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Abstract: In this paper, we propose a new global optimization algorithm, which can better solve
a class of linear fractional programming problems on a large scale. First, the original problem is
equivalent to a nonlinear programming problem: It introduces p auxiliary variables. At the same
time, p new nonlinear equality constraints are added to the original problem. By classifying the
coefficient symbols of all linear functions in the objective function of the original problem, four sets
are obtained, which are I+i , I−i , J+i and J−i . Combined with the multiplication rule of real number
operation, the objective function and constraint conditions of the equivalent problem are linearized
into a lower bound linear relaxation programming problem. Our lower bound determination method
only needs eT

i x + fi 6= 0, and there is no need to convert molecules to non-negative forms in advance
for some special problems. A output-space branch and bound algorithm based on solving the linear
programming problem is proposed and the convergence of the algorithm is proved. Finally, in order
to illustrate the feasibility and effectiveness of the algorithm, we have done a series of numerical
experiments, and show the advantages and disadvantages of our algorithm by the numerical results.

Keywords: global optimization; fractional programming; branch and bound; output-space; linear
relaxation

1. Introduction

Fractional programming is an important branch of nonlinear optimization and it has attracted
interest from researchers for several decades. The sum of linear ratios problem is a special class of
fractional programming problem with wide applications, such as for transportation schemes, as well
as finding applications in economics [1], investment and production control [2–4], and multi-objective
portfolios [5]. The primary challenges in solving linear fractional programming (LFP) arise from a
lack of useful properties (convexity or otherwise) and from the number of ratios and the dimension of
decision space. Theoretically, it is NP-hard [6,7]. In addition, for a problem LFP, there may be several
local optimal solutions [8], which interferes with finding the global optimal solution and increases the
difficulty of the problem. It is therefore worthwhile to study this kind of problem. In this paper, we
shall investigate the following linear fractional programming problem:

LFP := min f (x) =
p

∑
i=1

cT
i x + di

eT
i x + fi

s.t. Ax ≤ b, x ≥ 0.

Mathematics 2019, 7, 867; doi:10.3390/math7090867 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-2021-2097
http://www.mdpi.com/2227-7390/7/9/867?type=check_update&version=1
http://dx.doi.org/10.3390/math7090867
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 867 2 of 21

where the feasible domain X = {x ∈ Rn|Ax ≤ b, x ≥ 0} is n-dimensional, nonempty, and bounded;
p ≥ 2, A ∈ Rm×n, b ∈ Rm, ci ∈ Rn, di ∈ R, ei ∈ Rn, fi ∈ R and eT

i x + fi 6= 0.
In the application of practical problems, p usually does not exceed 10. At present, many algorithms

have been proposed to solve the LFP problem with a limited number of ratios. For instance, In 1962,
Charnes et al. gave an effective elementary simplex method in the case of p = 1 [9]. On the
premise of p = 2, Konno proposed one similar parametric elementary simplex method on the basis
of reference [9], which can be used to solve large-scale problems [10]. When p = 3, Konno et al.
constructed an effective heuristic algorithm by developing the parameter simplex algorithm [11].
When p > 3, Shen et al. reduced the original nonconvex programming problem to a series of linear
programming problems by using equivalent transformation and linearization techniques to achieve
the purpose of solving the linear fraction problem with coefficients [12]. Nguyen and Tuy considered a
unified monotonic approach to generalized linear fractional programming [13]. Benson presented a
simplicial branch-and-bound duality-bounds algorithm by applying the Lagrangian duality theory [6].
Jiao et al. gave a new interval reduced branch-and-bound algorithm for solving the global problem
of linear ratio and denominator outcome space [14]. By exploring a well-defined nonuniform mesh,
Shen et al. solved an equivalent optimization problem and proposed a complete polynomial time
approximation algorithm [15]. In the same year, Hu et al. proposed a new branch-and-bound
algorithm for solving the low-dimensional linear fractional programming [16]. Shen et al. introduced
a practicable regional division and reduction algorithm for minimizing the sum of linear fractional
functions over a polyhedron [17]. Through using a suitable transformation and linearization technique,
Zhang and Wang proposed a new branch and bound algorithm with two reducing techniques to
solve the generalized linear fractional programming [18]. By adopting the exponent transformation
technique, Jiao et al. proposed a branch and bound algorithm of three-level linear relaxation to
solve the generalized polynomial ratios problem with coefficients [19]. Based on the image space
where the objective function is easy to deal with in a certain direction, Falk J E et al. transformed the
problem into an “image space” by introducing new variables, and then analyzed and solved the linear
fractional programming [20]. Gao Y et al. transformed the original problem into an equivalent bilinear
programming problem, and used the convex envelope and concave envelope of bilinear functions to
determine the lower bound of the optimal value of the original problem, and then propose a branch
and bound algorithm [21]. By dividing the box where the decision variables are located, Ying Ji et al.
proposed a new deterministic global optimization algorithm by relaxing the denominator on each
box [22]. Furthermore, according to references [23,24], there are other algorithms that can be used to
solve the LFP problem.

In this article, a new branch-and-bound algorithm based on the branch of output-space is proposed
for globally solving the LFP problem. To do this, an equivalent optimization problem (EOP) is
presented. Next, the objective function and constraint functions of the equivalence problem are relaxed
using four sets (i.e., I+I , I−I , J+I , J−I ) and the multiplication rules for real number operations. Based on
this operation, a linear relaxation programming problem that provides a reliable lower bound for the
original problem is constructed. Finally, a new branch-and-bound algorithm for the LFP problem
is designed. Compared with the methods mentioned above (e.g., [9–15,17,18,23,24]), the goal of this
research is three-fold. First of all, the lower bound of the subproblem of each node can be achieved
easily, solely by solving linear programs. Secondly, the performance of the algorithm is based on the
difference between the number of decision variables n and the number p of ratios. Thirdly, the problem
in this article is more general than those considered in [14,17,18], since we only require eT

i x + fi 6= 0
and don’t need to convert cT

i x + di < 0 to cT
i x + di ≥ 0 for each i. However, the problem solved by

our model must ensure that every decision variable is non-negative, which is also a limitation of the
problem we study. In the end, the computational results of a problem with a large number of ratio
terms are shown below to illustrate the feasibility and validity of the proposed algorithm.

This paper is organized as follows. In Section 2, the LFP problem is changed to the equivalent
non-convex programming problem EOP. Section 3 shows how to construct a linear relaxation problem



Mathematics 2019, 7, 867 3 of 21

of LFP. In Section 4, we give the branching rules on a hyper-rectangle. In Section 5, an output-space
branch and bound algorithm is presented and its convergence is established. Section 6 introduces some
existing test examples in the literature, and gives the calculation results and numerical analysis. Finally,
the method of this paper is briefly reviewed, and the extension of this method to multi-objective
fractional programming is prospected.

2. The Equivalence Problem of LFP

In order to establish the equivalence problem, we introduce p auxiliary variables and let ti =
1

eT
i x+ fi

, i = 1, 2, . . . , p. The upper and lower bounds of ti are referred to by ti and ti, respectively. Then,

we calculate the following linear programming problems:

mi = min
x∈ X∩H

eT
i x + fi, mi = max

x∈X∩H
eT

i x + fi.

So, we have
1

mi
= ti ≤ ti =

1
eT

i x + fi
≤ ti =

1
mi

.

