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Abstract: Let G be a finite simple graph on n vertices. Let JG ⊂ K[x1, . . . , xn] be the cover ideal of G.
In this article, we obtain syzygies, Betti numbers, and Castelnuovo–Mumford regularity of Js

G for all
s ≥ 1 for certain classes of graphs G.
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1. Introduction

In this article, we compute the resolution, syzygies, and Betti numbers of powers of certain
classes of squarefree monomial ideals. As a by-product, we obtain the expression for the regularity
of powers of these classes of ideals. Computation of minimal free resolution and syzygies of ideals
and modules over polynomial rings have always attracted researchers in commutative algebra and
algebraic geometry. Recently, there has been much interest in studying the homological aspects of
squarefree monomial ideals in polynomial rings. As these ideals have strong combinatorial connections,
problems in this area have attracted both commutative algebrists and combinatorists. Even in this case,
there are only very few cases of ideals for which explicit computation of the resolution, including the
complete description of syzygies, is done. The main open problems in this area are to find/construct
minimal free resolutions in more cases, and to introduce new ideas and structures ([1] Remark 2.6).
There are even less results on the resolution of powers of ideals. If I is generated by a regular sequence,
then Is is a determinantal ideal and hence the minimal free resolution of Is can be obtained by using
the Eagon–Northcott complex [2]. As the maps in this resolution may not be degree preserving, the
computation of graded Betti numbers and more generally the computation of the syzygies may not be
possible. In the work by the authors of [3], they explicitly compute the graded Betti numbers of Is if I
is a homogeneous complete intersection in a polynomial ring.

Among the resolutions, linear resolutions are possibly the simplest to describe. Let R =

K[x1, . . . , xn], where K is a field. If I is the defining ideal of the rational normal curve in Pn−1, then
Conca proved that Is has a linear resolution for all s [4]. Herzog, Hibi, and Zheng proved that if I is a
monomial ideal generated in degree 2, then I has linear resolution if and only if I has linear quotients
if and only if Is has a linear resolution for all s ≥ 1 [5]. It was proved by Conca and Herzog [6], that if
I is a polymatroidal ideal in R, then I has linear quotients. Moreover, they proved that the product of
polymatroidal ideals are polymatroidal. Therefore, if I is polymatroidal, then Is has linear resolution
for all s ≥ 1. If I is a lexsegment ideal, then Ene and Olteanu proved that I has linear resolution if and
only if I has linear quotients if and only if Is has linear resolution for all s ≥ 1 if and only if Is has
linear quotients for all s ≥ 1 [7].
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In all the above-mentioned results, the authors do not compute the syzygy modules. In general,
it is a nontrivial task to compute the syzygy modules, even when the resolution is linear. It was
shown by Kodiyalam [8], and independently by Cutkosky, Herzog, and Trung [9], that if I is a
homogeneous ideal in a polynomial ring, then there exist non-negative integers d, e and s0 such that
reg(Is) = ds + e for all s ≥ s0, where reg(−) denote the Castelnuovo–Mumford regularity. Kodiyalam
proved that d ≤ deg(I), where deg(I) denotes the largest degree of a homogeneous minimal generator
of I. In general, the stability index s0 and the constant term e are hard to compute. There have been
discrete attempts in identifying s0 and e for certain classes of ideals.

Recently, there have been a lot of activity in studying the interplay between the combinatorial
properties of graphs and the algebraic properties of ideals associated to graphs. For a finite simple
graph G on the vertex set {x1, . . . , xn}, let JG ⊂ R = K[x1, . . . , xn], where K is a field, denote the
cover ideal of G (see Section 2 for the definition). It may be noted that JG = ∩{xi ,xj}∈E(G)(xi, xj) is
the Alexander dual of the edge ideal of I (see Section 2 for the definition). Although the connection
between algebraic properties of the edge ideal and combinatorial properties of the graph has been
studied extensively, not much is known about the connection between the properties of the cover ideal
and the graph. In [10], Seyed Fakhari studied certain homological properties of symbolic powers of
cover ideals of very well covered and bipartite graphs. It was shown that if G is a very well covered
graph and JG has a linear resolution, then J(s)G has a linear resolution for all s ≥ 1. Furthermore, it was
proved that if G is a bipartite graph with n vertices, then for s ≥ 1,

reg(Js
G) ≤ s deg(JG) + reg(JG) + 1.

Hang and Trung [11] studied unimodular hypergraphs and proved that if H is a unimodular
hypergraph on n vertices and rank r and JH is the cover ideal ofH, then there exists a non-negative
integer e ≤ dim(R/JH)− deg(JH) + 1, such that

reg Js
H = deg(JH)s + e

for all s ≥ rn
2 + 1. Since bipartite graphs are unimodular, their results hold true in the case of bipartite

graphs as well. While the first result gives an upper bound for the constant term, the later result gives
the upper bound for both the stability index and the constant term.

In this article, we obtain the complete description of the minimal free resolution, including the
syzygies, of Js

G for some classes of multipartite graphs. The paper is organized as follows. In Section 2,
we collect the preliminaries required for the rest of the paper. We study the resolution of powers of
cover ideals of certain bipartite graphs in Section 3. If G is a complete bipartite graph, then JG is a
regular sequence and hence the minimal graded free resolution of Js

G can be obtained from (Theorem
2.1 in the work by the authors of [3]). We then move on to study some classes of bipartite graphs which
are not complete. We obtain the resolution, syzygies and Betti numbers of powers of cover ideals of
certain bipartite graphs, and as a by-product, we obtain expression for the regularity of powers of
these ideals. Section 4 is devoted to the study of resolution and regularity of powers of cover ideals of
certain complete multipartite graphs.

The main results of this article are the following: When G is the cycle of length three or the
complete graph on 4 vertices, we describe the graded minimal free resolution of Js

G for all s ≥ 1.
This allow us to compute the Betti numbers, Hilbert series and the regularity of Js

G for all s ≥ 1. As a
consequence, for cover ideals of complete tripartite and 4-partite graphs, we obtain precise expressions
for the Betti numbers and the regularity of Js

G. We conclude our article with a conjecture on the
resolution of Js

G for all s ≥ 1, where G is a complete multipartite graph.

2. Preliminaries

In this section, we set the notation for the rest of the paper. All the graphs that we consider in
this article are finite, simple, and without isolated vertices. For a graph G, V(G) denotes the set of all
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vertices of G and E(G) denotes the set of all edges of G. A graph G is said to be a “complete multipartite”
graph if V(G) can be partitioned into sets V1, . . . , Vk for some k ≥ 2, such that {x, y} ∈ E(G) if and
only if x ∈ Vi and y ∈ Vj for i 6= j. When k = 2, the graph is called a “complete bipartite” graph.
If k = 2 with |V1| = m and |V2| = n, we denote the corresponding complete bipartite graph by Km,n

or by KV1,V2 . If G and H are graphs, then G ∪ H denote the graph on the vertex set V(G) ∪ V(H)

with E(G ∪ H) = E(G) ∪ E(H). A graph G is called a “bipartite” graph if V(G) = V1 tV2 such that
{x, y} ∈ E(G) only if x ∈ V1 and y ∈ V2. A subset w = {xi1 , . . . , xir} of V(G) is said to be a vertex cover
of G if w ∩ e 6= ∅ for every e ∈ E(G). A vertex cover is said to be minimal if it is minimal with respect
to inclusion.

