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Abstract: Most of the existing literature on optimal investment-reinsurance only studies from
the perspective of insurers and also treats the investment-reinsurance decision as a continuous
process. However, in practice, the benefits of reinsurers cannot be ignored, nor can decision-makers
engage in continuous trading. Under the discrete-time framework, we first propose a multi-period
investment-reinsurance optimization problem considering the joint interests of the insurer and
the reinsurer, among which their performance is measured by two generalized mean-variance
criteria. We derive the time-consistent investment-reinsurance strategies for the proposed model
by maximizing the weighted sum of the insurer’s and the reinsurer’s mean-variance objectives.
We discuss the time-consistent investment-reinsurance strategies under two special premium
principles. Finally, we provide some numerical simulations to show the impact of the intertemporal
restrictions on the time-consistent investment-reinsurance strategies. These results indicate that the
intertemporal restrictions will urge the insurer and the reinsurer to shrink the position invested in
the risky asset; however, for the time-consistent reinsurance strategy, the impact of the intertemporal
restrictions depends on who is the leader in the proposed model.

Keywords: investment and reinsurance; insurer and reinsurer; generalized mean-variance criteria;
time-consistent strategy

1. Introduction

Since the insurer and the reinsurer can be allowed to invest their wealth in the securities market,
they can obtain profits not only by collecting premiums but also by investing in securities. Different
from the other institutional investors, the insurer and the reinsurer will face the double risks that
exist in both the insurance market and the securities market. In order to reduce the risk of claims,
the insurer can purchase reinsurance contracts from the reinsurer and transfer part of the risk of
claims to the reinsurer, because the reinsurer is more risk-seeking than the insurer. Therefore,
how to design a suitable reinsurance contract is also the concern of the insurer and the reinsurer.
Obviously, the setting of the reinsurance contract depends on the mutual agreement between the
insurer and the reinsurer. However, most of the existing literature mainly focuses on the optimal
investment-reinsurance problems only from the perspective of the insurer, while the interest of the
reinsurer is generally ignored (e.g., Schmidli [1], Zeng and Li [2], Zhu et al. [3], Huang et al. [4], Hu and
Wang [5], Deng et al. [6] and so on). Actually, the optimal reinsurance contract for the insurer may not
be optimal or even unacceptable for the reinsurer. That is, the reinsurance contract should be designed
to take into account the interests of both the insurer and the reinsurer. To address this problem, we
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will propose an investment-reinsurance optimization problem considering the joint interests of the
insurer and the reinsurer, and the corresponding investment-reinsurance strategy will be investigated.

As far as we know, some researchers have paid attention to the joint interests of the insurer and
the reinsurer. Li et al. [7] considered the weighted sum of an insurer’s and a reinsurer’s mean-variance
objectives and aimed to find the corresponding time-consistent reinsurance-investment strategy.
Li et al. [8] discussed the optimal investment-reinsurance strategy by maximizing the expected
exponential utility of the weighted sum of the insurer’s and the reinsurer’s terminal wealth. Under
the mean-variance criterion, Zhao et al. [9] also discussed the time-consistent investment-reinsurance
strategy by maximizing the utility of a weighted sum of the insurer’s and the reinsurer’s surplus
processes. Zhou et al. [10] derived the optimal investment-reinsurance strategy with consideration of
the joint interests of the insurer and the reinsurer, and also assumed that the decision-maker was an
ambiguity-averse manager. Huang et al. [11] investigated a robust optimal investment and reinsurance
problem on considering the product of the insurer’s and the reinsurer’s utilities. Obviously, the above
optimization models on the joint interests of the insurer and the reinsurer can be classified into the
following two categories. The first kind of model is built by maximizing the utility of a weighted
sum of the insurer’s and the reinsurer’s surplus processes, while the second one is constructed by
maximizing the weighted sum/product of the insurer’s and the reinsurer’s utilities. The former
assumes that the insurer and the reinsurer have the same risk aversion coefficients, while the latter
considers that they have different risk aversion coefficients. Actually, the latter is more compatible
with reality, since the reinsurer is more risk-seeking compared to the insurer. In this paper, we mainly
focus on deriving the corresponding time-consistent strategies by maximizing the weighted sum of
the insurer’s and the reinsurer’s mean-variance objectives.