The hyper-rectangle of t can be denoted as follows:

H = [t, t], t = (t1, t2, · · · , tp)
T , t = (t1, t2, · · · , tp)

T .

Similarly, for the sub-hyper-rectangle Hk ⊆ H that will be used below, the following definitions
are given:

Hk = [tk, tk
], tk = (tk

1, tk
2, · · · , tk

p)
T , tk

= (tk
1, tk

2, · · · , tk
p)

T .

Finally, the LFP problem can be further translated into the following equivalent optimization
problem:

EOP := min f (x, t) =
p

∑
i=1

(cT
i x + di)ti, s.t.


(eT

i x + fi)ti = 1, i = 1, 2, · · · , p,
x ∈ X = {x ∈ Rn|Ax ≤ b, x ≥ 0},

t ∈ H.

Theorem 1. The feasible solution x∗ is a global optimal solution of the LFP problem if and only if the
EOP problem attaches to the global optimal solution (x∗, t∗), and for every i = 1, 2, . . . p we have equation
t∗i = 1

eT
i x∗+ fi

.

Proof of Theorem 1. If x∗ is a globally optimal solution for the problem LFP, we have t∗i = 1
eT

i x∗+ fi
, i =

1, 2, . . . p, Thus (x∗, t∗) is the feasible solution and the objective function value f (x∗) of EOP,
respectively. Let (x, t) be any feasible solution to problem EOP. We have

ti =
1

eT
i x + fi

, i = 1, 2, . . . p,

which means

f (x∗) =
p

∑
i=1

cT
i x∗ + di

eT
i x∗ + fi

=
p

∑
i=1

(cT
i x∗ + di)t∗i .

Using the optimality of x∗,

p

∑
i=1

(cT
i x∗ + di)t∗i = f (x∗, t∗) ≤ f (x, t) =

p

∑
i=1

(cT
i x + di)ti.
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Hence, by x∗ ∈ X and ti = 1
eT

i x∗+ fi
, a global optimal solution (x∗, t∗) of problem EOP can

be found.
On the other hand, problem EOP can also be solved and its optimal solution (x∗, t∗) obtained. Let

t∗i =
1

eT
i x∗ + fi

, i = 1, 2, . . . p,

and then we have

f (x∗) =
p

∑
i=1

cT
i x∗ + di

eT
i x∗ + fi

=
p

∑
i=1

(cT
i x∗ + di)t∗i .

Let ti =
1

eT
i x+ fi

, i = 1, 2, . . . p, for any feasible solution x of LFP. Then, (x, t) is a feasible solution

to problem EOP and the objective function is f (x). According to the optimality of (x∗, t∗) and the
feasibility of x, we have

f (x) ≥
p

∑
i=1

(cT
i x∗ + di)t∗i = f (x∗).

As x∗ ∈ X, according to the above inequalities, for x∗ is a global optimal solution of problem LFP.
Thus, the LFP problem is equivalent to EOP.

3. A New Linear Relaxation Technique

In this section, we will show how to construct a linear relaxation programming (LRP) for problem
LFP. In the following, for the convenience of expression, denote:

I+i = {j|eij > 0, j = 1, 2, . . . , n}, J+i = {j|cij > 0, j = 1, 2, . . . , n},
I−i = {j|eij < 0, j = 1, 2, . . . , n}, J−i = {j|cij < 0, j = 1, 2, . . . , n},

Φi(x, t) = (eT
i xj + fi)ti =

n

∑
j=1

eijtixj + fiti, Ψi(x, t) = (cT
i xj + di)ti =

n

∑
j=1

cijtixj + diti.

Then, based on the above discussion, we have

Ψi(x, t) = ti(
n

∑
j=1

cijxj + di) = ∑
j∈J+i

cijtixj + ∑
j∈J−i

cijtixj + diti,

≥ ∑
j∈J+i

cijtixj + ∑
j∈J−i

cijtixj + diti = Ψi(x, t).

Φi(x, t) = ti(
n

∑
j=1

eijxj + fi) = ∑
j∈I+i

eijtixj + ∑
j∈I−i

eijtixj + fiti,

≥ ∑
j∈I+i

eijtixj + ∑
j∈I−i

eijtixj + fiti = Φi(x, t).

Φi(x, t) = ti(
n

∑
j=1

eijxj + fi) = ∑
j∈I+i

eijtixj + ∑
j∈I−i

eijtixj + fiti,

≤ ∑
j∈I+i

eijtixj + ∑
j∈I−i

eijtixj + fiti = Φi(x, t).

Obviously, f (x, t) = ∑
p
i=1 Ψi(x, t) ≥ ∑

p
i=1 Ψi(x, t) = f (x, t), f (x, t) is a lower bound function of

f (x, t).
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Finally, we obtain a linear relaxation programming problem LRP of problem EOP by loosening
the feasible region of the equivalent problem:

(LRP) := min f (x, t) =
p

∑
i=1

Ψi(x, t), s.t.


Φi(x, t) ≤ 1, i = 1, 2, · · · , p,
Φi(x, t) ≥ 1, i = 1, 2, . . . , p,

t ∈ H = {t ∈ Rp|ti ≤ ti ≤ ti, i = 1, 2, . . . p},
x ∈ X = {x ∈ Rn|Ax ≤ b, x ≥ 0}.

At the same time, the linear relaxation subproblem LRPk of problem EOP on sub-hyper-rectangle
Hk ⊆ H is :

(LRPk) := min f (x, t) =
p

∑
i=1

Ψi(x, t), s.t.


Φi(x, t) ≤ 1, i = 1, 2, · · · , p,
Φi(x, t) ≥ 1, i = 1, 2, . . . , p,

t ∈ Hk = {t ∈ Rp|tk
i ≤ ti ≤ tk

i , i = 1, 2, . . . p},
x ∈ X = {x ∈ Rn|Ax ≤ b, x ≥ 0}.

According to the above, assume that when the algorithm iterates to step k, we only need to solve
problem LRPk, whose optimal value v(LRPk) is a lower bound of the global optimum value v(EOPk)of
problem EOP on rectangle Hk ⊆ H. The optimal value v(LRPk) is also an effective lower bound of
the global optimum value v(LFPk) of the original problem LFP on Hk, i.e., v(LRPk) ≤ v(EOPk) =

v(LFPk).
Therefore, problem LRPk is solved—its optimal value is obtained, which is a lower bound of the

global optimum of problem LFP on rectangle Hk. The updated method of the upper bound will be
explained in detail in Remark 4.

4. Branching Process

In order to facilitate the branch of the algorithm, we adopt the idea of dichotomy, and give an
adaptive hyper-rectangular partition method, which depends on ω. Let Hk = [tk, tk

] ⊆ H0 = H denote
the current hyper-rectangle to be divided, the corresponding optimal solution of the problem LFPk

is represented by xk and the corresponding optimal solution of the linear relaxation problem LRPk

is represented by (xk, tk), respectively. It is obvious that xk ∈ X and tk ∈ Hk. The following forms of
dissection will be performed on Hk = [tk, tk

]:
(i): Calculate ω = max{(tk

i − tk
i )(t

k
i − tk

i ) : i = 1, 2, · · · , p}, if ω = 0, let tk
µ − tk

µ = max{tk
i − tk

i :

i = 1, 2, · · · , p}, then tk
µ =

tk
µ+tk

µ

2 ; otherwise, find the first tk
j ∈ arg max ω and let tk

µ = tk
j .

