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Abstract: As the extension of the fuzzy sets (FSs) theory, the intuitionistic fuzzy sets (IFSs) play an
important role in handling the uncertainty under the uncertain environments. The Pythagoreanfuzzy
sets (PFSs) proposed by Yager in 2013 can deal with more uncertain situations than intuitionistic
fuzzy sets because of its larger range of describing the membership grades. How to measure the
distance of Pythagorean fuzzy sets is still an open issue. Jensen–Shannon divergence is a useful
distance measure in the probability distribution space. In order to efficiently deal with uncertainty
in practical applications, this paper proposes a new divergence measure of Pythagorean fuzzy sets,
which is based on the belief function in Dempster–Shafer evidence theory, and is called PFSDM
distance. It describes the Pythagorean fuzzy sets in the form of basic probability assignments (BPAs)
and calculates the divergence of BPAs to get the divergence of PFSs, which is the step in establishing
a link between the PFSs and BPAs. Since the proposed method combines the characters of belief
function and divergence, it has a more powerful resolution than other existing methods. Additionally,
an improved algorithm using PFSDM distance is proposed in medical diagnosis, which can avoid
producing counter-intuitive results especially when a data conflict exists. The proposed method and
the magnified algorithm are both demonstrated to be rational and practical in applications.

Keywords: Pythagorean fuzzy set; Dempster–Shafer evidence theory; basic probability assignment;
medical diagnosis

1. Introduction

With the development of fuzzy mathematics, medical diagnosis has addressed more and more
attention from the research society of applied computer mathematics. In the diagnostic process
of medical profession, improving the processing capacity of various uncertain and inconsistent
information and achieving more accurate decision-making have become the major challenges in
the development of medical diagnosis [1–3]. Up to now, the process of medical diagnosis is
driven by various theoretical studies, such as fuzzy sets theory [4–6], intuitionistic fuzzy sets [7–10],
interval-valued intuitionistic fuzzy sets [11–13], and quantum decision [14–16].

It is well known that medical diagnosis is an effective and reasonable way to handle the
problem of uncertainty. Decision theory [17–19] has been widely applied in this field, containing
a variety of theories and methods. For instance, evidence theory and its extension [20–22],
evidential reasoning [23,24], D numbers theory [25], R numbers theory [26,27], Z numbers
theory [28,29], and other hybrid methods have been used to research it from lots of aspects.
The rationality and practicality of these methods have also been proven by their employment in
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applications, such as strategy selection [30–34], decision-making [35–39], prediction [40–42], and fault
diagnosis [43,44]. In addition, Zadeh presented a useful theory in 1965, the fuzzy set (FS) theory [45],
which drives a big step forward in decision theory. Atanassov’s intuitionistic fuzzy sets (IFSs) [46]
proposed and Yager’s Pythagorean fuzzy sets (PFSs) [47] are two extensions of a fuzzy set which make
use of the membership degree, non-membership degree, and the hesitancy to preciously express the
uncertainty. Among them, Pythagorean fuzzy set has a larger range of expressing the uncertainy than
intuitionistic fuzzy set [48,49]. Hence, the Pythagorean fuzzy set was chosen to apply for medical
diagnosis in this paper.

Distance measure plays a vital role in pattern recognition, information fusion, decision-making,
and other fields. The fuzzy set theory and intuitionistic fuzzy sets have been proposed for many
years and their distance measurements [50–52] have matured compared with Pythagorean fuzzy sets.
There are some useful distances for IFS after suffering the practice and the application. For instance,
the Euclidean distance [53], the Hamming distance [53], and the Hausdorff metric [54] are the most
widely applied distances of IFS. The distance measurement of PFSs is still an open issue, which attracts
many researchers to explore the distance measurement of PFSs and its related applications. A general
distance measurement of PFSs was proposed by Chen [55], is an extension of Euclidean distance and
Hamming distance, and generates a reasonable result in multiple-criteria decision analysis. Wei and
Wei [56] proposed a PFS measurement method based on cosine function and applied it to medical
diagnosis to achieve an ideal result. Later on, Xiao [57] presented a distance measurement of PFSs
based on divergence, called PFSJS distance. Among these methods of measure distance of PFSs,
membership, non-membership and hesitancy are calculated based on the same weights. It is well
known that the hesitancy expresses the uncertainty of membership and non-membership, so finding
a proper method to distribute hesitancy to membership and non-membership can more reasonably
handle the distance of PFSs. The basic probability assignment (BPA) in evidence theory presented
by Dempster–Shafer [58,59] unifies uncertainty in a new set, and can handle various uncertainty
reasonably. Song [60] presented a divergence measure of belief function based on Kullback–Leibler
(KL) divergence [61] and Deng entropy [62], which has better results when dealing with the distance
between BPAs with greater uncertainty. This paper proposes a new method to describe the PFSs in the
form of BPAs, and uses an improverd divergence measurement of BPAs based on Jensen–Shannon
divergence to measure the distance of PFSs. This method applied to medical diagnosis can not only
get more intuitive results when the high conflicts appear in several symptoms between patients and
diseases but also make higher resolution in different results.

According to the above, the structure of this article is as follows:

• The related concepts and properties of Pythagorean fuzzy set (PFS), basic probability assignment
(BPA), the Jensen–Shannon divergence, and some widely applied methods of measuring distance
are introduced.

• A new divergence measure of PFSs is proposed, which is called PFSDM distance. Its measurement
is divided into three stages. The first is establishing a link between PFSs and BPAs. In addition,
then, an improved method is proposed to measure the divergence of PFSs represented as BPAs.
The third is proving the properties of PFSDM distance and expressing the feasibility and merits of
the proposed method using numerical examples.

• The medical diagnosis algorithm based on Xiao’s method [57] is magnified and compares the new
algorithm with other existing methods to prove its practicability.

• The merits and uses of the PFSDM distance are summarized and the future direction of algorithm
improvement is expected.

2. Preliminaries

In this section, the first subsection introduced the definition of Pythagorean fuzzy sets [47,48].
The main idea of basic probability assignment (BPA), Dempster–Shafer evidence theory [58,59] is in
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the second subsection. Some concepts of divergence are in the third subsection. In the last subsection,
some existing methods for measuring the distance of PFSs are displayed.