Let G be a graph with V(G) = {x1, . . . , xn}. Let K be a field and R = K[x1, . . . , xn]. The edge
ideal of G is defined to be I(G) = 〈{xixj : {xi, xj} ∈ E(G)}〉 ⊂ R and the cover ideal of G is defined
to be JG = 〈xi1 , . . . , xir : {xi1 , . . . , xir} is a (minimal) vertex cover of G〉 It can also be seen that JG is the
Alexander dual of I(G).

Let S = R/I, where R is a polynomial ring over K and I a homogeneous ideal of R. For a finitely
generated graded S-module M = ⊕Mi, set

tS
i (M) = max{j : TorS

i (M, K)j 6= 0},

with tS
i (M) = −∞ if TorS

i (M, K) = 0. The Castelnuovo–Mumford regularity, denoted by regS(M), of
an S-module M is defined to be

regS M = max{tS
i (M)− i : i ≥ 0}.

3. Bipartite Graphs

In this section, we study the regularity of powers of cover ideals of certain bipartite graphs.
We begin with a simple observation concerning the vertex covers of a bipartite graph.

Proposition 1. Let G be a bipartite graph on n + m vertices. Then G is a complete bipartite graph if and only
if JG is generated by a regular sequence that has disjoint supports.

Proof. Let V(G) = X t Y be the partition of the vertex set of G with X = {x1, . . . , xn} and
Y = {yn+1, . . . , yn+m}. First, note that JG is generated by a regular sequence if and only if for any two
minimal vertex covers w, w′, w ∩ w′ = ∅. If G = Kn,m, then JG = (x1 · · · xn, yn+1 · · · yn+m) which is a
regular sequence. Conversely, suppose G is not a complete bipartite graph. As G is a bipartite graph,
note that ∏xi∈X xi, ∏yj∈Y yj ∈ JG are minimal generators of JG. Therefore, there exist xi0 ∈ X and
yi0 ∈ Y such that {xi0 , yi0} /∈ E(G). Then w = {xi, yj : i 6= i0 and yj ∈ NG(xi0)} is a minimal vertex
cover of G that intersects X as well as Y nontrivially. Therefore JG is not a complete intersection.

First we discuss the regularity of powers of cover ideals of complete bipartite graphs. As the cover
ideal of a complete bipartite graph is a complete intersection, the result is a consequence of (Theorem
2.1 in the work by the authors of [3]).

Remark 1. Let J = JKm,n be the cover ideal of the complete bipartite graph Km,n, m ≤ n. Then reg(Js) =

sn + m− 1 for all s ≥ 1.

Proof. Consider the ideal I = (T1, T2) ⊂ R = K[T1, T2] with deg T1 = m and deg T2 = n. It follows
from (Theorem 2.1 in the work by the authors of [3]) that the resolution of Is is

0→
⊕

a1+a2=s+1
ai≥1

R(−a1m− a2n)→
⊕

a1+a2=s
R(−a1m− a2n)→ Is → 0. (1)
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Note that J = (x1 · · · xm, ym+1 · · · ym+n). Set x1 · · · xm = T1 and ym+1 · · · ym+n = T2. Then, Js has
the minimal free resolution as in (1). If m ≤ n, then reg(Js) = sn + m− 1.

It follows from Remark 1 that in the case of the complete bipartite graph Km,n, the stability index
is 1 and the constant term is τ − 1, where τ is the size of a minimum vertex cover.

If the graph is not a complete bipartite graph, then the cover ideal is no longer a complete
intersection. If G is a Cohen–Macaulay bipartite graph, then it was shown by F. Mohammadi and S.
Moradi that the vertex cover ideals are weakly polymatroidal. Therefore, they have linear quotients
and hence all the powers have linear resolution (Theorem 2.2 in the work by the authors of [12]). It
would be quite a challenging task to obtain the syzygies and Betti numbers of powers of cover ideals
of all bipartite graphs. Therefore, we restrict our attention to some structured subclasses of bipartite
graphs.

x1

x2

x3

x4

x5

x6

x7

y1

y2

y3

y4

y5

y6

Figure 1. KU1,V ∪ KU2,V2 .

Notation 1. For disjoint vertex sets U and V, let KU,V denote the complete bipartite graph on U t V.
Let U1 = {x1, . . . , xk}, U2 = {xk+1, . . . , xn}, V1 = {y1, . . . , yr}, and V2 = {yr+1, . . . , ym}. Let U =

U1 ∪ U2 and V = V1 ∪ V2. In the following, we consider the bipartite graph G on the vertex set U t V
with edges E(G) = E(KU1,V) ∪ E(KU2,V2). An illustrative figure can be seen in Figure 1 above. Note that
although the vertex sets of KU1,V and KU2,V2 are not disjoint, the edge sets are. The figure on the left is an example
of such a graph with U1 = {x1, x2, x3}, U2 = {x4, x5, x6, x7}, V1 = {y1, y2, y3, y4} and V2 = {y5, y6}.

Theorem 1. Let U = U1 t U2 and V = V1 t V2 be a collection of vertices with |U| = n,
|Ui| = ni, |V| = m, |Vi| = mi and 1 ≤ ni, mi for i = 1, 2. Let G be the bipartite graph KU1,V ∪ KU2,V2 .
Let R = K[x1, . . . , xn, y1, . . . , ym]. Let JG ⊂ R denote the cover ideal of G. Then the graded minimal free
resolution of R/JG is of the form

0 −→ R(−n−m2)⊕ R(−m− n1) −→ R(−(n1 + m2))⊕ R(−m)⊕ R(−n) −→ R.

In particular,
reg(JG) = max{n + m2 − 1, m + n1 − 1}

Proof. It can easily be seen that the cover ideal JG is generated by g1 = x1 · · · xn, g2 = y1 · · · ym,
and g3 = x1 · · · xn1 ym1+1 · · · ym. Set X1 = x1 · · · xn1 ; X2 = xn1+1 · · · xn; Y1 = y1 · · · ym1 and
Y2 = ym1+1 · · · ym. Then we can write g1 = X1X2, g2 = Y1Y2 and g3 = X1Y2.

Consider the minimal graded free resolution of R/JG over R:

· · · −→ F
∂2−→ R(−n)⊕ R(−m)⊕ R(−(n1 + m2))

∂1−→ R,

where ∂1(e1) = g1, ∂1(e2) = g2, and ∂1(e3) = g3.
Let ae1 + be2 + ce3 ∈ ker ∂1. Then aX1X2 + bY1Y2 + cX1Y2 = 0. Solving the above equation, it can

be seen that,
ker ∂1 = SpanR{Y2e1 − X2e3, X1e2 −Y1e3}.
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Also, it is easily verified that these two generators are R-linearly independent. Therefore, ker ∂1
∼=

R2. Note that deg(Y2e1 − X2e3) = n + m2 and deg(X1e2 − Y1e3) = n1 + m. Therefore, we get the
minimal free resolution of R/JG as

0 −→ R(−n−m2)⊕ R(−m− n1)
∂2−→ R(−(n1 + m2))⊕ R(−m)⊕ R(−n)

∂1−→ R,

where ∂2(a, b) = a(Y2e1 − X2e3) + b(X1e2 −Y1e3). The regularity assertion follows immediately from
the resolution.

Our aim is to compute the syzygies and the Betti numbers of Js
G, where JG is the cover ideal

discussed in Theorem 1. For this purpose, we first study the resolution of powers of the ideal
(X1X2, X1Y2, Y1Y2) and obtain the resolution and regularity of the cover ideal as a consequence. It is
known from the work by the authors of [5] that all the powers of this ideal has a linear resolution. We
explicitly compute the syzygies and Betti numbers for the powers of this ideal.