(ii): Note that t̂ = (tk
1, tk

2, · · · , tk
i−1, tk

µ, tk
i+1, · · · , tk

p)
T . Using the point t̂, the rectangular

Hk is divided into two sub-super-rectangular Hk1 = [tk1, tk1
] and Hk2 = [tk2, tk2

], then the
sub-super-rectangles Hk1 and Hk2, which are respectively:

Hk1 =
µ−1

∏
i=1

[tk
i , tk

i ]× [tk
µ, tk

µ]×
p

∏
i=µ+1

[tk
i , tk

i ],

Hk2 =
µ−1

∏
i=1

[tk
i , tk

i ]× [tk
µ, tk

µ]×
p

∏
i=µ+1

[tk
i , tk

i ].

Remark 1. When ω = 0, tk is located at the lower left vertex or upper right vertex of the hyper-rectangle Hk,
we divide the longest edge of the rectangle in a uniform dichotomous way. When ω 6= 0, the dividing method
depends on the position of the tk in the hyper-rectangle Hk, and the selected µ edge is as wide as possible and
ensures that tk

µ is as close to the midpoint of the edge as possible.
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Remark 2. The advantage of this method of dividing the hyper-rectangle is that it increases the diversity of
hyper-rectangle segmentation, but to some extent, it increases the amount of extra computation. Other rules
may have better performance.

5. Output-Space Branch-and-Bound Algorithm and Its Convergence

To allow a full description of the algorithm, when the algorithm iterates to step k, we make
the following representation of the associated notation: Hk is the hyper-rectangle to be thinned for
the current iteration step; Q is the set of all feasible solutions to LFP; Ω is the remaining sets of
hyper-rectangles after pruning; Uk is the upper bound of the global optimal value of the LFP problem
when the algorithm iterates to the step k; Lk is the lower bound of the global optimal value of the LFP
problem when the algorithm iterates to the step k; L(Hk) represents the optimal function value of
problem LRPk on Hk and (xk, tk) is its corresponding optimal solution.

Using the above, a description of the output-space branch-and-bound algorithm for solving the
problem LFP is as follows.

Step 1. Set the tolerance ε > 0. Construct the initial hyper-rectangle H0 = H = [t, t]. Solve the
linear programming problem LRP0 on super-rectangular H0. The corresponding optimal solution and
optimal value are recorded as (x0, t0) and L(H0), respectively. Then, L0 = L(H0) is the initial lower
bound of the global optimal value of LFP. The initial upper bound is U0 = f (x0). If U0 − L0 ≤ ε, then
stop, a ε-global optimal solution x∗ = x0 of problem LFP is found. Otherwise, set Ω = {H0}, F = ∅,
the initial iteration number k = 1, and transfer to Step 2.

Step 2. If Uk − Lk ≤ ε, then stop the iteration of the algorithm, output the current global optimal
solution x∗ of the LFP problem and the globally optimal value f (x∗); Otherwise, go to Step 3.

Step 3. The super-rectangle Hk, which corresponds to the current lower bound Lk, is selected,
in Ω, i.e., Lk = L(Hk).

Step 4. Using the rectangular branching process in Section 3, Hk is divided into two sub-rectangles:
Hk1 and Hk2 that satisfy Hk1 ∩ Hk2 = ∅. For all L(Hki) < Uk, set F = F ∪ {Hki}, Q = Q ∪ {xi}
(i ∈ {1, 2}). If F = ∅, go to Step 3. Otherwise, set Ω = Ω\Hk ∪ F, and continue.

Step 5. Let Uk = min{Uk, min{ f (x) : x ∈ Q}}. If Uk = min{ f (x) : x ∈ Q}, the current optimal
solution is x∗ ∈ arg min{ f (x), x ∈ Q}; Let Lk = min{L(H) : H ∈ Ω}; Set k := k + 1, F = ∅, Q = ∅,
and go to Step 2.

Remark 3. The branching target of our branch and bound algorithm is p-dimensional output-space, so our
algorithm can be called OSBBA.

Remark 4. It can be seen from Step 4 and Step 5 that the number of elements in Q does not exceed two in each
iterative step, and at the same time, only two function values are calculated in Step 5 to update the upper bound.

Remark 5. In Step 4, we save the super-rectangle Hki of L(Hki) < Uk into Ω after each branch, which implies
the pruning operation of the branching algorithm.

Remark 6. The convergence rate of the algorithm OSBBA. is related to the optimal accuracy and the initial
hyper-rectangle H0. It can be seen from Theorem 5 below that the convergence rate of the algorithm OSBBA
is proportional to the size of the accuracy ε and inversely proportional to the diameter length of the initial
hyper-rectangle H0. In general, the accuracy is given in advance, and the convergence rate mainly depends on
the diameter length of the initial hyper-rectangle H0.

Theorem 2. Let εi = ti − ti, for each i ∈ {1, 2, · · · , p}, or ∀x ∈ X, t ∈ H, if εi → 0, we have Φi(x, t)−
Φi(x, t)→ 0, Φi(x, t)−Φi(x, t)→ 0, Ψi(x, t)−Ψi(x, t)→ 0, f (x)− f (x, t)→ 0.
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Proof of Theorem 2. For every ∀x ∈ X, t ∈ H, by merging (1) and (2), we have:

Φi(x, t)−Φi(x, t) =
n

∑
j=1

eijtixj + fiti − ( ∑
j∈I+i

eijtixj + ∑
j∈I−i

eijtixj + fiti),

=
n

∑
j=1

eijtixj − ( ∑
j∈I+i

eijtixj + ∑
j∈I−i

eijtixj),

≤ ∑
j∈I+i

eij|ti − ti|xj + ∑
j∈I−i

|eij||ti − ti|xj,

≤ ∑
j∈I+i

eij|ti − ti|xj + ∑
j∈I−i

|eij||ti − ti|xj,

= |ti − ti| ·
n

∑
j=1
|eij|xj ≤ Ni · |ti − ti|.

(1)

Φi(x, t)−Φi(x, t) = ∑
j∈I−i

eijtixj + ∑
j∈I+i

eijtixj + fiti − (
n

∑
j=1

eijtixj + fiti),

= ∑
j∈I−i

eijtixj + ∑
j∈I+i

eijtixj −
n

∑
j=1

eijtixj,

≤ ∑
j∈I−i

|eij||ti − ti|xj + ∑
j∈I+i

eij|ti − ti|xj,

≤ ∑
j∈I−i

|eij||ti − ti|xj + ∑
j∈I+i

eij|ti − ti|xj,

= |ti − ti| ·
n

∑
j=1
|eij|xj ≤ Ni · |ti − ti|.

(2)

and

Ψi(x, t)−Ψi(x, t) =
n

∑
j=1

cijtixj + diti − ( ∑
j∈J+i

cijtixj + ∑
j=J−i

cijtixj + diti),

=
n

∑
j=1

cijtixj − ( ∑
j∈J+i

cijtixj + ∑
j∈J−i

cijtixj),

≤ ∑
j∈J+i

cij|ti − ti|xj + ∑
j∈J−i

|cij||ti − ti|xj,

≤ ∑
j∈J+i

cij|ti − ti|xj + ∑
j∈J−i

|cij||ti − ti|xj,

= |ti − ti| ·
n

∑
j=1
|cij|xj ≤ Ni · |ti − ti|.