2.1. Pythagorean Fuzzy Sets

Definition 1. Let X be a limited universe of discourse. An intuitionistic fuzzy set (IFS) [46] M in X is
defined by

M = {〈x, µM(x), vM(x)〉 | x ∈ X}, (1)

where µM(x) : X → [0, 1] represents the degree of support for membership of the x ∈ X of IFS, and vM(x) :
X → [0, 1] represents the degree of support for non-membership of the x ∈ X of IFS, with the condition that
0 ≤ µM(x) + vM(x) ≤ 1. and the hesitancy function πM(x) of IFS reflecting the uncertainty of membership
and non-membership is defined by

πM(x) = 1− µM(x)− vM(x). (2)

Definition 2. Let x be a limited universe of discourse. A Pythagorean fuzzy set (PFS) [47,48] M in X is
defined by

M = {〈x, MY(x), MN(x)〉 |x ∈ X} , (3)

where MY(x) : X → [0, 1] represents the degree of support for membership of the x ∈ X of PFS, and MN(x) :
X → [0, 1] represents the degree of support for non-membership of the x ∈ X of PFS, with the condition that
0 ≤ M2

Y(x) + M2
N(x) ≤ 1. and the hesitancy function MH(x) of PFS reflecting the uncertainty of membership

and non-membership is defined by

MH(x) =
√

1−M2
Y(x) + M2

N(x). (4)

The membership and the non-membership of PFS also can be expressed by another way. A pair of values
r(x) and d(x) for each x ∈ X are used to represent the membership and non-membership as follows:

MY(x) = rM(x)Cos(θM(x)) MN(x) = rM(x)Sin(θM(x)), (5)

where θ(x) = (1− d(x))π
2 = Arctan(MN(x)/MY(x)). Here, we see that θ(x) is expressed as radians and

θ(x) ∈ [0, π
2 ]. In addition, MH(x) =

√
1− r2(x).

Property 1. ([49]) Let B and C be two PFSs in X, then

1. B ⊆ C if ∀x ∈ X, BY(x) ≤ CY(x) and BN(x) ≥ CN(x),
2. B = C if ∀x ∈ X, BY(x) = CY(x) and BN(x) = CN(x),
3. B ∩ C = {〈x, min [BY(x), CY(x)] , max [BN(x), CN(x)]) |x ∈ X},
4. B ∪ C = {(x, max [BY(x), CY(x)] , min [BN(x), CN(x)]) |x ∈ X],

5. B · C =

{〈
x, BY(x)CY(x),

(
B2

N(x) + C2
N(x)− B2

N(x)C2
N(x)

) 1
2

〉
|x ∈ X

}
,

6. Bn =

{(
x, Bn

Y(x),
(
1−

(
1− B2

N(x)n)) 1
2

)
|x ∈ X

}
.

2.2. Dempster–Shafer Evidence Theory

The Dempster–Shafer evidence theory [58,59] is proposed to deal with conditions that are
weaker than Bayes probability [63,64], which can directly express uncertainty and unknown
information [65,66], so that it has been widely used in various applications, FMEA [67–69], evidential
reasoning [70–72], evaluation [73], target recognition [74], industrial alarm system [75,76], and
others [77,78].



Mathematics 2020, 8, 142 4 of 20

Definition 3. Θ is the set of N elements which represent mutually exclusive and exhaustive hypotheses. Θ is
the frame of discernment [58,59]:

Θ = {H1, H2, · · · , Hi, · · · , HN} . (6)

The power set of Θ is denoted by 2Θ, and

2Θ = {∅, {H1} , · · · , {Hn} , {H1, H2} , · · · , {H1, · · · , HN}} , (7)

where ∅ is an empty set.

Definition 4. A mass function [58,59] m, also called as BPA, is a mapping of 2Θ, defined as follows:

m : 2Θ → [0, 1], (8)

which satisfies the following conditions:

m(∅) = 0 ∑
A∈2	

m(A) = 1 0 ≤ m(A) ≤ 1 A ∈ 2Θ. (9)

The mass m(A) represents how strongly the evidence supports A [79–81].

2.3. Divergence Measure

Definition 5. Given two probabilities distribution A = {A (x1) , A (x2) , . . . , A (xn)} and B =

{B (x1) , B (x2) , . . ., B (xn)}.
Kullback–Leibler divergence [61] between A and B is defined as:

DivKL(A, B) =
n

∑
i=1

A (xi) log2

(
A (xi)

B (xi)

)
(10)

with ∑n
i=1 A(xi) = ∑n

i=1 B(xi) = 1.

The Kullback–Leibler also has some disadvantages of its properties, and one of them is that it
doesn’t satisfy the commutative property:

DivKL(A, B) 6= DivKL(B, A). (11)

In order to realize the commutation in the distance measure, the Jensen–Shannon divergence is an
adaptive choice.

Definition 6. Given two probabilities distribution A = {A (x1) , A (x2) , . . . , A (xn)} and B =

{B (x1) , B (x2) , . . ., B (xn)}.
Jensen–Shannon divergence [82] between A and B is defined as:

JSAB =
DivKL(A, A+B

2 ) + DivKL(B, A+B
2 )

2
= H(

A + B
2

)− H(A)

2
− H(B)

2
, (12)

where H(A) = −∑n
i=1 A(xi)logA(xi) and ∑n

i=1 A(xi) = ∑n
i=1 B(xi) = 1.

Song’s divergence [60] is used to measure the belief function, which is capable of processing
uncertainty efficiently in a highly fuzzy environment by applying the thinking of Deng entropy [62].
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Definition 7. ([60]) Given two basic probability assignments (BPAs) m1 and m2, the divergence between m1

and m2 is defined as follows:

DSD (m1, m2) = ∑
i

1
2|Fi |−1

m1 (Fi) log
(

m1 (Fi)

m2 (Fi)

)
, (13)

where the Fi holds on ∑2Θ−1
i=1 m(Fi) = 1, which is the power subset of frame of discernment Θ and |Fi| is the

cardinal number of Fi.
It is obvious that DSD(m1, m2) 6= DSD(m2, m1). In order to realize the commutative property, a divergence

measurement based on Song’s divergence is defined as follows:

DSDM(m1, m2) = D̃SDM(m2, m1) =
DSD (m1, m2) + DSD (m2, m1)

2
. (14)

Because of thinking of the number of subsets of the mass function and averagely distributing the
BPAs to these subsets, Song’s divergence is more reasonable than others when the basic probability
assignments of non-singleton powers sets Fi are larger.

2.4. Distance Measure of Pythagorean Fuzzy Sets

The Euclidean distance [53] and the Hamming distance [53] are the most widely applied distances,
and Chen proposed a generalized distance measure of PFS [55], which is the extension of Hamming
distance and Euclidean distance.

Definition 8. Let X be a limited universe of discourse, and M and N are two PFSs. Chen’s distance [55]
measure between PFSs M and N denoted as DC(M, N) is defined as:

DC(M, N) = [
1
2
(| M2

Y(x)− N2
Y(x) |β + | M2

N(x)− N2
N(x) |β + | M2

H(x)− N2
H(x) |β)]

1
β , (15)

where β holds on β ≥ 1 is called the distance parameter. As the extension of the Hamming distance and
Euclidean distance, if β = 1 and β = 2, the Chen’s distance is equal to Hamming distance and Euclidean
distance, respectively:

• if β = 1,

DC(M, N) = DHm(M, N) = [ 1
2 (| M2

Y(x)− N2
Y(x) | + | M2

N(x)− N2
N(x) | + | M2

H(x)− N2
H(x) |)],

• if β = 2,

DC(M, N) = DE(M, N) = [ 1
2 ((M2

Y(x)− N2
Y(x))2 + (M2

N(x)− N2
N(x))2 + (M2

H(x)− N2
H(x))2)]

1
2 .