Additionally, the above literature is limited to the study of continuous-time problems, while the
discrete-time problems are always ignored by researchers. In fact, the discrete-time setting is more
realistic to decision-makers, because they cannot trade continuously since it will generate a lot of
transaction costs. Brandt [12] also pointed out that the continuous-time strategies are often inadmissible
in discrete time because they may cause negative wealth. Especially for insurers and reinsurers, their
surplus processes are more likely to be negative values, because they bear the double risks from the
insurance market and the securities market. More importantly, Zhu et al. [13] also presented that the
bankruptcies occurring in the earlier stages of investments were greater than those in the later stages.
The main reason is that the classical multi-period mean-variance optimizations only consider the
performance of the terminal wealth. To deal with this problem, Costa and Nabholz [14] proposed
a generalized mean-variance model considering the intertemporal restrictions (i.e., the investors
will maximize the weighted sum of the mean-variance objectives over all the periods). Under
this framework, the terminal and intermediate performance of the portfolio will be included in
the decision-making. There are still many studies on this subject, such as Costa and Araujo [15],
Costa and de Oliveira [16], Cui et al. [17], He et al. [18], Zhou et al. [19], Xiao et al. [20] and so
on. Inspired by the works mentioned above, in this paper, we will build a generalized multiperiod
mean-variance investment-reinsurance optimization model considering the joint interests of the insurer
and the reinsurer.

However, the proposed model cannot be directly solved by using the dynamic programming
approach because the variance measure does not satisfy the expected iterated property. To the best
of our knowledge, there are two methods to solve this problem. The first method is the embedding
scheme proposed by Li and Ng [21], and the derived optimal strategy is called the pre-commitment
strategy. However, some researchers point out that the precommitment strategy does not satisfy time
consistency since the future changes are not taken into account. The second method is provided by
Basak and Chabakauri [22] and Björk and Murgoci [23], called the game method, which can provide
a time-consistent strategy for decision-makers. Under the game framework, the decision-makers
treat this optimization problem as a noncooperative game, and its Nash equilibrium solution
is defined as the time-consistent strategy. Since then, many researchers have applied the game
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method to derive the time-consistent solutions of the various multiperiod mean-variance optimization
problems, such as Björk and Murgoci [24], Bensoussan et al. [25], Wu and Zeng [26], Zhou et al. [19],
Xiao et al. [20] and so on. Based on the game method shown above, in this paper, we will investigate
the time-consistent investment-reinsurance strategies for the generalized mutiperiod mean-variance
optimization problem considering the joint interests of the insurer and the reinsurer. In this framework,
the intermediate and terminal performance of the insurer and the reinsurer can be both considered.

Motivated by the above studies, we assume the insurer and the reinsurer can invest their wealth
in one risky asset and one risk-free asset, as well as the insurer can purchase a proportional reinsurance
contract from the reinsurer. We use two generalized mean-variance criteria to measure the performance
of the insurer and the reinsurer, and further propose a generalized multi-period investment-reinsurance
optimization considering the joint interests of the insurer and the reinsurer by maximizing the weighted
sum of the insurer’s and the reinsurer’s mean-variance objectives. We apply the game method
to derive the time-consistent investment-reinsurance strategies for the proposed model and also
discuss the time-consistent strategies under the expected and variance value principles. Finally,
we provide some numerical simulations to show the impact of the intertemporal restrictions on the
time-consistent strategies.

Different from the existing literature, this paper has four contributions. (i) We first
propose a generalized multi-period investment-reinsurance optimization problem under the
discrete-time framework, and the joint interests of the insurer and the reinsurer are also considered.
Actually, it is more realistic to consider the joint interests of the insurer and the reinsurer in the
discrete-time framework. On the one hand, it avoids the negative wealth that may be caused by
the accumulation of transaction costs in the case of continuous transactions. On the other hand, it
ensures that the reinsurance contract is optimal for both the insurer and the reinsurer. (ii) We consider
the impact of intertemporal restrictions on the decision-making, that is, the insurer and the reinsurer
not only consider the terminal performance but are also concerned with the intermediate performance
of their portfolios, which is absent from the existing continuous-time literature (e.g., Li et al. [7],
Zhao et al. [9], Huang et al. [11] and so on). In this framework, the insurer and the reinsurer
can adjust the intertemporal restrictions dynamically according to their own risk appetites and
the market environment. (iii) We first derive the time-consistent investment-reinsurance strategies
rather than the traditional precommitment strategies. Compared with the precommitment strategies,
the time-consistent strategies might be more suitable for the decision-makers who are more rational
and sophisticated, since they take possible future revisions into account. (iv) We first investigate the
impact of the intertemporal restrictions on the time-consistent strategies. The interesting finding is that
the intertemporal restrictions will urge the insurer and the reinsurer to shrink the position invested in
the risky asset. However, for the time-consistent reinsurance strategy, the role of the intertemporal
restrictions depends on who is the leader in the proposed model. When the insurer is the leader,
the intertemporal restrictions will reduce the retention level of claims, while for the case that the
reinsurer is the leader, only when the impact of the reinsurer’s leading role is higher than that of the
intertemporal restrictions will the intertemporal restrictions shrink the retention level of claims.