(3)

where Ni = max{∑n
j=1 |eij|xj, ∑n

j=1 |cij|xj}, i = 1, . . . , p. On the one hand, x ∈ X is bounded and
0 ≤ xj ≤ xj for each j = 1, 2, · · · , n. Thus εi → 0, N · |ti − ti| → 0, besides Φi(x, t) − Φi(x, t) →
0, Φi(x, t)−Φi(x, t)→ 0, Ψi(x, t)−Ψi(x, t)→ 0.

On the other hand,

f (x)− f (x, t) =
p

∑
i=1

[Ψi(x, t)−Ψi(x, t)]. (4)

By combining Inequalities (3) and Equation (4), then f (x)− f (x, t)→ 0. Therefore, the theorem
holds.
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According to Theorem 2, we can also know that the super-rectangle of t is thinning gradually and
the relaxed feasible region progressively approaches the original feasible region by operation of the
algorithm.

Theorem 3. (a) If the algorithm terminates within finite iterations, a globally optimal solution for LFP is found.
(b) If the algorithm generates an infinite sequence in the iterative process, then any accumulation point of

the infinite sequence {xk} is a global optimal solution of the problem LFP.

Proof of Theorem 3. (a) If the algorithm is finite, assume it stops at the kth iteration, k > 1. From the
termination rule of Step 2, we know that Uk − Lk ≤ ε, which implies that

f (xk)− Lk ≤ ε. (5)

Assuming that the global optimal solution is x∗, we know that

Uk = f (xk) ≥ f (x∗) ≥ Lk. (6)

hence, combining inequalities (5) and (6), we have

f (xk) + ε ≥ f (x∗) + ε ≥ Lk + ε ≥ f (xk). (7)

and then part (a) has been proven.
(b) If the iteration of the algorithm is infinite, and in this process, an infinite sequence {xk} of

feasible solutions for the problem LFP is generated by solving the problem LRPk, the sequence of
feasible solutions for the corresponding linear relaxation problem is {(xk, tk)}. According to Steps 3–5
of the algorithm, we have

Lk = f (xk, tk) ≤ f (x∗) ≤ f (xk) = Uk, k = 1, 2, · · · . (8)

Because the series {Lk = f (xk, tk)} is nondecreasing and bounded, and {Uk = f (xk)} is
decreasing and bounded, they are convergent sequences. Taking the limit on both sides of (8), we have

lim
k→∞

f (xk, tk) ≤ f (x∗) ≤ lim
k→∞

f (xk). (9)

Then, L = lim
k→∞

f (xk, tk), U = lim
k→∞

f (xk), and Formula (9) becomes

L ≤ f (x∗) ≤ U. (10)

Without loss of generality, assume that the rectangular sequence {Hk = [tk, tk
]} satisfies tk ∈ Hk

and Hk+1 ∈ Hk. In our algorithm, the rectangles are divided continuously into two parts of equal width,
then lim

k→∞
Hk = t∗, and in the process, a sequence {tk} of t will be generated, obviously, lim

k→∞
tk = t∗,

and also generate a sequence {xk} that satisfies lim
k→∞

xk = x∗, because of the continuity of function

f (x) and Formula (10). So, the sequence {xk}, of which any accumulation point x∗ is a global optimal
solution of the LFP problem.

From Theorem 3, we know that the algorithm in this paper is convergent, and then we use
Theorems 4 and 5 to show that the convergence rate of our algorithm is related to the size of p.
For the detailed proof of Theorem 4, see [25], and other concepts in the theorem are derived from [25].
In addition, we encourage readers to understand [25] in detail.
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As the sub-hyper-rectangles obtained by our branch method are not necessarily congruent, take
δ(H) = max{δ(Hl) : l ∈ {1, 2, · · · , s}}, where the definition of s is given below. The definition of
δ(Hl) is the same as that of Notation 1 in [25], which represents the diameter of hyper-rectangle Hl .
Therefore, δ(H) represents the maximum diameter of the s hyper-rectangles. In order to connect well
with the content of this paper, we adjust the relevant symbols and reinterpret.

Theorem 4. Consider the big cube small cube algorithm with a bounding operation which has a rate of
convergence of q ≥ 1. Furthermore, assume a feasible super-rectangle H and the constants ε, C > 0 as before.
Moreover, we assume the branching process which splits the selected super-rectangle along each side, i.e., into
s = 2r smaller super-rectangles. Then the worst case number of iterations for the big cube small cube method
can be bounded from above by

z

∑
v=0

2r·v where z = dlog2
δ(H)

(ε/C)1/q e, δ(H) = max{δ(Hl) : l ∈ {1, 2, · · · , s}}. (11)

Proof of Theorem 4. The proof method is similar to the Theorem 2 in [25] and is thus omitted.

In Theorem 4, r represents the spatial dimension of the hyper-rectangle to be divided. At the same
time, Tables 1 and 2 in [25] show that q = 1 is the worst case, that is, the most times the algorithm needs
to subdivide hyper-rectangles during iteration. For the convenience of the discussion, we assume
q = 1, and give Theorem 5 to show that the convergence rate of our algorithm is related to the size of p.

Theorem 5. For the algorithm OSBBA, it is assumed that for a feasible hyper-rectangle Hp, there is a fixed
positive number of Cp and the accuracy ε. In addition, we also assume that the branching process will eventually
divide the hyper-rectangle into s = 2p small hyper-rectangles. Then, in the worst case, the number of iterations
of the OSBBA algorithm when dividing the hyper-rectangle Hp can be expressed by the following formula:

zp

∑
v=0

2p·v where zp = dlog2
Cp · δ(Hp)

ε
e, δ(Hp) = max{δ(Hl

p) : l ∈ {1, 2, · · · , s}}. (12)

We call the convergence rate of the algorithm OSBBA, O(p).

Proof of Theorem 5. We order “r = p”, “C = Cp”, “q = 1”, “z = zp” and “H = Hp” in Theorem 4, the
proof method is similar to Theorem 4, and the reader can refer to [25].

In addition, for the algorithms in [18,26–29], they subdivide the n-dimensional hyper-rectangle
Hn. Similar to Theorem 4, when they divide the hyper-rectangle Hn, the number of iterations in the
worst case can also be expressed by the following formula:

zn

∑
v=0

2n·v where zn = dlog2
δ(Hn)

(ε/Cn)1/qn
e, δ(Hn) = max{δ(Hl

n) : l ∈ {1, 2, · · · , s}}. (13)

where “n”, “Cn”, “qn”, “zn” and “Hn” correspond to “r”, “C”, “q”, “z” and “H” in (11). We also record
the convergence rate of the algorithm in [18,26–29] as O(n).

By means of Equations (12) and (13), when p� n, the following conclusions are drawn:
(i): If zp ≤ zn, then, ∑

zp
v=0 2p·v ≤ ∑zn

v=0 2p·v � ∑zn
v=0 2n·v.
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(ii): If zp > zn, there must be a positive number N ≥ b zp
zn

pc+ 1 so that p <
zp
zn

p < N holds, which
means that when N � n implies that p <

zp
zn

p < N � n, pzp � nzn also holds, then:

zn

∑
v=0

2n·v −
zp

∑
v=0

2p·v =
2n(zn+1) − 1

2n − 1
− 2p(zp+1) − 1

2p − 1
,

=
(2n(zn+1) − 1)(2p − 1)− (2p(zp+1) − 1)(2n − 1)

(2n − 1)(2p − 1)
,

=
2(2n+p−1 − 1)(2nzn − 2pzp) + 2n − 2p

(2n − 1)(2p − 1)
� 0.