Theorem 2. Let R = K[X1, X2, Y1, Y2] and J = (X1X2, X1Y2, Y1Y2) be an ideal of R. Then, for s ≥ 2,
the minimal free resolution of R/Js is of the form

0 −→ R(s
2) −→ R2(s+1

2 ) −→ R(s+2
2 ) −→ R,

and reg(Js) = 2s.

Proof. Denote the generators of J by g1 = X1X2, g2 = X1Y2, and g3 = Y1Y2. Note that J is the edge
ideal of P4, the path graph on the vertices {X1, X2, Y1, Y2}. Since P4 is chordal, it follows that R/Js has
a linear resolution for all s ≥ 1 [5]. Now we compute the Betti number of the R/Js. Write

(g1, g2, g3)
s = (gs

1, gs−1
1 (g2, g3), gs−2

1 (g2, g3)
2, . . . , g1(g2, g3)

s−1, (g2, g3)
s)

where
(g2, g3)

t = (gt
2, gt−1

2 g3, gt−2
2 g2

3, . . . , g2gt−1
3 , gt

3).

For i ≥ j, set Mi,j = gs−i
1 gi−j

2 gj
3 = (X1X2)

s−iYi
2Y j

1Xi−j
1 . It follows that µ(Js) = (s+1)(s+2)

2 .

Set β1 = (s+1)(s+2)
2 . Let {ep,q | 0 ≤ p ≤ s; 0 ≤ q ≤ p} denote the standard basis for Rβ1 .

Let ∂1 : Rβ1 −→ R be the map ∂1(ep,q) = Mp,q. As gi’s are monomials, the kernel is generated by
binomials of the form mi,j Mi,j − mk,l Mk,l , where mp,q’s are monomials in R. Since the resolution of
R/Js is linear, it is enough to find the linear syzygy relations among the generators of ker(∂1). To find

these linear syzygies, we need to find conditions on i, j, k, l such that
Mi,j
Mk,l

is equal to Xp
Yq

or Yq
Xp

for
some p, q. First of all, note that for such linear syzygies, |i − k|, |j − l| ≤ 1. If i = k and j = l + 1,

then
Mi,j

Mi,j+1
=

g3

g2
=

Y1

X1
. We get the same relation if i = k and j = l − 1. If i = k + 1 and j = l,

then
Mi,j

Mi−1,j
=

g2

g1
=

Y2

X2
. As before, i = k − 1 yields the same relation. Therefore, the kernel is

minimally generated by {
Y1ei,j − X1ei,j+1, X2ei,j −Y2ei−1,j | 0 ≤ j < i ≤ s

}
.

Hence, µ(ker ∂1) = 2(s+1
2 ). Write the basis elements of R2(s+1

2 ) as

{e1,i,p, e2,i,q | 1 ≤ i ≤ s, 0 ≤ p < i and 0 ≤ q < i}
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and define ∂2 : R2(s+1
2 ) −→ Rβ1 by

∂2(e1,i,p) = Y1ei,p − X1ei,p+1

∂2(e2,i,q) = X2ei,q −Y2ei−1,q.

By (Proposition 3.2 in the work by the authors of [13]), pdim(R/Js) = 3 for all s ≥ 2. Hence we
conclude that the minimal graded free resolution of R/Js is of the form

0 −→ Rβ3 −→ R2(s+1
2 ) ∂2−→ R(s+2

2 ) ∂1−→ R.

Therefore,

β3 − 2
(

s + 1
2

)
+

(
s + 2

2

)
− 1 = 0,

so that β3 = (s
2). Now we compute the generators of the second syzygy. Again, as the resolution is

linear, it is enough to compute linear generators. First, note that

B = {Y2e1,i,j − X2e1,i+1,j + Y1e2,i+1,j − X1e2,i+1,j+1 | 0 ≤ j < i < s} ⊆ ker ∂2.

It can easily be verified that B is R-linearly independent. As µ(ker ∂2) = (s
2), B generates ker ∂2.

Let {Ei,j | 0 ≤ j < i < s} denote the standard basis for R(s
2). Define ∂3 : R(s

2) → Rs(s+1) by

∂3(Ei,j) = Y2e1,i,j − X2e1,i+1,j + X1e2,i+1,j −Y1e2,i+1,j+1.

Therefore, we get the minimal free resolution of R/Js as

0→ R(s
2)

∂3−→ R2(s+1
2 ) ∂2−→ R(s+2

2 ) ∂1−→ R.

As the resolution is linear, reg Js = 2s.

As an immediate application of the previous theorem, we obtain resolution and regularity of
powers of the cover ideals of graphs discussed in Theorem 1.

Corollary 1. Let U = U1 t U2 and V = V1 t V2 be a collection of vertices with |U| = n, |Ui| = ni,
|V| = m, |Vi| = mi and 1 ≤ ni, mi for i = 1, 2. Let G be the bipartite graph KU1,V ∪ KU2,V2 .
Let R = K[x1, . . . , xn, y1, . . . , ym]. Let JG ⊂ R denote the cover ideal of G. Then the minimal free resolution of
R/Js

G is of the form

0 −→ R(s
2) −→ R2(s+1

2 ) −→ R(s+2
2 ) −→ R.

Moreover,

reg Js
G = max


(s− j)n1 + (s− i)n2 + jm1 + im2 for 0 ≤ j ≤ i ≤ s
(s− j)n1 + (s− i)n2 + (j + 1)m1 + im2 − 1 for 0 ≤ j < i ≤ s
(s− j)n1 + (s− i + 1)n2 + jm1 + im2 − 1 for 0 ≤ j < i ≤ s
(s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 for 0 ≤ j < i < s

.

Proof. Let R = K[x1, . . . , xn, y1, . . . , ym]. Then JG = (x1 · · · xn, y1 · · · ym, x1 · · · xn1 ym1+1 · · · ym).
Set X1 = x1 · · · xn1 , X2 = xn1+1 · · · xn, Y1 = y1 · · · ym1 and Y2 = ym1+1 · · · ym. Then JG =

(X1X2, Y1Y2, X1Y2). Therefore, it follows from Theorem 1 that Js
G has the given minimal free resolution.
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To compute the regularity, we need to obtain the degrees of the syzygies. Following the notation
in the proof of Theorem 1, we can see that

deg ei,j = (s− j)n1 + (s− i)n2 + jm1 + im2,

deg e1,i,j = (s− j)n1 + (s− i)n2 + (j + 1)m1 + im2,

deg e2,i,j = (s− j)n1 + (s− i + 1)n2 + jm1 + im2,

deg Ei,j = (s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2.

Therefore, the assertion on the regularity follows.

3.1. Discussion

It has been proved by Hang and Trung [11] that if G is a bipartite graph on n vertices and JG
is the cover ideal of G, then there exists a non-negative integer e, such that for s ≥ n + 2, reg(Js

G) =

deg(JG)s + e, where deg(JG) denote the maximal degree of minimal monomial generators of JG.
It follows from Remark 1 that if G = Kn,m with n ≥ m, then e = m− 1 and the index of stability is 1.
If the graph is not a complete bipartite graph, then e does not uniformly represent a combinatorial
invariant associated to the graph as can be seen in the computations below. We compute the polynomial
reg(Js

G) for some classes of bipartite graphs that are considered in Corollary 1. We see that e depends on
the relation between the integers n1, n2, m1 and m2. Just to illustrate the computation of the polynomial
from Corollary 1, we compute reg(Js

G) in some cases below:

1. If m1 = m2 = 1, then it can be seen that for s ≥ 2,

reg(Js
G) = max{(s− j)n1 + (s− i + 1)n2 + jm1 + im2 − 1 : 0 ≤ j < i ≤ s}.