In the application of distance measure, the universe of discourse always has many properties.
Xiao extended them as the normalized distance and proposed a divergence measure of PFSs called
PFSJS based on the Jensen–Shannon divergence, which is the first work to calculate the distance of
PFSs using divergence.

Let X = {x1, x2, · · · , xn} be a limited universe of discourse, two PFSs
M = {〈xi, MY(xi), MN(xi)〉 | xi ∈ X} and N = {〈xi, NY(xi), NN(xi)〉 | xi ∈ X} are in X.

Definition 9. The normalized Hamming distance [57] denoted as D̃Hm(M, N) is defined as:

D̃Hm(M, N) =
1

2n

n

∑
i=1

(| M2
Y(x)− N2

Y(x) | + | M2
N(x)− N2

N(x) | + | M2
H(x)− N2

H(x) |).
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The normalized Euclidean distance [57] denoted as D̃E(M, N) is defined as:

D̃E(M, N) =
1
n

n

∑
i=1

[
1
2
((M2

Y(x)− N2
Y(x))2 + (M2

N(x)− N2
N(x))2 + (M2

H(x)− N2
H(x))2)]

1
2 .

The normalized Chen’s distance [57] denoted as D̃C(M, N) is defined as:

D̃C(M, N) =
1
n

n

∑
i=1

[
1
2
(| M2

Y(x)− N2
Y(x) |β + | M2

N(x)− N2
N(x) |β + | M2

H(x)− N2
H(x) |β)]

1
β ,

where β ≥ 1

Definition 10. The normalized divergence measurements of Pythagorean fuzzy sets denoted as PFSJS [57] of
M and N are defined as follows:

D̃x(M, N) = 1
n ·∑

n
i=1 Dx(M, N)

= 1
n ∑n

i=1

√
1
2

[
∑κ M2

κ (xi) log
(

2M2
κ(xi)

M2
κ(xi)+N2

κ (xi)

)
+ ∑κ N2

κ (xi) log
(

2N2
κ (xi)

M2
κ(xi)+N2

κ (xi)

)]
,

(16)

where κ ∈ κ ∈ {Y, N, H}.

According to the existing methods for measuring the PFSs’ distance, what they have in common
is that the weights of membership AY(x) non-membership AN(x) and hesitancy AH(x) are considered
to be the same when calculating distances. As is well known, the hesitancy represents the uncertainty
of membership degree and non-membership degree, and the belief function in evidence theory can
handle the uncertainty in a more proper way. Hence, if the ability of evidence theory to handle
uncertainty is combined with the high resolution of divergence in distance measurement, the PFSs’
distance measurement will be further optimized. In the next section, a new divergence measure of
PFSs is proposed based on belief function, which describes the PFSs in the form of BPAs and measures
the distance of PFSs by calculating the divergence of BPAs.

3. A New Divergence Measure of PFSs

In this section, a new divergence measure of PFSs, called PFSDM distance, is proposed. The first
subsection shows how PFS reasonably expressed in the form of BPA. A new improved method of
BPAs’ divergence measure is introduced in the second subsection, and then the PFSDM distance and
its properties is proposed. In the last subsection, some examples are used to prove its properties and
demonstrate its feasibility by comparing with existing other methods.

3.1. PFS Is Expressed in the Form of BPA

In the evidence theory [58,59], the basic probability assignment (BPA) m(A) represents the degree
of evidence supporting A, and, according to Equations (6) and (7), the elements of power set of frame
of discernment (Θ) should satisfy ∑A∈2θ m(A) = 1. Thus, the method of representing PFS in the form
of BPA is shown as follows:

Definition 11. Let X be a limited universe of discourse, according to the second form of PFS shown in
Equation (5), a Pythagorean fuzzy set M in X is M = {〈x, rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉 | x ∈ X},
the frame of discernment ΘM of M and their basic probability assignments mp are defined as:

ΘM = {YM, NM}, (17)

• mp(YM) = rM(x)Cos2θM(x),
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• mp(NM) = rM(x)Sin2θM(x),
• mp(YM NM) = 1− rM(x),
• mp(φ) = 0,

where mp(YM) represents the degree of evidence supporting membership of M. The mp(NM) represents
the degree of evidence supporting non-membership of M. The mp(YM NM) represents the degree of evidence
supporting membership and non-membership. Because the basic focal elements YM and NM are totally exclusive,
and the sum of them is equal to 1, they conform to the Dempster–Shafer evidence theory.

According to the meaning of mp(YM NM) and the method of thinking of Deng entropy [62], it
contains the degree of evidence supporting the elements of {YM} , {YN} and {YMYN}, and Song [60]
redistributes the degree of supporting {YM NM} averagely among the three elements when calculating
the distance of BPAs in Equation (13).

3.2. A New Divergence Measure of PFSs

Jensen–Shannon divergence is widely used in distance measure of probability distributions, and in
this subsection, we propose an improved divergence measure of BPA based on Song’s divergence and
Jensen–Shannon divergence. In addition, a new divergence measure of PFSs and its properties are
proposed, which is capable of distinguishing PFSs better.

Definition 12. Let Θ be a frame of discernment Θ = {A1, A2, · · · , An}, and the power set of Θ is
2Θ = {∅, {A1}, · · · , {An}, {A1, A2}, · · · , {A1, An}, · · · , {A1, · · · , An}} = {∅, F1, F2, · · · , F2n−1}.
The Jensen–Shannon divergence measure DJS(m1, m2) of two BPAs m1, m2 is defined as:

DJS(m1, m2) =
1
2
[DSD(m1,

m1 + m2
2

) + DSD(m2,
m2 + m1

2
)]

=
1
2
[ ∑
Fi∈2θ

1
2|Fi|−1

m1(Fi)log(
2m1(Fi)

m1(Fi) + m2(Fi)
) + ∑

Fi∈2θ

1
2|Fi|−1

m2(Fi)log(
2m2(Fi)

m1(Fi) + m2(Fi)
)],

(18)

where | Fi | is the cardinal number of Fi. In addition, just in case there’s a zero in the denominator, 10−8 is used
to replace zero in the calculation.

The improved method satisfies the symmetry and considers the number of elements in the power
set. In addition, then, substituting the PFSs in the form of BPAs into Equation (18) produces the new
divergence measure of Pythagorean fuzzy sets.