Both conclusions (i) and (ii) can show that when p � n, the following formula is established:
∑

zp
v=0 2p·v � ∑zn

v=0 2n·v.

Remark 7. In Formula (12) of Theorem 5, q = 1, while the qn in Formula (13) does not specify the size, which
means that O(p) is compared with O(n) in the case of slowest convergence, but in the case of p� n, there will
always be (i) and (ii), which is a clearer indication of O(p)� O(n).

It can be seen that the size of O(p) and O(n) is exponential growth, but the size of p in O(p)
is generally not more than 10, and p � n, so our algorithm OSBBA has an advantage in solving
large-scale problems in the case of p ≤ 10 and p� n. The experimental analysis of several large-scale
random examples below will also be referred to again.

6. Numerical Examples

Now, we give several examples and a random calculation example to prove the validity of the
branch-and-bound algorithm in this paper.

We coded the algorithms in Matlab 2017a and ran the tests in a computer with an Intel(R)
Core(TM)i7-4790s processor of 3.20 GHz, 4 GB of RAM memory, under the Microsoft Windows 7
operational system. In solving the LRPs, we use the simplex method in the linprog command in
Matlab 2017a.

In Tables 1–9, the symbols of the table header are respectively: x∗, the optimal solution of the
LFP problem; f (x∗), the optimal value of the objective function; Iter, the number of iterations on
problems 1–11; Ave.Iter, the average number of iterations on problems 12–13; ε, tolerance; Time: the
CPU running time of problems 1–11; Ave.Time, the average CPU running time of problems 12–13;
p, the number of linear fractions in the objective function; m, the number of linear constraints; n, the
dimension of the decision variable; SR, the success rate of the algorithm in calculating problem 12 .
When the number of Ave.Time or Ave.Iter shows “–”, it means that the algorithm fails to calculate
when solving the problem.

Example 1 ([15,18]).

min
−x1 + 2x2 + 2
3x1 − 4x2 + 5

+
4x1 − 3x2 + 4
−2x1 + x2 + 3

s.t.


x1 + x2 ≤ 1.5,
x1 − x2 ≤ 0,

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 2 ([18]).

min 0.9× −x1 + 2x2 + 2
3x1 − 4x2 + 5

+ (−0.1)× 4x1 − 3x2 + 4
−2x1 + x2 + 3

s.t.


x1 + x2 ≤ 1.5,
x1 − x2 ≤ 0,

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.
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Example 3 ([17,21]).

min
3x1 + 5x2 + 3x3 + 50
3x1 + 4x2 + 5x3 + 50

+
3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50
+

4x1 + 2x2 + 4x3 + 50
5x1 + 4x2 + 3x3 + 50

s.t.


2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.

Example 4 ([17,22]).

min − (
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50
4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50
x1 + 5x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50
)

s.t.



2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,

5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 5 ([17,21,24]).

min
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50
4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50
x1 + 5x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t.


2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.

Example 6 ([17,22]).

min − (
3x1 + 5x2 + 3x3 + 50
3x1 + 4x2 + 5x3 + 50

+
3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50
+

4x1 + 2x2 + 4x3 + 50
5x1 + 4x2 + 3x3 + 50

)

s.t.


6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 7 ([17,21]).

min
37x1 + 73x2 + 13
13x1 + 13x2 + 13

+
63x1 − 18x2 + 39
13x1 + 26x2 + 13

s.t.

{
5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.
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Example 8 ([12,14]).

max
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x2 + 50
4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50
x1 + 5x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t.



2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,

5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 9 ([12,14,23]).

max
37x1 + 73x2 + 13
13x1 + 13x2 + 13

+
63x1 − 18x2 + 39
−13x1 − 26x2 − 13

+
13x1 + 13x2 + 13
63x1 − 18x2 + 39

+
13x1 + 26x2 + 13
−37x1 − 73x2 − 13

s.t.

{
5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 10 ([14,23,24]).

max
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50
4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50
x1 + 5x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t.


2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≥ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 11 ([18]).

max
3x1 + 4x2 + 50

3x1 + 5x2 + 4x3 + 50
− 3x1 + 5x2 + 3x3 + 50

5x1 + 5x2 + 4x3 + 50

− x1 + 2x2 + 4x3 + 50
5x2 + 4x3 + 50

− 4x1 + 3x2 + 3x3 + 50
3x2 + 3x3 + 50

s.t.


6x1 + 3x2 + 3x3 ≤ 10,
10x1 + 3x2 + 8x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

As can be seen from Table 1, our algorithm can accurately obtain the global optimal solution of
these 11 low-dimensional examples, which shows the effectiveness and feasibility of this algorithm.
However, compared with other algorithms in the literature, the effect of this algorithm is relatively poor.
This is because the method of constructing the lower bound is simple and easy to operate, and the
branching operation is performed on the p-dimensional output-space. At the same time, the algorithm
of this paper has no super-rectangular reduction technology, which makes the approximation of
solving the low dimensional problem worse. We also note that the number p of ratios in these 11
examples is not larger than the dimension n of the decision variable, and our algorithm requires that p
is much smaller than n, which is why our algorithm is not effective in solving these examples. With the
continuous updating and progress of computers, the gap between our algorithm and other methods
in solving these 11 low-dimensional examples can be bridged, and the needs of society mainly focus
on the high-dimensional problems under p� n. Therefore, we only use Examples 1–11 to illustrate
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the effectiveness and feasibility of our algorithm, and the numerical results can also show that the
algorithm is convergent. When our algorithm is applied to higher dimensional problems, the effect
gradually improves, as can be seen from the numerical results of Examples 12 and 13 in Tables 2–9.

Table 1. Comparison of results in Examples 1–11.