Since (s− j)n1 + (s− i + 1)n2 + jm1 + im2 − 1 = s(n1 + n2) + j(1− n1) + i(1− n2) + n2 − 1 and
n1 > 1, n2 > 1, this expression attains maximum when i and j attain minimum, i.e., if j = 0 and
i = 1. Therefore, reg(Js

G) = ns. Thus, in this case, e = 0. It can also be noted that, since n ≥ 2,
it follows from Theorem 1 that reg(JG) = n. Therefore, in this case, the stability index is also equal
to 1.

2. If n1 = n2 = m1 = m2 = ` > 1, then for s ≥ 2,

reg(Js
G) = max{(s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 : 0 ≤ j < i ≤ s}.

Therefore, reg(Js
G) = 2`s + (2`− 2), and therefore e = 2`− 2. Note that in this case, the stability

index is 2.
3. n1 ≥ m2 ≥ n2 = m1: Note that, in this case, deg(JG) = n1 + m2. We have

reg(Js
G) = max{(s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 : 0 ≤ j < i < s}.

Since (s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 = s(n1 + n2) + j(m1 − n1) + i(m2 − n2) +

m1 + m2 − 2. Since n1 ≥ m1 and m2 ≥ n2, the above expression attains the maximum when
i attains the maximum and j attains the minimum, i.e., if i = s − 1 and j = 0. Therefore,
reg(Js

G) = (n1 + m2)s + (n2 + m1 − 2) and hence e = n2 + m1 − 2.
4. n1 ≥ n2 = m1 ≥ m2: In this case, deg(JG) = n and

reg(Js
G) = max{(s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 : 0 ≤ j < i < s}.

As in the previous case, one can conclude that the maximum is attained when i = 1 and j = 0.
Therefore, reg(Js

G) = ns + (2m2 − 2). Thus e = 2m2 − 2.
5. n2 = m1 ≥ n1 ≥ m2: As done earlier, one can conclude that reg(JG)

s = ns + (2m2 − 2), and
therefore e = 2m2 − 2.
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Remark 2. If G = KU1,V ∪ KU2,V2 ∪ KU3,V3 , for some set of vertices Ui, Vi, then one can still describe the
complete resolution and the regularity of Js

G using a similar approach. However, the resulting syzygies are not so
easy to describe though the generating sets are similar. Therefore, we restrict ourselves to the above discussion.

4. Complete Multipartite Graphs

In this section our goal is to understand the resolution and regularity of the powers of cover ideals
of complete m-partite graphs. Let G be a complete m-partite graph and let JG be the cover ideal of
G. Let R = K[x1, . . . , xm]. It is known that the cover ideal JG of complete graph G = Km is generated
by all squarefree monomials x1x2 · · · x̂i · · · xm of degree m− 1. Moreover one can also identify this
cover ideal with the squarefree Veronese ideal I = Im,m−1, and thus it is a polymatroidal ideal [14].
Therefore, by the results of Conca-Herzog [6] and Herzog-Hibi [15], we have

Remark 3. The cover ideal JG of the complete graph G = Km has linear quotients and hence has linear
resolution. Moreover Js

G has linear resolution for all s ≥ 1.

If I is an ideal of R all of whose powers have linear resolution, then depth R/Ik is a non-increasing
function of k and depth R/Ik is constant for all k� 0, ([14] Proposition 2.1). Further, we have,

Remark 4. (Corollary 3.4 in the work of [14]) Let R = K[x1, · · · , xm] and JG be the cover ideal of G = Km.
Then

depth R/Js
G = max{0, m− s− 1}.

In particular, depth R/Js
G = 0 for all s ≥ m− 1.

4.1. Complete Tripartite:

We first describe the graded minimal free resolution of Js
K3

for all s ≥ 1. We also obtain the Hilbert
series of the powers.

Theorem 3. Let R = K[x1, x2, x3] and I = (x1x2, x1x3, x2x3). Then, the graded minimal free resolution of
R/I is of the form

0→ R(−3)2 → R(−2)3 → R.

For s ≥ 2, the graded minimal free resolution of R/Is is of the form:

0→ R(−2s− 2)(
s
2) → R(−2s− 1)2(s+1

2 ) → R(−2s)(
s+2

2 ) → R

so that regR(Is) = 2s. Moreover, the Hilbert series of R/Is is given by

H(R/Is, t) =
1 + 2t + 3t2 + · · ·+ 2st2s−1 −

(
(s+2

2 )− 2s− 1
)

t2s

(1− t)
.

Proof. It is clear that the resolution of I is as given in the assertion of the theorem. Since I is the cover
ideal of K3, Is has linear minimal free resolution for all s ≥ 1. Note also that by ([16] Lemma 3.1),
depth R/Is = 0 for all s ≥ 2 so that pdim R/Is = 3 for all s ≥ 2. Therefore, the minimal free resolution
of R/Is is of the form

0→ R(−2s− 2)β3
∂3−→ R(−2s− 1)β2

∂2−→ R(−2s)β1
∂1−→ R.

Now we describe the syzygies and Betti numbers of R/Is for s ≥ 2. Let g1 = x1x2, g2 = x1x3 and
g3 = x2x3. The generators of Is are of the form g`1

1 g`2
2 g`3

3 , where 0 ≤ `1, `2, `3 ≤ s and `1 + `2 + `3 = s.
Set f`1,`2,`3 = g`1

1 g`2
2 g`3

3 = xs−`3
1 xs−`2

2 xs−`1
3 . It is easy to see that µ(Is) = (s+2

2 ), as the cardinality
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of a minimal generating set of Is is same as the total number of non-negative integral solution of
`1 + `2 + `3 = s, which is (s+2

2 ).

Let {e`1,`2,`3 : 0 ≤ `1, `2, `3 ≤ s; `1 + `2 + `3 = s} denote the standard basis for R(s+2
2 ) and consider

the map ∂1 : R(s+2
2 ) → R defined by ∂1(e`1,`2,`3) = f`1,`2,`3 . As f`1,`2,`3 ’s are monomials, the kernel

is generated by binomials of the form m`1,`2,`3 f`1,`2,`3 − mt1,t2,t3 ft1,t2,t3 , where mi,j,k’s are monomials
in R. Also, as the minimal free resolution is linear, the kernel is generated in degree 1. Note that
f`1,`2,`3

ft1,t2,t3

= xt3−`3
1 xt2−`2

2 xt1−`1
3 . Therefore, for

f`1,`2,`3

ft1,t2,t3

to be a linear fraction, |ti − `i| ≤ 1 for i = 1, 2, 3.

Let t3 = `3, t2 = `2 + 1 and t1 = `1 − 1. The corresponding linear syzygy relation is

x3 · f`1,`2,`3 − x2 · f`1−1,`2+1,`3 = 0, (2)

where 1 ≤ `1 ≤ s, and 0 ≤ `2, `3 ≤ s− 1. Note that the number of such relations is equal to the number
of integral solution to (`1 − 1) + `2 + `3 = s, i.e., (s+1

2 ). Similarly, if t3 = `3 + 1, t2 = `2 − 1 and t1 = `1,
then we get the corresponding linear syzygy relation as

x2 · f`1,`2,`3 − x1 · f`1,`2−1,`3+1 = 0, (3)

where 0 ≤ `1, `3 ≤ s− 1 and 1 ≤ `2 ≤ s. Note that the linear syzygy relation obtained by fixing `2 and
taking |`i − ti| = 1 for i = 1, 2

x3 · f`1,`2,`3 − x1 · f`1−1,`2,`3+1 = 0

can be obtained from Equations (2) and (3) by setting the `i’s appropriately. Therefore,

ker ∂1 = 〈x3 · e`1,`2,`3 − x2 · e`1−1,`2+1,`3 , x2 · e`1−1,`2+1,`3 − x1 · e`1−1,`2,`3+1 : 1 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 1〉.