Definition 13. Let X be a limited universe of discourse, according to the second form
of PFS shown in Equation (5), two Pythagorean fuzzy sets M and N in X are M =

{〈x, rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉 | x ∈ X}, N = {〈x, rN(x)Cos(θN(x)), rN(x)Sin(θN(x))〉 |
x ∈ X}. The divergence measure denoted as DPFS(M, N) is defined as follows:
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DPFS(M, N) =
1
2
[rM(x)Cos2θM(x)log(

2rM(x)Cos2θM(x)
rM(x)Cos2θM(x) + rN(x)Cos2θN(x)

)+

rN(x)Cos2θN(x)log(
2rN(x)Cos2θN(x)

rM(x)Cos2θM(x) + rN(x)Cos2θN(x)
)+

rM(x)Sin2θM(x)log(
2rM(x)Sin2θM(x)

rM(x)Sin2θM(x) + rN(x)Sin2θN(x)
)+

rN(x)Sin2θN(x)log(
2rN(x)Sin2θN(x)

rM(x)Sin2θM(x) + rN(x)Sin2θN(x)
)+

1
3
(1− rM(x))log(

2(1− rM(x))
(1− rM(x)) + (1− rN(x))

)+

1
3
(1− rN(x))log(

2(1− rN(x))
(1− rM(x)) + (1− rN(x))

)].

(19)

In order to obtain higher resolution when making distance measurement, the divergence measure of PFSs,
PFSDM distance, denoted as Dmp(M, N), is defined by

Dmp(M, N) =
√

DPFS(M, N). (20)

According to the properties of Jensen–Shannon divergence [82], the larger PFSDM distance,
the more different PFSs, and the smaller PFSDM, the more similar PFSs. The properties of the PFSDM
distance are displayed as follows:

Definition 14. Let M and N be two PFSs in a limited universe of discourse X = {x1, x2, · · · , xn}, where
M = {〈xi, rM(xi)Cos(θM(xi)), rM(xi)Sin(θM(xi))〉} , N = {〈xi, rN(xi)Cos(θN(xi)), rN(xi)Sin(θN(xi))〉}.

The normalized PFSDM distance, D̃mp(M, N), is defined as follows:

D̃mp(M, N) =
1
n

n

∑
i=1
{1

2
[rM(xi)Cos2θM(xi)log(

2rM(xi)Cos2θM(xi)

rM(xi)Cos2θM(xi) + rN(xi)Cos2θN(xi)
)+

rN(xi)Cos2θN(xi)log(
2rN(xi)Cos2θN(xi)

rM(xi)Cos2θM(xi) + rN(xi)Cos2θN(xi)
)+

rM(xi)Sin2θM(xi)log(
2rM(xi)Sin2θM(xi)

rM(xi)Sin2θM(xi) + rN(xi)Sin2θN(xi)
)+

rN(xi)Sin2θN(xi)log(
2rN(xi)Sin2θN(xi)

rM(xi)Sin2θM(xi) + rN(xi)Sin2θN(xi)
)+

1
3
(1− rM(xi))log(

2(1− rM(xi))

(1− rM(xi)) + (1− rN(xi))
)+

1
3
(1− rN(xi))log(

2(1− rN(xi))

(1− rM(xi)) + (1− rN(xi))
)]}

1
2 .

(21)

Property 2. Let M, N, and O be three arbitrary PFSs in the limited universe of discourse X, then

• (P1)Dmp(M, N) = 0 if M = N, for M, N ∈ X.
• (P2)Dmp(M, N) + Dmp(N, O) ≥ Dmp(M, O), for M, N, O ∈ X.
• (P3)Dmp(M, N) ∈ [0, 1], for M, N ∈ X.
• (P4)Dmp(M, N) = Dmp(N, M), for M, N ∈ X.

Proof. (P1)
Suppose two Pythagorean fuzzy sets M and N in the limited universe of discourse X. In addition,

the PFSs of them are given as follows:
M = {〈x, rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉 | x ∈ X},
N = {〈x, rN(x)Cos(θN(x)), rN(x)Sin(θN(x))〉 | x ∈ X}.
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• If M = N, we can get rM(x) = rN(x) and θN(x) = θM(x). According to Equations (19) and (20),
it can get a result that Dmp(M, N) = 0.

• If Dmp(M, N) = 0, we can get rM(x) = rN(x) and θN(x) = θM(x) in terms of
Equations (19) and (20). Hence, it can be found that M = N.

Thus, the property (P1) in the Property 2 is proven.

Proof. (P2)
Suppose two Pythagorean fuzzy sets M and N in the limited universe of discourse X. In addition,

the PFSs of them are given as follows:
M = {〈x, rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉 | x ∈ X},
N = {〈x, rN(x)Cos(θN(x)), rN(x)Sin(θN(x))〉 | x ∈ X},
O = {〈x, rO(x)Cos(θO(x)), rO(x)Sin(θO(x))〉 | x ∈ X}.

Given four assumptions:

1. (A1) rM(x)Cos2(θM(x)) ≤ rN(x)Cos2(θN(x)) ≤ rO(x)Cos2(θO(x)).
2. (A2) rO(x)Cos2(θO(x)) ≤ rN(x)Cos2(θN(x)) ≤ rM(x)Cos2(θM(x)).
3. (A3) rN(x)Cos2(θN(x)) ≤ min{rM(x)Cos2(θM(x)), rO(x)Cos2(θO(x))}.
4. (A4) rN(x)Cos2(θN(x)) ≥ max{rM(x)Cos2(θM(x)), rO(x)Cos2(θO(x))}.

Let A = rM(x)Cos2(θM(x)), B = rN(x)Cos2(θN(x)) and C = rO(x)Cos2(θO(x)). According to
the above, it is obvious that | A− C |≤| A− B | + | B− C | is satisfied under the (A1) and (A2).
We can easily find A− B ≥ 0 and C− B ≥ 0 in terms of A3 and A4. Therefore, we have:

| A− B | + | B− C | − | A− C |

= A− B + C− B− A + C, i f A ≥ C,

= A− B + C− B + A− C, i f A ≤ C,

= 2(B−max{A, C}) ≥ 0.

Hence, the inequality| A− C |≤| A− B | + | B− C | is valid under A3 and A4. In the same way,
the r(x)Sin(θ(x)) and 1− r also satisfy the | A− C |≤| A− B | + | B− C |. Therefore, the inequality
in the Property 2 (P2), Dmp(M, N) + Dmp(N, O) ≥ Dmp(M, O), has been proven.

If we let M = 〈x, 0.3, 0.40〉, N = 〈x, 038, 0.48〉, O = 〈x, 0.58, 0.68〉, the Dmp(M, N), Dmp(N, O),
Dmp(M, O) can be calculated in terms of Equations (11), (19), and (20):

Dmp(M, N) = 0.0779,

Dmp(N, O) = 0.2007,

Dmp(M, O) = 0.2754.

Obviously, they satisfy Dmp(M, N) + Dmp(N, O) ≥ Dmp(M, O).