The remainder of this paper is organized as follows. In Section 2, we construct a generalized
multi-period mean-variance optimization model considering the joint interests of the insurer and the
reinsurer. In Section 3, we derive the time-consistent strategies by using the game method. In Section 4,
we give some numerical examples to show the differences of the time-consistent strategies under
different settings. Finally, we summarize the conclusions of this paper.

2. Generalized Multi-Period Mean-Variance Investment-Reinsurance Optimization Considering
Both the Insurer and the Reinsurer

In this paper, we assume that both an insurer and a reinsurer will simultaneously enter the
financial market at time 0 to carry out investment-reinsurance activities. Suppose that the insurer and
the reinsurer have the initial wealth of w1

0 and w2
0, respectively, and they plan to take all the wealth
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into the capital market within a time horizon T. We suppose that the insurer and the reinsurer are
both allowed to invest their wealth in a risk-free asset and a risky asset (note that they invest in the
risky asset with different random returns), where the risk-free asset takes a determinate return st

and the random return on the risky asset invested by the insurer is e1
t , while the risky asset invested

by the reinsurer has the random return e2
t . Let u1

t and u2
t represent the amount that the insurer and

the reinsurer invest in the risky asset at the beginning of the time period t, respectively. Assume
that w1

t and w2
t denote the insurer’s and the reinsurer’s wealth at time period t, then the wealth

allocated in the risk-free asset can be expressed as w1
t − u1

t and w2
t − u2

t , respectively. In addition to the
investment, we also assume that a proportional reinsurance contract is applied between the insurer
and the reinsurer. The proportion covered by the insurer at the time period t is denoted by qt, where
qt ∈ [0, 1], t = 0, 1, ..., T − 1. Under this reinsurance contract, the insurer only requires to bear the
claim amount qtzt when facing a claim zt at the time period t. In this case, qt can also be treated as
the retention level of the claim zt. Meanwhile, the reinsurer undertakes the rest of the claim amount
(1− qt)zt, as well as obtains a premium δt(qt) from the insurer. Let ct denote the premium income of
the insurer at the time period t (note that ct is assumed to be a determinate value), then the remaining
premium of the insurer can be expressed as ct − δt(qt), t = 0, 1, ..., T− 1. Therefore, the wealth process
of the insurer and the reinsurer can be shown as follows.

w1
t+1 = st(w1

t − u1
t ) + e1

t u1
t + ct − δt(qt)− qtzt

= stw1
t + ct + P1

t u1
t − δt(qt)− qtzt, (1)

and:

w2
t+1 = st(w2

t − u2
t ) + e2

t u2
t + δt(qt)− (1− qt)zt

= stw2
t + P2

t u2
t + δt(qt)− (1− qt)zt, (2)

where, P1
t = e1

t − st and P2
t = e2

t − st denote the excess return of risky assets 1 and 2, respectively,
and t = 0, 1, ..., T − 1.

Apparently, the insurer and the reinsurer have conflicts of interest because of the reinsurance
contract. Therefore, the formulation of the investment-reinsurance strategy should consider both the
insurer and the reinsurer. In addition, since the insurer and the reinsurer not only face the risk of
claims but also bear the investment risk of the securities market, they are more risk-averse compared
to other institutional investors. More importantly, Zhu et al. [13] and Zhou et al. [19] showed that
the precommitment and time-consistent strategies derived from the classical mean-variance model
will lead to higher bankruptcy probabilities in the earlier periods of an investment. The cause is that
the classical mean-variance model only considers the terminal performance of a portfolio and its
intermediate performance is ignored. Therefore, the classical multiperiod mean-variance model may
not be the best choice for the insurer and the reinsurer. To address this problem, we use two generalized
mean-variance criteria to measure the performance of the insurer and the reinsurer. In this setting,
the intermediate and terminal performance can be both considered. Simultaneously, we take the
weighted sum of the insurer’s and the reinsurer’s mean-variance criteria into account, so as to measure
the joint interests of the insurer and the reinsurer. Under this generalized mean-variance framework,
the corresponding multiperiod investment-reinsurance optimization problem can be formulated
as follows.

max
π

α
T

∑
t=1

ξ1
t [E(w

1
t )− η1

t Var(w1
t )] + (1− α)

T

∑
t=1

ξ2
t [E(w

2
t )− η2

t Var(w2
t )] (3)

s.t.