Example Methods x∗ f (x∗) Iter Time ε

1 [15] (0.00,0.2817) 1.6232 43 4.3217 10−8

1 [18] (0.00,0.2839) 1.6232 65 0.9524 10−8

1 OSBBA (0.00,0.2839) 1.6232 1983 40.3528 10−8

2 [18] (0.0,1.0) 3.5750 1 0.0561 10−9

2 OSBBA (0.0,1.0) 3.5750 12 0.1626 10−9

3 [17] (5.0000,0.0000,0.0000) 2.8619 16 0.1250 10−3

3 [21] (5.0000,0.0000,0.0000) 2.8619 12 28.2943 10−4

3 OSBBA (5.0000,0.0000,0.0000) 2.8619 379 8.4163 10−4

4 [17] (1.1111,0.0000,0.0000) −4.0907 185 3.2510 10−2

4 [22] (1.0715,0,0) −4.0874 17 - 10−6

4 OSBBA (1.11111111,0,0) −4.0907 70 1.8196 10−6

5 [17] (0.0000,1.66666667,0.0000) 3.7109 8 0.1830 10−3

5 [21] (0.0000,1.6667,0.0000) 3.7087 5 4.1903 10−4

5 [24] (0.0000,0.625,1.875) 4.0000 58 2.9686 10−4

5 OSBBA (0.0000,1.66666667,0.0000) 3.7109 169 4.2429 10−6

6 [17] (0,0.333333,0) −3.0029 17 0.1290 10−3

6 [22] (0,0.33329,0) −3.0000 30 10−6

6 OSBBA (0,0.333333,0) −3.0029 2090 50.8226 10−6

7 [17] (1.5000,1.5000) 4.9125 56 1.0870 10−3

7 [21] (1.5000,1.5000) 4.9125 113 201.6260 10−4

7 OSBBA (1.5000,1.5000) 4.9125 460 8.7944 10−4

8 [12] (1.1111, 0, −3.33067× 10−5) 4.0907 3 0.0000 10−6

8 [14] (1.11111, 0.00000, 0.00000) 4.0907 2 0.0020 10−6

8 OSBBA (1.11111, 0.00000,0.00000) 4.0907 42 1.1433 10−6

9 [12] (3.0, 4.0) 3.2916 9 0.0000 10−6

9 [14] (3.0, 4.0) 3.2916 2 0.0017 10−6

9 [23] (3.0, 4.0) 3.2916 78 0.0000 10−6

9 OSBBA (3.0,4.0) 3.2916 693 16.5359 10−6

10 [14] (5.0,0.0,0.0) 4.4285 2 0.0018 10−6

10 [23] (5.0,0.0,0.0) 4.4285 35 0.0000 10−4

10 [24] (0.0, 0.625, 1875) 4.0000 58 2.9686 10−4

10 OSBBA (5.0,0.0,0.0) 4.4285 61 1.6153 10−6

11 [18] (0.0,3.3333,0.0) 1.9000 8 0.1389 10−6

11 OSBBA (0.0,3.3333,0.0) 1.9000 402 6.8145 10−6

Example 12.

min
p

∑
i=1

∑n
j=1 cijxj + di

∑n
j=1 eijxj + fi

s.t.

{
∑n

j=1 aqjxj ≤ bq, q = 1, 2, · · · , m,
xj ≥ 0, j = 1, 2, · · · , n,

where p is a positive integer , cij, eij, aqj are randomly selected on the interval [0,1], and set bq = 1
for all q. All constant terms of denominators and numerators are the same number, which randomly
generated in [1,100]. This agrees that the random number is generated in [18]. First of all, when the
dimension is not more than 500, we generate 10 random examples for each group (p, m, n), and use
the algorithm OSBBA and the algorithm in [18] to calculate the same example respectively, and then
record the average number of iterations and the average CPU running time of these 10 examples in
Table 2, respectively. Secondly, when the dimension n is not less than 1000, it is noted that the algorithm
in [18] needs to solve 2n linear programming problems when determining the initial hyper-rectangle,
and the search space of each linear programming is at least thousands of dimensions, which is very
time-consuming. Note that when (p, m, n) = (10, 200, 500), the CPU time is close to 1200 s. Therefore,
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in the case where the dimension n is not less than 1000, We generate only five random examples and
specify that the algorithm is considered to fail when the calculated time exceeds 1200 s. On the premise
of recording the average number of iterations and the average CPU running time, the success rate of
the five high-dimensional examples is also added, which is presented in Table 3.

Table 2. The results of random calculations for Example 12. Ave.Iter, the average number of iterations
on problems 12–13; Ave.Time, the average CPU running time of problems 12–13; SR, the success rate of
the algorithm in calculating problem 12.

p m n OSBBA Re f erence [18]

Ave.Iter Ave.Time SR Ave.Iter Ave.Time SR

5 30 30 3.3 0.1636 100% 2.5 0.0866 100%
5 50 50 4.2 0.2090 100% 2.7 0.1818 100%
5 100 100 4.9 0.3075 100% 3.3 1.7679 100%

10 30 30 7.7 0.4194 100% 2.8 0.1440 100%
10 50 50 8.2 0.6288 100% 4.7 0.3852 100%
10 100 100 12.8 0.8931 100% 6.3 2.7120 100%
5 50 100 5.1 0.2191 100% 2.8 0.4551 100%
5 100 300 18.4 2.3497 100% 72.5 49.1801 100%
5 200 500 16.7 11.1795 100% 19.9 328.1308 100%

10 50 100 480.7 11.4817 100% 50.6 17.0826 100%
10 100 300 818.5 95.7513 100% 1064.4 836.2154 100%
10 200 500 435.8 281.8541 100% 1784.5 1126.2541 100%

First of all, by comparing the lower bound subproblem in [18] with the lower bound subproblem
in our algorithm, we can know that the lower bound subproblem of algorithm OSBBA only makes
use of the information of the upper and lower bounds of the denominator of p ratios in the process
of construction, while in the process of constructing the lower bound, the information of the upper
and lower bounds of the decision variables is also used, which requires the calculation of 2n linear
programming problems in the initial iterative step. Compared with the method in [18], the algorithm
OSBBA only needs to calculate the 2p linear programming problems in the initialization stage, and does
not need to calculate the upper and lower bounds of any fractal denominator. It can be seen that when
p is much less than n, [18] will spend a lot of time in calculating 2n linear programming problems.
The number of branches is often particularly large when the number of iterations is greater than 1,
so that a large number of child nodes will be produced on the branch and bound tree, which not
only occupies a large amount of computer memory space but also takes a lot of time. However,
the performance of our algorithm OBSBA is the opposite. In real life, the size of p is usually not
greater than 10, therefore, the number of subproblems that will need to be solved is usually small
in the process of branching iteration. Compared with the method in [18], the amount of computer
memory occupied is not very large.

Secondly, from the results of Table 2, we can see that the computational performance of [18] in
solving small-scale problems is better than that of our algorithm OSBBA. However, it can be clearly
seen that when the dimension of the problem is higher than 100, its computational performance
gradually weakens. It can also be seen that when the dimension of the problem is above 100,
the computational power of the method in [18] is inferior to our algorithm OSBBA. The computational
performance of the algorithm OSBBA is closely related to the size of p, and the smaller the p is,
the shorter the computing time is. For the algorithm in [18], its computational performance has a very
important relationship with the size of n. The larger the n, the more time the computer consumes. It is
undeniable that the method in [18] has some advantages in solving small-scale problems. However,
in solving large-scale problems, Table 3 shows that the algorithm OSBBA is always superior to the
algorithm in [18]. Especially when the dimension is more than 500, the success rate of our algorithm to
find the global optimal solution in 1200 s is higher than that in [18]. This is the advantage of algorithm
OSBBA.
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Table 3. The results of random calculations for Example 12.

p m n OSBBA Re f erence [18]

Ave.Iter Ave.Time SR Ave.Iter Ave.Time SR

5 100 1000 7.5 5.7765 80% – – 0%
5 200 2000 14.0 96.2968 80% – – 0%
5 300 3000 18.5 555.5875 80% – – 0%
10 100 1000 19.2 127.5658 60% – – 0%
10 200 2000 32.1 649.6260 60% – – 0%
10 300 3000 39.4 964.1816 60% – – 0%
5 300 5000 6.1 594.2337 60% – – 0%
5 400 8000 2.3 785.0338 60% – – 0%
5 500 10,000 1.4 913.8774 40% – – 0%
10 300 5000 2.1 216.3840 40% – – 0%
10 400 8000 2.4 1095.3918 40% – – 0%
10 500 10,000 2.3 1180.6531 20% – – 0%

In addition, for Example 12, we also use the same test method as the [18] to compare the algorithm
OSBBA with the internal solver BMIBNB of MATLAB toolbox YALMIP [26], where we only record
the the average CPU running time and the success rate of the two algorithms and display them in
Tables 4 and 5.