Proof. (P3 & P4)
Given two PFSs M = 〈x, α, β〉 and N = 〈x, β, α〉 in the limited universe of discourse

X. The values α and β represent membership degree and non-membership degree in two PFSs.
According to Equation (5), M and N can be formed as

M = 〈rM(x)Cos(θM(x)), rM(x)Sin(θM(x))〉,

N = 〈rN(x)Cos(θN(x)), rN(x)Sin(θN(x))〉,

where rM(x) = rN(x) =
√

α + β; θM(x) = Arctan(β/α); θN(x) = Arctan(α/β). The α and β satisfy
the X → [0, 1] and 0 ≤ α2 + β2 ≤ 1 in terms of Definition 2. Hence, the PFSDM distance between M
and N are shown in Figure 1a when α and β meet the requirements.
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(a) The PFSDM distance in Proof (b) The symmetry plane of PFSDM distance
in Proof

Figure 1. The results in the proof.

• From Figure 1a, we can find that the PFSDM distances Dmp(M, N) satisfy that its values are
no more than one and no less than zero no matter how the parameters α and β change. Thus,
Property 2 (P3) has been proven.

• As shown in Figure 1b, let us make a plane when α = β. According to the distance graph about
the plane symmetry, we can demonstrate that the PFSDM meets Dmp(M, N) = Dmp(N, M) and
the Property 2 (P4) has been proven.

Up to now, we have demonstrated the four properties of PFSDM distance. In order to fully explore
the characteristics and functions of PFSDM, the proposed method is compared with other existing
methods such as Hamming distance, Euclidean distance, and PFSJS distance in the next subsection.

3.3. Numerical Examples

In this subsection, three numerical examples are used to prove the PFSDM distance’s feasibility
and merits. The powerful resolution of proposed method is proved in Example 1.

Example 1. Suppose a limited universe of discourse X = {x1, x2}, and the PFSs Mi and Ni in the discourse
under the Casei (i ∈ {1, 2 , 3 , · · · , 9}), which are given in Table 1.

Table 1. Two PFSs Mi and Ni under different cases.

PFSs Case1 Case2 Case3

Mi {〈x1, 0.55, 0.45〉, 〈x2, 0.63, 0.55〉} {〈x1, 0.55, 0.45〉, 〈x2, 0.63, 0.55〉} {〈x1, 0.55, 0.45〉, 〈x2, 0.63, 0.55〉}
Ni {〈x1, 0.39, 0.50〉, 〈x2, 0.50, 0.59〉} {〈x1, 0.40, 0.51〉, 〈x2, 0.51, 0.60〉} {〈x1, 0.67, 0.39〉, 〈x2, 0.74, 0.50〉}

PFSs Case4 Case5 Case6

Mi {〈x1, 0.71, 0.63〉, 〈x2, 0.63, 0.55〉} {〈x1, 0.71, 0.63〉, 〈x2, 0.63, 0.55〉} {〈x1, 0.71, 0.63〉, 〈x2, 0.63, 0.55〉}
Ni {〈x1, 0.63, 0.63〉, 〈x2, 0.71, 0.63〉} {〈x1, 0.77, 0.55〉, 〈x2, 0.55, 0.45〉} {〈x1, 0.77, 0.55〉, 〈x2, 0.47, 0.59〉}

PFSs Case7 Case8 Case9

Mi {〈x1, 0.30, 0.20〉, 〈x2, 0.40, 0.30〉} {〈x1, 0.30, 0.20〉, 〈x2, 0.40, 0.30〉} {〈x1, 0.50, 0.40〉, 〈x2, 0.40, 0.30〉}
Ni {〈x1, 0.15, 0.25〉, 〈x2, 0.25, 0.35〉} {〈x1, 0.12, 0.26〉, 〈x2, 0.22, 0.36〉} {〈x1, 0.65, 0.35〉, 〈x2, 0.55, 0.25〉}

The distance measurements are calculated by Hamming distance, Euclidean distance [55], PFSJS distance
proposed by Xiao [57], Fei’s distance [83], the proposed method, and PFSDM distance are shown in Table 2.
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Table 2. The comparison of different methods’ results.

Methods Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9

D̃Hm [55] 0.1487 0.1397 0.1487 0.1444 0.1444 0.1368 0.0825 0.1275 0.1575
D̃E [55] 0.1983 0.1836 0.1951 0.1951 0.1759 0.1724 0.1025 0.1703 0.2226

D̃Fei [83] 0.1074 0.1031 0.0902 0.0683 0.0806 0.0949 0.1118 0.1118 0.1118
D̃Xiao [57] 0.1449 0.1300 0.1300 0.1771 0.1279 0.1279 0.1352 0.1434 0.1509

D̃mp 0.1427 0.1389 0.1159 0.0879 0.0987 0.1193 0.1998 0.1599 0.1482

We can easily find that the PFSDM distance, Dmp, has a satisfying performance in terms of Table 2, which
produces intuitive distances when the PFSJS distance can not distinguish the similar PFSs such as Case2, Case3
and Case5, Case6. In addition, because of its divergence feature, the PFSDM distance can make up for the
shortcoming of subtraction to find the distance, which is displayed in Case1, Case3 of Hamming distance and
Case3, Case4 of Euclidean distance. The other character of the proposed method for calculating the distance of
PFSs is the use of basic probability assignment to express the hesitancy. As the degree of hesitancy decreases,
PFSDM distance thinks it has less and less effect on the distance, which is demonstrated in Case7, Case8, and
Case9. In general, the PFSDM distance can handle the above cases in a proper way when some existing methods
produce counter-intuitive results.

In order to make the comparison between PFSDM distance and other methods more intuitive,
as membership and non-membership change, the distances’ figures are displayed in Example 2.

Example 2. Assume two PFSs M = 〈x, 0.3, 0.4〉 and N = 〈x, α, β〉.
The Hamming distance [55] DHm(M, N), Euclidean distance [55] DE(M, N), PFSJS distance [57]

DXiao(M, N), and PFSDM distance Dmp(M, N) are displayed in Figure 2a–d.

(a) The
Hamming
distance in
Example 2

(b) The
Euclidean
distance in
Example 2

(c) The PFSJS
distance in
Example 2

(d) The PFSDM
distance in
Example 2

Figure 2. The results in Example 2.

We can know from the observation that Figure 2a–c have similar trends, but the PFSDM distance is
different in Figure 2d. It resembles an inverted cone centered on the point 〈α = 0.3, β = 0.4〉 because it has a
more uniform trend as α and β change. Suppose four PFSs A1, A2, B1, B2 as follows:

• A1 = 〈x, A1Y(x), A1N(x)〉 = 〈x, 0.1200, 0.1600〉,
• A2 = 〈x, A2Y(x), A2N(x)〉 = 〈x, 0.1380, 0.1840〉,
• B1 = 〈x, B1Y(x), B1N(x)〉 = 〈x, 0.5220, 0.6960〉,
• B2 = 〈x, B2Y(x), B2N(x)〉 = 〈x, 0.5400, 0.7200〉.