As there are (s+1
2 ) minimal generators of type (2) and (3), µ(ker ∂1) = β2 = 2(s+1

2 ). Write the

standard basis of R2(s+1
2 ) as

B2 =

{
e1,(`2+1,`3),`1−1
e2,(`1,`2),`3

: 1 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 1

}

and define ∂2 : R2(s+1
2 ) → R(s+2

2 ) by

∂2(e1,(`2+1,`3),`1−1) = x2 · e`1−1,`2+1,`3 − x1 · e`1−1,`2,`3+1,

∂2(e2,(`1,`2),`3
) = x3 · e`1,`2,`3 − x2 · e`1−1,`2+1,`3 .

From the equation, β3− 2((s+1)
2 ) + (s+2

2 )− 1 = 0, it follows that β3 = (s
2). Now, we describe ker ∂2.

For 2 ≤ `1 ≤ s and 0 ≤ `2, `3 ≤ s− 2, set

E`1,`2,`3 = −x3 · e2,(`1−1,`2),`3+1 + x2 · e2,(`1−1,`2+1),`3
+ x2 · e1,(`2+2,`3),`1−2 − x3 · e1,(`2+1,`3),`1−1.

Note that
B3 = {E`1,`2,`3 : 2 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 2} ⊂ ker ∂2.

Let N = ker ∂2. We claim that B̄3 = {Ē`1,`2,`3} is a basis for N/mN. It is enough to prove that B̄3

is R/m-linearly independent. Suppose ∑
`1,`2,`3

α`1,`2,`3 Ē`1,`2,`3 = 0̄. Since B3 ⊂ N1 and mN ⊂ ⊕r≥2Nr,

the above equation implies that ∑ α`1,`2,`3 E`1,`2,`3 = 0. In the above equation, the coefficient of
e2,(i,j),k = −x3αi+1,j,i−1 + x2αi+1,j−1,k and coefficient of e1,(i,j),k = x2αk+2,j−2,i − x3αk+1,j−1,i. As the set

B2 is linearly independent in R2(s+1
2 ), all of these coefficients have to be zero, i.e., αi,j,k = 0 for all i, j, k.
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This proves our claim and hence N = 〈B3〉. Let {H`1,`2,`3 : 2 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 2} denote the

standard basis of R(s
2). Define ∂3 : R(s

2) → R2((s+1)
2 ) by ∂3(H`1,`2,`3) = E`1,`2,`3 . As pdim(R/Is) = 3, this

map is injective and the resolution is complete.
It can also be seen that deg e`1,`2,`3 = 2s, deg e1,(`2+1,`3),`1−1 = deg e2,(`1,`2),`3

= 2s + 1 and
deg H`1,`2,`3 = 2s + 2. Therefore, we get the minimal graded free resolution of R/Is as

0→ R(−2s− 2)(
s
2)

∂3−→ R(−2s− 1)2((s+1)
2 ) ∂2−→ R(−2s)(

s+2
2 ) ∂1−→ R.

Therefore, the Hilbert series of R/Is is given by

H(R/Is, t) =
1− (s+2

2 )t2s + 2(s+1
2 )t2s+1 − (s

2)t
2s+2

(1− t)3

= (1− t)−2 (1− (s+2
2 )t2s + 2(s+1

2 )t2s+1 − (s
2)t

2s+2)

(1− t)
.

By expanding (1− t)−2 in the power series form and multiplying with the numerator, we get the
required expression.

We now proceed to compute the minimal graded free resolution of powers of complete
tripartite graphs.

Notation 2. Let G denote a complete tripartite graph with V(G) = V1 tV2 tV3 and E(G) = {{a, b} : b ∈
Vi, b ∈ Vj, i 6= j}. Set V1 = {x1, . . . , x`}, V2 = {y1, . . . , ym} and V3 = {z1, . . . , zn}. Let JG denote the vertex
cover ideal of G. Let X = ∏`

i=1 xi, Y = ∏m
j=1 yi and Z = ∏n

k=1 zi. It can be seen that JG = (XY, XZ, YZ).

Theorem 4. Let R = K[x1, . . . xm1 , y1, . . . , ym2 , z1, . . . , zm3 ]. Let G be a complete tripartite graph as in
Notation 2. Let JG ⊂ R denote the cover ideal of G. Then for all s ≥ 2, the minimal free resolution of R/Js

G is of
the form

0→ R(s
2)

∂3−→ R2(s+1
2 ) ∂2−→ R(s+2

2 ) ∂1−→ R.

Set α = (s− `3)m1 + (s− `2)m2 + (s− `1)m3. Then for all s ≥ 2,

reg(Js
G) = max


α, for 0 ≤ `1, `2, `3 ≤ s,
α + m3 − 1, for 1 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 1,
α + 2m3 − 2, for 2 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 2.

Proof. Taking X1 = x1, X2 = x2 and X3 = x3 in Theorem 3, it follows that the minimal free resolution
of S/Js

G is of the given form:

0→ R(s
2)

∂3−→ R2(s+1
2 ) ∂2−→ R(s+2

2 ) ∂1−→ R.

We now compute the degrees of the generators and hence obtain the regularity. Let deg X1 = m1,
deg X2 = m2, and deg X3 = m3. Then, it follows that

deg e`1,`2,`3 = deg
(

Xs−`3
1 Xs−`3

2 Xs−`1
3

)
= (s− `3)m1 + (s− `2)m2 + (s− `1)m3.

We observe that

deg e1,(`2+1,`3),`1−1 = deg e2,(`1,`2),`3
= deg e`1,`2,`3 + deg X3,

deg H`1,`2,`3 = deg e`1,`2,`3 + 2 deg X3.
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Therefore,

reg(Js
G) = max


deg e`1,`2,`3 , for 0 ≤ `1, `2, `3 ≤ s,
deg e`1,`2,`3 + deg(X3)− 1, for 1 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 1,
deg e`1,`2,`3 + 2 deg(X3)− 2, for 2 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 2,

where `1 + `2 + `3 = s. Let α = deg e`1,`2,`3 . Then the regularity assertion follows.

Observe that the above expression for reg(Js
G) is not really in the form ds + e. Given a graph,

one can compute d and e by studying the interplay between the cardinality of the partitions. For
example, suppose the graph is unmixed, i.e., all the partitions are of same cardinality. Then, reg(Js

G) =

2`s + (2`− 2) for all s ≥ 2, where ` = m1 = m2 = m3. Note also that the stabilization index in this
case is 2. As in Section 3.1, one can derive various expressions for reg(Js

G) for different cases as well.
Consider the arithmetic progression m1 = m + 2r, m2 = m, and m3 = m + r:

Corollary 2. Let m, r be any two positive integers. Let m1 = m + 2r, m2 = m, and m3 = m + r in Theorem 4.
Then for all s ≥ 2, we have

reg(Js
G) = s(2m + 3r) + 2m− 2.

Proof. By Theorem 4, α = (s− `3)m1 + (s− `2)m2 + (s− `1)m3. Therefore, we get

α = s(3m + 3r)− `3(m + 2r)− `2(m)− `1(m + r).