Table 4. The results of random calculations for Example 12.

p m n OSBBA BMIBNB

Ave.Time SR Ave.Time SR

5 30 30 0.1911 100% 0.0840 100%
5 50 50 0.2106 100% 0.1117 100%
5 100 100 0.9178 100% 0.7412 100%

10 30 30 4.7010 100% 2.2465 100%
10 50 50 5.8519 100% 3.9418 100%
10 100 100 33.9510 100% 11.5741 100%
5 50 100 0.5447 100% 6.9531 100%
5 100 300 4.1197 100% 78.3507 100%
5 200 500 69.9101 100% 403.4631 100%

10 50 100 108.1924 100% 10.4275 100%
10 100 300 115.5843 100% 149.4162 100%
10 200 500 238.9797 100% 806.4061 100%

Table 5. The results of random calculations for Example 12.

p m n OSBBA BMIBNB

Ave.Time SR Ave.Time SR

5 100 1000 38.6369 100% – 0%
5 200 2000 161.0308 80% – 0%
5 300 3000 250.7251 80% – 0%
10 100 1000 167.5179 80% – 0%
10 200 2000 369.3976 60% – 0%
10 300 3000 603.8334 20% – 0%
5 300 5000 484.2731 60% – 0%
5 400 8000 697.9532 60% – 0%
5 500 10,000 907.1948 40% – 0%
10 300 5000 716.1021 40% – 0%
10 400 8000 1105.1437 40% – 0%
10 500 10,000 1177.9841 20% – 0%
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As can be seen from Tables 4 and 5, the BMIBNB is more effective than the OSBBA when solving
the small-scale problem, but it is sensitive to the size n of the decision variable, especially when n
exceeds 100, the CPU time of the computer is suddenly increased. The algorithm OSBBA is less
affected by n, but for small-scale problems, the computational performance of the algorithm OSBBA is
very sensitive to the number p of the linear fractions. For large-scale problems, Table 5 shows similar
results as Table 3.

Example 13.

min
p

∑
i=1

∑n
j=1 cijxj + di

∑n
j=1 eijxj + fi

s.t.

{
∑n

j=1 aqjxj ≤ bq, q = 1, 2, · · · , m,
0 ≤ xj ≤ xj, j = 1, 2, · · · , n.

In order to further illustrate the advantages of the algorithm OSBBA in this paper, a large number
of numerical experiments were carried out for Example 13, comparing the algorithm OSBBA with
the call to the commercial software package BARON [27]. Through the understanding of BARON,
we know that the operation of its branches is also carried out in the n-dimensional space. Similar
to [18], we can predict that BARON is quite time-consuming as the dimension increases. To simplify
the comparison operation, the one of the constants of the numerator and denominator is set to 100
(i.e., di = fi = 100) in order to successfully run BARON. Next, we give an upper bound xj for each
decision variable, and randomly select from the interval [0, 10] together with cij, eij, aqj and bq to form
a random Example 13.

We set the tolerance of the algorithm OSBBA and BARON to 103 for the sake of fairness (This is
because the accuracy of the internal setting of the package BARON is 103 and we are unable to adjust
it). For each group (m, n, p), we randomly generate 10 examples, calculate the same example with the
algorithm OSBBA and the commercial software package BARON respectively, and then record the
average number of iterations and the average CPU running time of the 10 examples in Tables 6–9.

Table 6. The results of random calculations for Example 13.

m n p OSBBA BARON

Ave.Iter Ave.Time Ave.Iter Ave.Time

5 10 2 36 1.1612 2 0.7473
5 20 2 79 1.9147 4 0.6075
5 30 2 114.5 2.7861 9 0.6482
5 50 2 75 1.9192 5 0.6511
5 70 2 286 5.9812 14 0.7949
5 90 2 67.5 1.6454 13 0.8312
5 100 2 156.5 3.0462 6 0.7616
5 10 3 203.5 5.1221 7 0.5021
5 20 3 624.5 14.6705 9 0.6231
5 30 3 246 6.9570 58 0.9305
5 50 3 466 11.2603 16 0.9116
5 70 3 97 4.0403 4 0.7513
5 90 3 815.4 15.5686 638.8 3.5839
5 100 3 753 13.8953 26.2 0.9445
5 10 4 896 18.8903 197 0.7966
5 10 5 138.5 3.4184 1 0.5202
5 10 6 245.5 5.6823 3 0.4332
5 20 4 472.5 9.0087 4 0.4629
5 20 5 269.5 5.8828 4 0.6038
5 20 6 4482 96.0794 90 0.8938
5 30 4 140.5 3.2252 3 0.4684
5 30 5 205 4.7040 3 0.4701
5 30 6 1404.5 31.7456 18 0.6425

10 30 5 2401 50.5017 32 0.6387
10 50 5 444 9.6959 3 0.5758
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Table 6. Cont.

m n p OSBBA BARON

Ave.Iter Ave.Time Ave.Iter Ave.Time

10 70 5 777 16.9510 36 0.9000
10 90 5 2187.5 49.8752 595 5.9809
10 100 2 64.4 1.2717 7.2 0.7844
10 100 3 223.1 4.4559 14.2 0.9466
10 100 4 594.2 12.1786 9651.2 53.4707
10 200 4 2009.2 44.0950 4363 49.0320
10 100 5 4414 88.7048 30,905.4 205.4919
10 200 5 3899 91.1614 35,481 502.3583
10 300 5 6591 176.2488 22,469 505.1200
20 300 5 1668.2 45.0485 14,140.1 307.2198
20 500 5 5091.8 165.9364 4878.2 264.4288
20 500 6 14,975.1 577.1660 6854.1 416.4063
20 500 7 62,930.1 3012.5028 7133.7 487.2844
20 500 8 3570 179.9689 36 62.7567
20 500 9 75,222 3909.7296 6740.5 637.1516
20 500 10 30,274 1504.8824 32 74.1234

As we can see from Table 6, when n is less than 100, the CPU run time (Ave.Time) and the iteration
number (Ave.Iter) of our algorithm are not as good as BARON. In the case of p = 2, 3, n = 100,
the CPU average running time (Ave.Time) and the average iteration number (Ave.Iter) of BARON are
less than our algorithm OSBBA. In the state of (m, n) = (10, 100) and p = 4, 5, the algorithm OSBBA
is better than BARON. In the case of n ≥ 200, if p ≤ 5, the average CPU running time (Ave.Time) of
algorithm OSBBA is less than BARON, while at p > 5, the average running time of the algorithm is
opposite to that of the former.