After calculation, we know that

A2Y(x)− A1Y(x) = B2Y(x)− B1Y(x) = 0.0180 A2N(x)− A1N(x) = B2N(x)− B1N(x) = 0.0240.

To verify that PFSDM distance changes more evenly, the Hamming distance [55] DHm(A1, A2) and
DHm(B1, B2), Euclidean distance [55] DE(A1, A2) and DE(B1, B2), PFSJS distance [57] DXiao(A1, A2)
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and DXiao(B1, B2), PFSDM distance Dmp(A1, A2), and Dmp(B1, B2) are calculated and results are obtained
as follows:

• DHm(A1, A2) = 0.0129 DHm(B1, B2) = 0.0531 αHm = DHm(B1, B2)/DHm(A1, A2) = 4.1163,

• DE(A1, A2) = 0.0113 DE(B1, B2) = 0.0466 αE = DE(B1, B2)/DE(A1, A2) = 4.1163,
• DXiao(A1, A2) = 0.0287 DXiao(B1, B2) = 0.0256 αXiao = DXiao(B1, B2)/DXiao(A1, A2) = 2.1021,
• Dmp(A1, A2) = 0.0261 Dmp(B1, B2) = 0.0548 αmp = Dmp(B1, B2)/Dmp(A1, A2) = 0.8915.

In the situation of membership degree and non-membership degree changing equally, we can clearly find
that the ratio of distance changes α is different, and the PFSDM distance’s αmp is closest to 1 among them, which
demonstrate that its variation trend is more even than others when membership and non-membership change
the same.

The previous examples demonstrate the feasibility of PFSDM distance through numerical analysis.
It is well known that pattern recognition is one of the important applications of distance measure.
Paul [84] modifies Zhang and Xu’s distance measure of PFSs and applies them to pattern recognition.
In the next example, the proposed method is applied {to pattern recognition to prove its rationality.

Example 3. Suppose a limited universe of discourse X = {x1, x2, · · · , x10}, and Ai (i = 1, 2, 3, 4) represent
four materials of building respectively, and B is an unknown material. Their PFSs are given in Table 3, and we
need to recognize the type of B in A by finding the smallest distance D(Ai, B) from them. The results of Paul’s
method and proposed method, PFSDM distance, are given in Table 4:

Table 3. The Pythagorean fuzzy sets of building materials in Example 3.

PFS x1 x2 x3 x4 x5

A1(x) 〈x, 0.173, 0.524〉 〈x, 0.102, 0.818〉 〈x, 0.530, 0.326〉 〈x, 0.965, 0.008〉 〈x, 0.420, 0.351〉
A2(x) 〈x, 0.510, 0.365〉 〈x, 0.627, 0.125〉 〈x, 1.000, 0.000〉 〈x, 0.125, 0.648〉 〈x, 0.026, 0.823〉
A3(x) 〈x, 0.495, 0.387〉 〈x, 0.603, 0.298〉 〈x, 0.987, 0.006〉 〈x, 0.073, 0.849〉 〈x, 0.037, 0.923〉
A4(x) 〈x, 1.000, 0.000〉 〈x, 1.000, 0.000〉 〈x, 0.857, 0.123〉 〈x, 0.734, 0.158〉 〈x, 0.021, 0.896〉
B1(x) 〈x, 0.978, 0.003〉 〈x, 0.980, 0.012〉 〈x, 0.798, 0.132〉 〈x, 0.693, 0.213〉 〈x, 0.051, 0.876〉

PFS x6 x7 x8 x9 x10

A1(x) 〈x, 0.008, 0.956〉 〈x, 0.331, 0.512〉 〈x, 1.000, 0.000〉 〈x, 0.215, 0.625〉 〈x, 0.432, 0.534〉
A2(x) 〈x, 0.732, 0.153〉 〈x, 0.556, 0.303〉 〈x, 0.650, 0.267〉 〈x, 1.000, 0.000〉 〈x, 0.145, 0.762〉
A3(x) 〈x, 0.690, 0.268〉 〈x, 0.147, 0.812〉 〈x, 0.213, 0.653〉 〈x, 0.501, 0.284〉 〈x, 1.000, 0.000〉
A4(x) 〈x, 0.076, 0.912〉 〈x, 0.152, 0.712〉 〈x, 0.113, 0.756〉 〈x, 0.489, 0.389〉 〈x, 1.000, 0.000〉
B1(x) 〈x, 0.123, 0.756〉 〈x, 0.152, 0.721〉 〈x, 0.113, 0.732〉 〈x, 0.494, 0.368〉 〈x, 0.987, 0.000〉

Table 4. The results generated by two methods in Example 3.

Distance D(A1, B) D(A2, B) D(A3, B) D(A4, B)

Paul′s method 0.5970 0.5340 0.3240 0.0740
Proposed method 0.5296 0.5169 0.2927 0.0486

In the process of calculation, we use a negligible number such as 10−8 to replace the zero, which is a good
method to avoid having a zero denominator. The smallest PFSDM distance of them is Dmp(A4, B), so the
material B belongs to A4, which is identical to the result of Paul’s modified method. Hence, PFSDM distance is
capable of achieving the desired effect when applied to real-life problems.

In this section, the PFSDM distance for measuring the divergence of PFSs is proposed. Some
numerical examples are used to prove its properties and compared with other existing methods.
The PFSDM distance has been proven that it not only is rational and practical but has more powerful
resolution and a more uniform trend as well, which is because the proposed method combines the
properties of BPA handling uncertainty and divergence’s character distinguishing similar data.
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4. Application in Medical Diagnosis

In this section, a modified algorithm for medical diagnosis is designed, which is improved based
on Xiao’s algorithm [57]. The new algorithm utilizes the PFSDM distance and obtains excellent results
in application.

Problem statement: Suppose a limited universe of discourse X = {x1, x2, x3, · · · , xn} , and the
xi represent the symptoms of diseases and patients. Assume existing m number of patients listed as
P = {P1, P2, · · · , Pm} and o number of diseases listed as D = {D1, D2, · · · , Do}. The symptoms of
diseases and patients represented by Pythagorean fuzzy sets are as follows:

Di = {〈x1, Di
Y(x1), Di

N(x1)〉, 〈x2, Di
Y(x2), Di

N(x2)〉, · · · , 〈xn, Di
Y(xn), Di

N(xn)〉} (1 ≤ i ≤ o),

Pj = {〈x1, Pj
Y(x1), Pj

N(x1)〉, 〈x2, Pj
Y(x2), Pj

N(x2)〉, · · · , 〈xn, Pj
Y(xn), Pj

N(xn)〉} (1 ≤ j ≤ m).