Using Theorem 4, we have for all s ≥ 2,

reg(Js
G) = max


α, for 0 ≤ `1, `2, `3 ≤ s,
α + (m + r)− 1, for 1 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 1,
α + 2(m + r)− 2, for 2 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 2,

where `1 + `2 + `3 = s. As regularity reg(Js
G) is maximum of all the numbers, we need to maximize

the value of α. For this to happen, negative terms in α should be minimum. The coefficient of `3 is
largest among the negative terms in α, so `3 should be assigned the least value. After `3, assign the
minimum value to `1, and finally take `2 = s− `1 − `3. For example, to get the maximum of α when
2 ≤ `1 ≤ s, 0 ≤ `2, `3 ≤ s− 2, put `3 = 0, `1 = 2, and `2 = s− 2. We get for all s ≥ 2

reg(Js
G) = max


s(2m + 3r), for 0 ≤ `1, `2, `3, `4 ≤ s,
s(2m + 3r) + m− 1, for 1 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 1,
s(2m + 3r) + 2m− 2, for 2 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 2.

For all m ≥ 1, and for all s ≥ 2, we get

reg(Js
G) = s(2m + 3r) + 2m− 2.

4.2. Complete 4-Partite Graphs

We now describe the resolution and regularity of powers of cover ideals of 4-partite graphs.
For this purpose, we first study the resolution of powers of cover ideal of the complete graph K4.

Theorem 5. Let R = K[x1, x2, x3, x4] and I = (x1x2x3, x1x2x4, x1x3x4, x2x3x4). Then, for s ≥ 3, the
minimal graded free resolution of R/Is is of the form

0→ R(−3s− 3)β4−→R(−3s− 2)β3−→R(−3s− 1)β2−→R(−3s)β1−→R,
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where

β1 =

(
s + 3

3

)
, β2 = 3

(
s + 2

3

)
, β3 = 3

(
s + 1

3

)
, and β4 =

(
s
3

)
.

In particular, regR(Is) = 3s. Moreover the Hilbert series of R/Is is given by

H(R/Is, t) =
1 + 2t + 3t2 + 4t3 + · · ·+ 3st3s−1 −

(
(s+3

3 )− 3s− 1
)

t3s + (s
3)t

3s+1

(1− t)2

=
∑3s−1

i=0 (i + 1)ti −
(
(s+3

3 )− 3s− 1
)

t3s + (s
3)t

3s+1

(1− t)2 .

Proof. By Remark 3, Is has linear resolution for all s ≥ 1. Moreover, by Remark 4, depth R/Is = 0 for
all s ≥ 3, and therefore pdim R/Is = 4 for all s ≥ 3. Therefore, the minimal graded free resolution of
R/Is, for s ≥ 3, is of the form

0→ R(−3s− 3)β4
∂4−→ R(−3s− 2)β3

∂3−→ R(−3s− 1)β2
∂2−→ R(−3s)β1

∂1−→ R.

Let g1 = x1x2x3, g2 = x1x2x4, g3 = x1x3x4 and g4 = x2x3x4. The minimal generators of Is are
of the form g`1

1 g`2
2 g`3

3 g`4
4 where 0 ≤ `i ≤ s for every i and `1 + `2 + `3 + `4 = s. The number of

non-negative integral solution to the linear equation `1 + `2 + `3 + `4 = s is (s+3
3 ). Therefore, we

have µ(Js) = β1 = (s+3
3 ). Note that g`1

1 g`2
2 g`3

3 g`4
4 = xs−`4

1 xs−`3
2 xs−`2

3 xs−`1
4 with 0 ≤ `1, `2, `3, `4 ≤ s.

Set f`1,`2,`3,`4 = xs−`4
1 xs−`3

2 xs−`2
3 xs−`1

4 . Let

{e`1,`2,`3,`4 : 0 ≤ `1, `2, `3, `4 ≤ s and `1 + `2 + `3 + `4 = s}

denote the standard basis of R(s+3
3 ) and consider the map ∂1 : R(s+3

3 ) → R defined by ∂1(e`1,`2,`3,`4) =

f`1,`2,`3,`4 . Now we find the minimal generators for ker ∂1.
Let f`1,`2,`3,`4 , ft1,t2,t3,t4 be any two minimal monomial generators of Is. It is known that the kernel

of ∂1 is generated by binomials of the form m`1,`2,`3,`4 f`1,`2,`3,`4 −mt1,t2,t3,t4 ft1,t2,t3,t4 , where mi,j,k,l’s are
monomials in R. As the syzygy is generated by linear binomials, we need to find conditions on

`1, `2, `3, `4 such that
f`1,`2,`3,`4
ft1,t2,t3,t4

is equal to xi
xj

for some i, j. Observe that

f`1,`2,`3,`4

ft1,t2,t3,t4

= xt4−`4
1 xt3−`3

2 xt2−`2
3 xt1−`1

4 .

Suppose t4 = `4 + 1, t3 = `3 − 1 and tj = `j for j = 1, 2. Then we get the linear syzygy relation

x2 f`1,`2,`3,`4 − x1 f`1,`2,`3−1,`4+1 = 0. (4)

Fixing t3 and t4 with 1 ≤ t3 + t4 ≤ s, there are as many linear syzygies are there as the number of
solutions of t1 + t2 = s− (t3 + t4). Therefore, for the pair (t3, t4), there are (s+1

2 ) + (s
2) + · · ·+ (2

2) =

(s+2
3 ) number of solutions. Similarly, for each pair (t4, t2), (t4, t1), (t3, t2), (t3, t1) and (t2, t1), we get (s+2

3 )

linear syzygies. Note that the syzygies x4 ft1+1,t2−1,t3,t4 − x3 ft1,t2,t3,t4 and x3 ft1,t2,t3,t4 − x2 ft1,t2−1,t3+1,t4

give rise to another linear syzygy x4 ft1+1,t2−1,t3,t4 − x2 ft1,t2−1,t3+1,t4 . The same linear syzygy can also be
obtained from a combination of linear syzygies that arise out of the pairs (t1, t4) and (t3, t4). Therefore,
to get a minimal generating set, we only need to consider the linear syzygies corresponding to the pairs
(t1, t2), (t2, t3), and (t3, t4). For each such pair, we have (s+2

3 ) number of linear syzygies. Therefore,
β2 = 3(s+2

3 ).
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Write the basis elements of R3(s+2
3 ) as

B2 =


e(1,`1−1,`2),`3+1,`4

e(2,`1−1,`4),`2+1,`3

e(3,`3,`4),`1,`2

: 1 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 1


and define ∂2 : R3(s+1

2 ) −→ Rβ1 by

∂2(e(1,`1−1,`2),`3+1,`4
) = x2e`1−1,`2,`3+1,`4 − x1e`1−1,`2,`3,`4+1;

∂2(e(2,`1−1,`4),`2+1,`3
) = x3e`1−1,`2+1,`3,`4 − x2e`1−1,`2,`3+1,`4 ;

∂2(e(3,`3,`4),`1,`2
) = x4e`1,`2,`3,`4 − x3e`1−1,`2+1,`3,`4 .

Now, we decipher the Betti numbers β3 and β4 to complete the resolution. The Hilbert series of
R/Is is

H(R/Is, t) =
(
1− β1t3s + β2t3s+1 − β3t3s+2 + β4t3s+3)

(1− t)4 =
p(t)

(1− t)4 .

