)
−

|Sk |∏
i=1, j=i

Gβ,η
k ,

|Sk |∏
i=1, j=i

(
1−Zβ,η

k + Gβ,η
k

)
−

|Sk |∏
i=1, j=i

(
1 + Gβ,η

k − Tβ,η
k

)
, 1−

|Sk |∏
i=1, j=i

(
1−Zβ,η

k + Gβ,η
k

).

Let tk = 2
|Sk|(|Sk|+1)

, then

 |Sk |∏
i=1, j=i

β(aki)
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Appendix E. Questionnaire of Evaluating Hotels

Please make a choice in each line.
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Table A1. Questionnaire of evaluation hotels.

Hotels Criteria Evaluation

π1

φ1 (Price) � High �Medium � Low
φ2 (Comfortability) � Good � Fair � Poor
φ3 (Service) � Good � Fair � Poor
φ4 (Location) � Good � Fair � Poor
φ5 (Convenience) � Good � Fair � Poor

π2

φ1 (Price) � High �Medium � Low
φ2 (Comfortability) � Good � Fair � Poor
φ3 (Service) � Good � Fair � Poor
φ4 (Location) � Good � Fair � Poor
φ5 (Convenience) � Good � Fair � Poor

π3

φ1 (Price) � High �Medium � Low
φ2 (Comfortability) � Good � Fair � Poor
φ3 (Service) � Good � Fair � Poor
φ4 (Location) � Good � Fair � Poor
φ5 (Convenience) � Good � Fair � Poor

π4

φ1 (Price) � High �Medium � Low
φ2 (Comfortability) � Good � Fair � Poor
φ3 (Service) � Good � Fair � Poor
φ4 (Location) � Good � Fair � Poor
φ5 (Convenience) � Good � Fair � Poor
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