We need to utilize the distance measure to recognize which diseases the patients contract.

Step1 For every symptom, calculate the PFSDM distanceDi
mpt(Di

t, Pj
t ) in terms of Equation (20)

between Di
t and Pj

t , where (1 ≤ t ≥ n).
Step2 Calculate the weight of every symptom in medical diagnosis:

ωt =
Di

mpt(Di
t ,P

j
t )

∑n
1 Di

mpt(Di
t ,P

j
t )

.

Step3 Diagnose the symptoms of the patient and the symptoms of the disease.

Calculate the weighted average PFSDM distance D̄mp(Di, Pj) = ∑n
t=1 ωtDi

mpt(Di
t, Pj

t ).

Step4 For each weighted average PFSDM distance, the patients Pj can be classified to diseases Di,

in which ξ = min1≤i≤m{D̄mp(Di, Pj)}, Pj → Dξ .

When the specific symptoms of the patient conflict with the symptoms of the disease, the proposed
algorithm considers that the conflicted symptoms are paid more attention in the medical diagnosis.
If all symptoms are diagnosed with the same weight, abnormal symptoms will be ignored when the
symptom base is large. In the later examples, the applications of the proposed algorithm and its
comparisons with other existing algorithm are shown.

Example 4. ([85]) Assume there are four patients, Ram, Mari, Sugu, and Somu, denoted as P = {P1, P2,
P3, P4}. Five symptoms, Temperature, Headache, Stomach pain, Cough, and Chest pain, are observed,
denoted as S = {s1, s2, s3, s4, s5}. Additionally, five diagnoses, Viral f ever, Malaria, Typhoid,
Stomach problems, and Chest problems, are defined, represented as D = {D1, D2, D3, D4, D5}. Then, the
Pythagorean fuzzy relations P→ S and D → S are displayed in Tables 5 and 6.

Table 5. The symptoms of the patients in Example 4.

Patient s1 s2 s3 s4 s5

P1 〈s1, 0.90, 0.10〉 〈s2, 0.70, 0.20〉 〈s3, 0.20, 0.80〉 〈s4, 0.70, 0.20〉 〈s5, 0.20, 0.70〉
P2 〈s1, 0.00, 0.70〉 〈s2, 0.40, 0.50〉 〈s3, 0.60, 0.20〉 〈s4, 0.20, 0.70〉 〈s5, 0.10, 0.20〉
P3 〈s1, 0.70, 0.10〉 〈s2, 0.70, 0.10〉 〈s3, 0.00, 0.50〉 〈s4, 0.10, 0.70〉 〈s5, 0.00, 0.60〉
P4 〈s1, 0.50, 0.10〉 〈s2, 0.40, 0.30〉 〈s3, 0.40, 0.50〉 〈s4, 0.80, 0.20〉 〈s5, 0.30, 0.40〉
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Table 6. The symptoms of the diagnoses in Example 4.

Diagnose s1 s2 s3 s4 s5

D1 〈s1, 0.30, 0.00〉 〈s2, 0.30, 0.50〉 〈s3, 0.20, 0.80〉 〈s4, 0.70, 0.30〉 〈s5, 0.20, 0.60〉
D2 〈s1, 0.00, 0.60〉 〈s2, 0.20, 0.60〉 〈s3, 0.00, 0.80〉 〈s4, 0.50, 0.00〉 〈s5, 0.10, 0.80〉
D3 〈s1, 0.20, 0.20〉 〈s2, 0.50, 0.20〉 〈s3, 0.10, 0.70〉 〈s4, 0.20, 0.60〉 〈s5, 0.20, 0.80〉
D4 〈s1, 0.20, 0.80〉 〈s2, 0.10, 0.50〉 〈s3, 0.70, 0.00〉 〈s4, 0.10, 0.70〉 〈s5, 0.20, 0.70〉
D5 〈s1, 0.20, 0.80〉 〈s2, 0.00, 0.70〉 〈s3, 0.20, 0.80〉 〈s4, 0.10, 0.80〉 〈s5, 0.80, 0.10〉

The results diagnosis by the proposed algorithm and Xiao’s method [57] are displayed in Tables 7 and 8.
By observing the experimental results of proposed method, it is obvious that the P1 has the least D̄mp 0.4064 for
D1, P2 has the least D̄mp 0.2703 for D4, P3 has the least D̄mp 0.2890 for D3, and P4 has the least D̄mp 0.2470
for D1; Hence, the conclusions are obvious in Table 8.

Table 7. The results generated by the Xiao method in Example 4.

Patient D1 D2 D3 D4 D5 Classi f ication

P1 0.2583 0.3799 0.3512 0.5295 0.5528 D1 : Viral f ever
P2 0.4348 0.4217 0.4034 0.2394 3842 D4 : Stomach problems
P3 0.3925 0.4787 0.2681 0.4140 0.5166 D3 : Typhoid
P4 0.2166 0.4133 0.3454 0.4716 0.5382 D1 : Viral f ever

Table 8. The results generated by the proposed method in Example 4.

Patient D1 D2 D3 D4 D5 Classi f ication

P1 0.4064 0.6139 0.4984 0.7587 0.7776 D1 : Viral f ever
P2 0.6001 0.5971 0.5031 0.2703 5281 D4 : Stomach problems
P3 0.4807 0.6617 0.2890 0.7109 0.7285 D3 : Typhoid
P4 0.2407 0.4824 0.4475 0.5996 0.6271 D1 : Viral f ever

As shown in Table 9, obviously the proposed method generates the same results as Samuel’s method and
Xiao’s method, which can demonstrate that the proposed algorithm is capable of finishing medical diagnosis
problems. In addition to doing this, we can find that the proposed method has better resolution than Xiao’s
method by observing Tables 7 and 8.

Table 9. The results generated by other methods in Example 4.

Method P1 P2 P3 P4

Xiao. [57] Viral f ever Stomach problems Typhoid Viral f ever
Samuel and Rajakumar [86] Viral f ever Stomach problems Typhoid Viral f ever

Proposed method Viral f ever Stomach problems Typhoid Viral f ever

Example 5. ([2,11,57,87–90]) Assume four patients exist, namely, David, Tom, Kim, and Bob, denoted
as P = {P1, P2, P3, P4}. Five symptoms are observed, in which they are Temperature, Headache,
Stomach pain, Cough, and Chest pain, denoted as S = {s1, s2, s3, s4, s5}. Additionally, five diagnoses,
namely, Viral Fever, Malaria, Typhoid, Stomach problems, and Chest problems, are defined, represented
as D = {D1, D2, D3, D4, D5}. The numerical values respectively represented the membership and
non-membership grade of the Pythagorean fuzzy set. Then, through the evaluation of the proposed distance
measurement, the Pythagorean fuzzy sets’ distance of P→ S and the Pythagorean fuzzy sets’ distance of D → S
are displayed in the following Tables 10 and 11.
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Table 10. The symptoms of the patients in Example 5.