As dim R/Is = 2, the polynomial p(t) has a factor (1 − t)2. Note that (1 − t)2 is a monic
polynomial of degree 2, therefore we can write p(t) = (1− t)2 · q(t), where

q(t) = β4t3s+1 + (2β4 − β3)t3s + a3s−1t3s−1 + · · ·+ a1t + 1. (5)

On the other hand, we also have

p(t)
(1− t)2 =

(
∑
n≥0

(n + 1)tn

)(
1− β1t3s + β2t3s+1 − β3t3s+2 + β4t3s+3

)
(6)

=
3s−1

∑
n=0

(n + 1)tn + (3s + 1− β1)t3s + (3s + 2− 2β1 + β2)t3s+1 + ∑
j≥3s+2

ajtj

For the expressions in Equations (5) and (6) to be equal, their respective coefficients should be
equal. In particular, we should have that

β4 = 3s + 2− 2β1 + β2 and 2β4 − β3 = 3s + 1− β1.

On substituting β1 = (s+3
3 ) and β2 = 3(s+2

3 ), we get β4 = (s
3) from the first equation and

substituting the value in the second equation, we get β3 = 3(s+1
3 ). Now we verify that aj = 0 for all

j ≥ 3s + 2. Note that for r ≥ 2, the coefficient of t3s+r in Equation (6) is

a3s+r = (3s + r + 1) + (r− 2)β4 − (r− 1)β3 + rβ2 − (r + 1)β1.

As 1− β1 + β2 − β3 + β4 = 0, this equation is reduced to a3s+r = (3s + 3) − β3 + 2β2 − 3β1.
Applying the binomial identify (n+1

r+1) = ( n
r+1) + (n

r) repeatedly, we get a3s+r = 0 for all r ≥ 2. Hence
the Hilbert series of R/Is is

H(R/Is, t) =
1 + 2t + 3t2 + 4t3 + · · ·+ 3st3s−1 −

(
(s+3

3 )− 3s− 1
)

t3s + (s
3)t

3s+1

(1− t)2 .

We now complete the description of the resolution. Write the basis elements of R3(s+1
3 ) as

B3 =


E1,`1,`2,`3,`4 ;
E2,`1,`2,`3,`4 ,
E3,`1,`2,`3,`4 ,

: 2 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 2

 .
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Note that |B3| = 3(s+1
3 ). Now define the map ∂3 : R3(s+1

3 ) −→ R3(s+2
3 ) by

∂3(E1,`1,`2,`3,`4) = x4e(2,`1−1,`4),`2+1,`3
+ x4e(1,`1−1,`2),`3+1,`4

− x3e(3,`3,`4),`1−1,`2+1

−x3e(2,`1−2,`4),`2+2,`3
− x3e(1,`1−2,`2+1),`3+1,`4

+ x1e(3,`3,`4+1),`1−1,`2
;

∂3(E2,`1,`2,`3,`4) = x4e(1,`1−1,`2),`3+1,`4
− x3e(1,`1−2,`2+1),`3+1,`4

− x2e(3,`3+1,`4),`1−1,`2

+x1e(3,`3,`4+1),`1−1,`2
;

∂3(E3,`1,`2,`3,`4) = x3e(1,`1−2,`2+1),`3+1,`4
− x2e(2,`1−2,`4),`2+1,`3+1 − x2e(1,`1−2,`2),`3+2,`4

+x1e(2,`1−2,`4+1),`2+1,`3
.

We now compute the kernel of ∂3. Consider the set

A =
{

H`1,`2,`3,`4 : 3 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 3
}

,

where

H`1,`2,`3,`4 = x4E3,`1,`2,`3,`4 − x3E2,`1−1,`2+1,`3,`4 − x3E3,`1−1,`2+1,`3,`4 + x2E1,`1−1,`2,`3+1,`4

−x1E1,`1−1,`2,`3,`4+1 + x1E2,`1−1,`2,`3,`4+1.

It can be verified that ∂3(H`1,`2,`3,`4) = 0, i.e., A ⊆ ker ∂3. Let `′1 = `1 − 3, then one has `′1 + `2 +

`3 + `4 = s− 3. The cardinality of A is equal to the total number of non-negative integral solution
of this linear equation, which is (s

3). As in the proof of Theorem 3, it can be seen that ker ∂3 = 〈A〉.
Write the basis elements of R(s

3) as B4 =
{

G`1,`2,`3,`4 : 3 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 3
}

and define the

map ∂4 : R(s
3) −→ R3(s+1

3 ) by

∂4(G`1,`2,`3,`4) = H`1,`2,`3,`4 .

This is an injective map, and therefore we get the complete resolution:

0→ R(−3s− 3)β4−→R(−3s− 2)β3−→R(−3s− 1)β2−→R(−3s)β1−→R.

Note that in the above proof, we used s ≥ 3 only to conclude that pdim(R/Is) = 4. By Remark 4,
depth(R/I) = 2, and therefore pdim(R/I) = 2. Similarly, depth(R/I2) = 1 and hence pdim(R/I2) =

3. This forces ∂2 to be injective when s = 1 and ∂3 to be injective when s = 2. The computations
of syzygies in the cases of resolution of R/I and R/I2 remain the same as given in the above proof.
Therefore, we get resolutions truncated at Rβ2 in the case of R/I and truncated at Rβ3 in the case of
R/I2, with the expressions for β2 and β3 coinciding with the ones given in the proof. Therefore, we
can conclude that in this case, reg(Is) = 3s for all s ≥ 1.

As an immediate consequence, we obtain an expression for the asymptotic regularity of cover
ideals of complete 4-partite graphs.

Theorem 6. Let G denote a complete 4-partite graph with V(G) = t4
i=1Vi and E(G) = {{a, b} : a ∈

Vi, b ∈ Vj, i 6= j}. Set Vi = {xi1, . . . , ximi} for i = 1, . . . , 4. Let JG ⊂ R = K[xij : 1 ≤ i ≤ 4; 1 ≤ j ≤ mi]

denote the cover ideal of G. Then the minimal free resolution of R/Js
G is of the form

0→ R(s
3)−→R3(s+1

3 )−→R3(s+2
3 )−→R(s+3

3 )−→R.
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Set α = (s− `4)m1 + (s− `3)m2 + (s− `2)m3 + (s− `1)m4. Furthermore, we have

reg(Js
G) = max


α, for 0 ≤ `1, `2, `3, `4 ≤ s,
α + m4 − 1, for 1 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 1,
α + 2m4 − 2, for 2 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 2,
α + 3m4 − 3, for 3 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 3,

where `1 + `2 + `3 + `4 = s.

Proof. Let Xi = ∏mi
j=1 xij. Then JG = (X1X2X3, X1X2X4, X1X3X4, X2X3X4). Then it follows from

Theorem 5 that the minimal free resolution of R/Js
G is of the given form

0→ R(s
3)−→R3(s+1

3 )−→R3(s+2
3 )−→R(s+3

3 )−→R.

To compute the regularity of R/Js
G, we first need to find the degree’s of the generators of the

syzygies. Following the notation of Theorem 5, we have

deg e`1,`2,`3,`4 = deg
(

Xs−`4
1 Xs−`3

2 Xs−`2
3 Xs−`1

4

)
= (s− `4)m1 + (s− `3)m2 + (s− `2)m3 + (s− `1)m4,

deg e(1,`1−1,`2),`3,`4
= deg e(2,`1−1,`4),`2+1,`3

= deg e(3,`3,`4),`1,`2
= deg e`1,`2,`3,`4 + deg(X4),

deg E1,`1,`2,`3,`4 = deg E2,`1,`2,`3,`4 = deg E3,`1,`2,`3,`4 = deg e`1,`2,`3,`4 + 2 deg(X4),
deg G`1,`2,`3,`4 = deg e`1,`2,`3,`4 + 3 deg(X4).