Table 7. The results of random calculations for example 13.

m n p OSBBA BARON

Ave.Iter Ave.Time Ave.Iter Ave.Time

50 300 2 20 1.1057 5 4.8298
50 300 3 27 2.9405 5 5.6102
50 300 4 105 5.2798 25 28.8512
50 500 2 16 1.8027 3 12.2832
50 500 3 51 2.6929 17 23.8195
50 500 4 68 8.9815 4381 356.2157
50 700 2 37 3.8667 11 67.7368
50 700 3 58 4.9608 7738 1002.5904
50 700 4 41 12.7235 3 51.0155
50 900 2 36 5.3660 7 108.5627
50 900 3 34 7.27312 3 142.4374
50 900 4 40 14.9773 3 178.2181
50 1000 2 46 10.6561 1 131.5696
50 1000 3 82 22.04153 3 162.2937
50 1000 4 636 105.3631 19 315.2514
50 2000 2 50 36.0024 1 779.5139
50 2000 3 169 67.2509 6 1007.5297
50 2000 4 436 113.1053 29 1008.2303
50 3000 2 77 82.6399 3 304.8984
50 3000 3 123 96.3323 – –
50 4000 2 42 85.5768 – –
50 4000 3 156 129.1936 – –
50 5000 2 81 93.9734 – –
50 2000 5 370 215.7799 – –
50 2000 6 1274 283.4462 – –
50 2000 7 2867 366.5079 – –
50 2000 8 3032 414.5711 – –
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Table 8. The results of random calculations for Example 13.

m n p OSBBA BARON

Ave.Iter Ave.Time Ave.Iter Ave.Time

100 300 3 19.3 4.1248 2 6.7865
100 300 5 105 6.6735 3.8 11.3750
100 300 8 676.4 41.5368 6.8 14.4418
100 500 3 21.9 5.9263 3.4 20.4406
100 500 5 162.3 16.4179 6.8 35.2466
100 500 8 2812.1 235.0307 13.4 69.6685
150 500 3 15.9 7.3081 2.4 21.4519
150 500 5 58.1 8.3569 3 35.9739
150 500 8 694.4 80.6513 7.2 51.4611
200 700 3 9.3 2.7830 2 47.8042
200 700 5 45.2 10.8633 3.2 84.6023
200 700 8 118.7 40.3079 4.2 122.5232
300 700 3 4.6 1.8944 1.6 60.0400
300 700 5 10.5 5.38701 1.8 78.3503
300 700 8 91.3 28.5988 4 119.6601
300 900 3 2.1 1.8728 1.2 93.1878
300 900 5 24.5 10.8376 3.2 158.5425
300 900 8 549 175.6600 3.8 231.1125
300 1000 3 9.1 6.8319 2.2 131.6551
300 1000 5 19.1 15.6941 2.2 144.4356
300 1000 8 98.3 85.0639 3.2 220.8366

Table 9. The results of random calculation for example 13.

m n p OSBBA BARON

Ave.Iter Ave.Time Ave.Iter Ave.Time

500 1000 3 1.5 3.4675 1 99.9415
500 1000 5 7.2 9.7535 2.2 147.3751
500 1000 8 24.7 30.0108 2.8 187.4586
500 2000 3 3 16.0995 1.7 496.0448
500 2000 5 6.9 23.9408 2.6 741.5934
500 2000 8 22.3 93.7039 2.7 861.7061
500 3000 3 3.5 26.4755 3.0 920.6775
500 3000 5 4.5 56.1823 – –
500 3000 8 30 125.0527 – –
500 4000 3 2.4 54.7006 – –
500 4000 5 9 136.5505 – –
500 4000 8 10.8 196.5768 – –
500 5000 3 2 71.7622 – –
500 5000 5 5 126.6783 – –
500 5000 8 17.3 330.9163 – –
500 6000 3 1.8 72.6898 – –
500 7000 3 2.6 238.4842 – –
500 9000 3 2.3 209.8106 – –
500 10,000 3 3.7 319.7487 – –

According to Tables 7–9, we can also conclude that if p < 5, the algorithm OSBBA takes
significantly less than BARON. In Tables 8 and 9, in the case of p ≤ 8, if n = 300, 500, the calculation
time of algorithm OSBBA is significantly more than BARON, if n = 700, 900, 1000, 2000, 3000,
the calculation of BARON takes more time than the algorithm OSBBA. At the same time, some
“–” can be seen in Tables 7 and 9, BARON fails in these 10 computations, which indicates that the
success rate of BARON in solving high-dimensional problems is close to zero, but our algorithm can
still obtain the global optimal solution of the problem within a finite step, and the overall time is no
more than 420 s.
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In general, when p � n, our algorithm showed a good computing performance. In practical
application, the size of p generally does not exceed 10. The calculation results in Table 6 show
that our algorithm is not as effective as the BARON algorithm in solving small problems, but it
can be seen from Tables 6–9 that this algorithm has obvious advantages in solving large-scale and
high-dimensional problems. At the same time, compared with BARON, this algorithm can also solve
high-dimensional problems.

The method of the nonlinear programming in commercial software package BARON comes
from [29]. It is a branch and bound reduction method based on the n-dimensional space in which the
decision variable x is located, which we can see from the two examples in Section 6 of [29]. In Section 5
of [29], many feasible domain reduction techniques, including polyhedral cutting techniques, are also
proposed. Although BARON connects many feasible domain reduction techniques when using this
method, from the experimental results in this paper, it can be seen that BARON is more effective
than our OSBBA method in solving small-scale linear fractional programming problems. BARON
branches on a maximum of 2n nodes, which is exponential, while our algorithm, potentially branches
on a max of 2p nodes, a smaller-sized problem. Even if these feasible domain reductions are still
valid in combination with BARON, when a computer runs a reduced program in these feasible
domains, it also increases time consumption and space storage to a large extent. For special nonlinear
programming-linear fractional programming problems, the proposed global optimization algorithm
is to branch hyper-rectangles in p-dimensional space, because p is much less than n, and p is not
more than 10, which ensures that the algorithm proposed by us is suitable for solving large-scale
problems. As the variables that the algorithm branches are located in different spatial dimensions,
BARON branches on the n-dimensional decision space where the decision variable is located, and the
branching process of the algorithm OSBBA is carried out on the p-dimensional output-space. It can
also be seen from Tables 6–9 that when the number p of ratio items is much smaller than the dimension
n of the decision variable, the algorithm OSBBA calculates better than BARON. This is because in the
case of higher dimensional problems, in the process of initialization, BARON needs to solve more and
higher dimensional subproblems, while the algorithm OSBBA only needs to solve 2p n-dimensional
subproblems, which greatly reduces the amount of computation. This is why our algorithm OSBBA
branches in p-dimensional space.

In summary, in terms of the demand of real problems, the number p of ratios does not exceed 10
in the linear fractional programming problems required to be solved. At the same time, the size of p is
much smaller than the dimension n of the decision variable. In the process of branching, the number of
vertices of the rectangle to be divided is 2p and 2n, respectively. In the case of p� n, the branch of our
algorithm OSBBA can always be completed quickly, but the methods in the software package BARON
and in [18] will have a lot of branching complexity. Therefore the computation required by the branch
search in Rp is more economical than that in Rn. In the case of p� n, our method is more effective in
solving large-scale problems than in [18] and the software package BARON. At the same time, it is
also noted that when the results of OSBBA and BMIBNB are compared, the latter is sensitive to the
size of n, which once again illustrates the characteristics of the algorithm in this paper.

7. Conclusions

In this paper, a deterministic method is proposed for linear fractional programming problems.
It is based on the linear relaxation problem of the positive and negative coefficient of the constructor,
and the corresponding branch-and-bound algorithm OSBBA is given. In Section 6, the feasibility and
effectiveness of the algorithm for solving linear fractional programming problems are fully illustrated
by numerical experiments, and it is also shown that our algorithm OSBBA is more effective than the
method in BARON, BMIBNB, and [18] when applied to high-dimensional problems in the case of
p � n. In recent years, the development of multi-objective programming is becoming increasingly
rapid. We can solve the problem of multi-objective linear fractional programming by combining the
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ideas and methods of this paper with other approaches. In future academic research, we will also start
to consider this aspect of the problem.
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