Patient s1 s2 s3 s4 s5

P1 〈s1, 0.80, 0.10〉 〈s2, 0.60, 0.10〉 〈s3, 0.20, 0.80〉 〈s4, 0.60, 0.10〉 〈s5, 0.10, 0.60〉
P2 〈s1, 0.00, 0.80〉 〈s2, 0.40, 0.40〉 〈s3, 0.60, 0.10〉 〈s4, 0.10, 0.70〉 〈s5, 0.10, 0.80〉
P3 〈s1, 0.80, 0.10〉 〈s2, 0.80, 0.10〉 〈s3, 0.00, 0.60〉 〈s4, 0.20, 0.70〉 〈s5, 0.00, 0.50〉
P4 〈s1, 0.60, 0.10〉 〈s2, 0.50, 0.40〉 〈s3, 0.30, 0.40〉 〈s4, 0.70, 0.20〉 〈s5, 0.30, 0.40〉

Table 11. The symptoms of the diagnoses in Example 5.

Diagnose s1 s2 s3 s4 s5

D1 〈s1, 0.40, 0.00〉 〈s2, 0.40, 0.40〉 〈s3, 0.10, 0.70〉 〈s4, 0.40, 0.00〉 〈s5, 0.10, 0.70〉
D2 〈s1, 0.70, 0.00〉 〈s2, 0.20, 0.60〉 〈s3, 0.00, 0.90〉 〈s4, 0.70, 0.00〉 〈s5, 0.10, 0.80〉
D3 〈s1, 0.30, 0.30〉 〈s2, 0.60, 0.10〉 〈s3, 0.20, 0.70〉 〈s4, 0.20, 0.60〉 〈s5, 0.10, 0.90〉
D4 〈s1, 0.10, 0.70〉 〈s2, 0.20, 0.40〉 〈s3, 0.80, 0.00〉 〈s4, 0.20, 0.70〉 〈s5, 0.20, 0.70〉
D5 〈s1, 0.10, 0.80〉 〈s2, 0.00, 0.80〉 〈s3, 0.20, 0.80〉 〈s4, 0.20, 0.80〉 〈s5, 0.80, 0.10〉

After calculating the distance by the proposed method and Xiao’s method to measure the data, the results
are generated in Tables 12 and 13. The results of David (P1) are different because of the data marked red in
Tables 10 and 11. Though the D2 is more similar to P1 in other data intuitively, it generates a conflicted data in
Headache (s2). We use a weighted average to assign weights to symptoms. Hence, when the patient matches
most of the symptoms of the disease, but one of the symptoms conflicts, the proposed algorithm will give greater
weight to the effect of this symptom on the diagnosis of the disease, which will make the diagnosis of a complex
disease with many symptoms more accurate.

Table 12. The results generated by proposed method in Example 5.

Patient D1 D2 D3 D4 D5 Classi f ication

P1 0.2895 0.4163 0.4924 0.7125 0.7958 D1 : Viral f ever
P2 0.6809 0.7839 0.5058 0.1523 0.6711 D4 : Stomach problems
P3 0.3604 0.5940 0.3197 0.7264 0.7701 D3 : Typhoid
P4 0.2867 0.3699 0.4478 0.5839 0.3370 D1 : Viral f ever

Table 13. The results generated by Xiao’s method in Exmple 5.

Patient D1 D2 D3 D4 D5 Classi f ication

P1 0.2511 0.2457 0.3110 0.5191 0.5606 D2 : Malaria
P2 0.3712 0.4955 0.3389 0.1589 0.4264 D4 : Stomach problems
P3 0.3314 0.4348 0.3126 0.4610 0.5310 D3 : Typhoid
P4 0.2543 0.3195 0.3953 0.4605 0.5564 D1 : Viral f ever

By comparing other applied widely methods of medical diagnosis and their results in Table 14, we can find
that the diagnosis of David (P1) is controversial and its results in Table 13 are similar between Viral f ever (D1)
and Malaria (D2). On the contrary, Viral f ever (D1) and Malaria (D2) have a bigger difference in Table 12,
which means that the new method is quite certain of the result.
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Table 14. The results generated by other methods.

Method P1 P2 P3 P4

Szmidt et al. [88] Viral f ever Stomach problems Typhoid Viral f ever
Wei etl. [11] Malaria Stomach problems Typhoid Viral f ever

Mondal et al. [9] Malaria Stomach problems Typhoid Viral f ever
Ye [90] Viral f ever Stomach problems Typhoid Viral f ever

Vlachos et al. [89] Viral f ever Stomachproblems Typhoid Viral f ever
De et al. [2] Malaria Stomach problems Typhoid Viral f ever

Xiao et al. [57] Malaria Stomach problems Typhoid Viral f ever
Proposed method Viral f ever Stomach problems Typhoid Viral f ever

From the above two examples, the magnified method’s feasibility and merits have been
demonstrated. The feasibility of the new algorithm is illustrated by comparing the results of three
methods in Example 4, and it can be intuitively found from Tables 7 and 8 that the new algorithm
has higher resolution. In the second Example 5, more methods were compared in Table 14. The new
algorithm uses weighted summation to make the previously disputed results more certain, which
proves that it considers that the higher conflicted symptoms play a more important role in the
diagnostic process.

5. Conclusions

In this paper, we propose a new divergence measure, called PFSDM distance, based on belief
function, and modify the algorithm based on Xiao’s method. The proposed method can produce
intuitive results and its feasibility is proven by comparing with the existing method. In addition to
this, the new method has more even change trend and better performance when the PFSs have larger
hesitancy. In addition, we then apply the new algorithm to medical diagnosis and get the desired effect.
The new algorithm has better resolution, which is helpful to ruling thresholds in practical applications.
Consequently, the main contributions of this article are as follows:

• A method to express the PFS in the form of BPA is proposed, which is the first time to establish a
link between them.

• A new distance measure between PFSs, called the PFSDM distance, based on Jensen–Shannon
divergence and belief function, is proposed. Combining the characters of divergence and BPA
contributes to more powerful resolution and even more of a change trend than existing methods.

• A modified medical diagnosis algorithm is proposed based on Xiao’s method, which utilized
the weighted summation to magnify the resolution of algorithm and increase the influence of
conflicted data.

• The new divergence measure and the modified algorithm both have satisfying performance in the
applications of pattern recognition and medical diagnosis.

It is well known that medical diagnosis is not a 100% accurate procedure and uncertainty is
always present in cases. Though we get a definite result in Example 5 by the proposed algorithm, more
cases are supposed to be examined in further research to get a safer result. In future research, we will
try to explore more PFSs’ properties by using the belief function in evidence theory further and apply
them to more situations such as the multi-criteria decision-making and pattern recognition.
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