Therefore, by setting α = deg e`1,`2,`3,`4 , we get

reg(Js
G) = max


α, for 0 ≤ `1, `2, `3, `4 ≤ s,
α + deg(X4)− 1, for 1 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 1,
α + 2 deg(X4)− 2, for 2 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 2,
α + 3 deg(X4)− 3, for 3 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 3,

,

where `1 + `2 + `3 + `4 = s.

Here also, we have obtained an expression for reg(Js
G) not in the form of a linear polynomial.

However, as we have demonstrated in the previous cases, this can always be derived for a given graph.
Analyzing the interplay between the cardinalities of the partitions, one can obtain the polynomial
expression. Let m1 = m2 = m3 = m4 = m. Then,

α = (s− `4)m1 + (s− `3)m2 + (s− `2)m3 + (s− `1)m4

= (4s− (`1 + `2 + `3 + `4))m = 3ms.

Therefore reg(Js
G) = 3ms + (3m− 3) for all s ≥ 3.

Corollary 3. Let m, r be any two positive integers. Consider the arithmetic progression m1 = m, m2 = m + r,
m3 = m + 2r, and m4 = m + 3r in Theorem 6. Then, for all s ≥ 3, we have

reg(Js
G) = s(3m + 6r) + 3m− 3.

Proof. We have from Theorem 6, α = (s − `4)m1 + (s − `3)m2 + (s − `2)m3 + (s − `1)m4. On
substituting the values of mi’s in α, we get

α = s(4m + 6r)−m`4 − (m + r)`3 − (m + 2r)`2 − (m + 3r)`1
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By Theorem 6, we have for all s ≥ 3,

reg(Js
G) = max


α, for 0 ≤ `1, `2, `3, `4 ≤ s,
α + (m + 3r)− 1, for 1 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 1,
α + 2(m + 3r)− 2, for 2 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 2,
α + 3(m + 3r)− 3, for 3 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 3,

where `1 + `2 + `3 + `4 = s. To achieve the maximum value of α, negative terms in α should be
minimum. The coefficient of `1 in negative terms in α is largest, so `1 should be assigned the minimum
value. After assigning the minimum value to `1, assign the minimum value to `2, and, similarly,
the minimum value to `3. Then assign `4 = s− `1 − `2 − `3. For instance, to get the maximum of α

when 1 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 1, put `1 = 1, `2 = 0, `3 = 0, and `4 = s− 1. With appropriate
substitution, we get for all s ≥ 3

reg(Js
G) = max


s(3m + 6r), for 0 ≤ `1, `2, `3, `4 ≤ s,
s(3m + 6r) + m− 1, for 1 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 1,
s(3m + 6r) + 2m− 2, for 2 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 2,
s(3m + 6r) + 3m− 3, for 3 ≤ `1 ≤ s, 0 ≤ `2, `3, `4 ≤ s− 3.

Clearly for all m ≥ 1, and for all s ≥ 3, we get

reg(Js
G) = s(3m + 6r) + 3m− 3.

4.3. Complete m-Partite Graphs

Let G be a complete graph on m-vertices. Then the cover ideal JG of G is generated by
{x1 · · · x̂i · · · xm : 1 ≤ i ≤ m}. It follows from Remark 4 that depth R/Js

G = 0 for all s ≥ m − 1.
Moreover, by Remark 3, we know that R/Js

G has linear resolution for all s ≥ 1. Therefore, the minimal
graded free resolution of R/Js

G for all s ≥ m− 1 is of the form

0→ R(−s(m− 1)−m + 1)βm−→ → · · · → R(−s(m− 1)− 1)β2−→R(−s(m− 1))β1−→R.

Let g1, g2, . . . , gm be the minimal generators JG. Then, the elements in Js
G consist of elements

T`1,`2,...,`m = g`1
1 g`2

2 . . . g`m
m , such that `1 + `2 + · · ·+ `m = s and 0 ≤ `i ≤ s. Therefore the total number

of elements in Js
G is same as the total number of non-negative integral solution to the linear equation

`1 + `2 + · · ·+ `m = s, which is (s+m−1
m−1 ). Thus, µ(Js

G) = (s+m−1
m−1 ). Therefore, β1 = (s+m−1

m−1 ).
Let {e`1,`2,...,`m | 0 ≤ `i ≤ s; and `1 + `2 + · · · + `m = s} denote the standard basis for Rβ1 .

Let ∂1 : Rβ1 −→ R be the map ∂1(e`1,`2,...,`m) = T`1,`2,...,`m . As done in the proofs of Theorems 3 and 5,
we can see that the first syzygy is given by the relations of the form

xi · T`1,`2,··· ,`i−1,`i−1,`i+1+1,··· ,`m − xi+1 · T`1,`2,··· ,`i−1,`i ,`i+1,··· ,`m = 0

for each 1 ≤ i ≤ m − 1. Set `i − 1 = `′i and `i+1 + 1 = `′i+1. Then it can be seen that, for each
1 ≤ i ≤ m− 1, there exist as many such relations as the number of non-negative integer solutions of
`1 + · · ·+ `′i + · · · `m = s− 1. Therefore, the total number of such linear relations is (m− 1)(s+m−2

m−1 ).
Therefore β2 = (m−1

1 )(s+m−2
m−1 ). However it is not very difficult to realize that writing down the higher

syzygy relations are quite challenging. Based on Theorems 3 and 5 and some of the experimental
results using the computational commutative algebra package Macaulay 2 [17], we propose the
following conjecture.
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Conjecture 1. Let R = K[x1, x2, . . . , xm] and let J be the cover ideal of the complete graph Km. The minimal
graded free resolution of R/Is for all s ≥ m− 1 is of the form

0→ R(−s(m− 1)−m + 1)βm−→ · · · −→ R(−s(m− 1)− 1)β2−→R(−s(m− 1))β1−→R,

where

βi =

(
m− 1
i− 1

)(
s + m− i

m− 1

)
.

Notice that proving the above conjecture will give the Betti numbers of powers of cover ideals of
complete m-partite graphs. We conclude our article by proposing an expression for the regularity of
powers of the cover ideals of complete m-partite graphs:

Conjecture 2. Let G denote a complete m-partite graph with V(G) = tm
i=1Vi and E(G) = {{a, b} : a ∈

Vi, b ∈ Vj, i 6= j}. Set Vi = {xi1, . . . , xini} for i = 1, . . . , m. Let JG ⊂ R = K[xij : 1 ≤ i ≤ m; 1 ≤ j ≤ ni]

denote the cover ideal of G. Let 0 ≤ `1, `2, . . . , `m ≤ s be integers such that `1 + `2 + · · ·+ `m = s. Set

α = s · (
m

∑
i=1

ni)−
m

∑
i=1

ni`m+1−i.

Then for all s ≥ m− 1, one has

reg(Js
G) = max



α, for 0 ≤ `1, `2, · · · , `m ≤ s,
α + nm − 1, for 1 ≤ `1 ≤ s, 0 ≤ `2, · · · , `m ≤ s− 1,
α + 2(nm − 1), for 2 ≤ `1 ≤ s, 0 ≤ `2, · · · , `m ≤ s− 2,

...
α + (m− 1)(nm − 1), for m− 1 ≤ `1 ≤ s, 0 ≤ `2, · · · , `m ≤ s− (m− 1).
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