{
w1

t+1 = stw1
t + ct + P1

t u1
t − δt(qt)− qtzt, t = 0, 1, ..., T − 1,

w2
t+1 = stw2

t + P2
t u2

t + δt(qt)− (1− qt)zt, t = 0, 1, ..., T − 1.
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Here, we let π = (π0, π1, ..., πT−1), πk = (u1
k , u2

k , qk), k = 0, 1, ..., T− 1, and the weight α satisfy the
condition that α ∈ [0, 1]. Note that α can be regarded as the weighing coefficient between the benefit of
the insurer and that of the reinsurer. Intuitively, α > 0.5 indicates that the benefit of the insurer is more
concerned (i.e., the insurer is the leader); α < 0.5 means that the benefit of the reinsurer is paid more
attention (i.e., the reinsurer is the leader); while for the case that α = 0.5, we consider that the interest
of the insurer and that of the reinsurer are equally important. Additionally, we also assume that ξ1

t
and ξ2

t are both the 0-1 variables, among which ξ1
t = 1 (ξ2

t = 1) means that the insurer (reinsurer) will
consider the intertemporal restriction at the time period t, otherwise, the intertemporal restriction is
ignored here, t = 1, 2, ..., T. Further, parameters η1

t and η2
t denote the risk aversion coefficients of the

insurer and the reinsurer at time period t, respectively, t = 1, 2, ..., T.
Similar to the existing literature, we further assume that et = [e1

t , e2
t ]
′ and zt are statistically

independent, t = 0, 1, ..., T − 1. In other words, the covariance Cov(et1 , et2) = 0 for t1 6= t2,
and the covariance Cov(et1 , zt2) = 0, where t1, t2 = 0, 1, ..., T − 1. Let µi

t = E(Pi
t ), σi

t = Var(Pi
t ),

θt = Cov(P1
t , P2

t ), µ̃t = E(zt) and σ̃t = Var(zt), where i = 1, 2 and t = 0, 1, ..., T − 1. In addition,
for convenience, we define the notations that ∑l

t=k(·) = 0 and ∏l
t=k(·) = 1 for k > l. Under this

framework, we aim to provide some suitable investment-reinsurance strategies for both the insurer
and the reinsurer.

3. Time-Consistent Solution of the Generalized Model

To the best of our knowledge, the expected iterated property is absent from the variance
measure, thus Equation (3) is also a time-inconsistent one, that is, it cannot be directly solved by
using the dynamic programming approach. Similar to the classical multiperiod mean-variance
model, we have two approaches to solve Equation (3). The first approach is the embedding scheme
provided by Li and Ng [21], and the derived strategy is called the precommitment strategy. However,
some researchers point out the precommitment strategy does not satisfy time consistency since it
does not take the future modifications into account. The second one is proposed by Basak and
Chabakauri [22] and Björk and Murgoci [23], named as the game approach, and it can provide
a time-consistent strategy for decision-makers. In this paper, we mainly focus on providing a
time-consistent investment-reinsurance strategy for the rational decision-makers who will consider
the decision modifications in the future. Similar to Björk and Murgoci [23], we define the following
time-varying mean-variance optimization sub-objective.

Jk(w1
k , w2

k , π) = α
T

∑
t=k

ξ1
t [E(w

1
t )− η1

t Var(w1
t )] + (1− α)

T

∑
t=k

ξ2
t [E(w

2
t )− η2

t Var(w2
t )], (4)

where k = 0, 1, ..., T − 1. Then, the time-consistent solution of Equation (3) can be defined similarly
as follows.

Definition 1. Consider a fixed control policy π̂ = (π̂0, π̂1, ..., π̂T−1). For k = 0, 1, ..., T − 1, we define that:

π(k) = (πk, π̂k+1, ..., π̂T−1),

π̂(k) = (π̂k, π̂k+1, ..., π̂T−1),

where πk = (u1
k , u2

k , qk) is arbitrarily control variable. Then π is said to be a time-consistent
investment-reinsurance strategy if for all k = 0, 1, ..., T − 1, it satisfies:

max
πk

Jk(w1
k , w2

k , π(k)) = Jk(w1
k , w2

k , π̂(k)).

Additionally, if the time-consistent investment-reinsurance strategy π̂ exists, the corresponding value
function can be defined as:

Vk(w1
k , w2

k) = Jk(w1
k , w2

k , π̂(k)).
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According the definition of time-consistent strategy, we have the following proposition.

Proposition 1. The value function Vk(w1
k , w2

k) satisfies the following recursive relation.

Vk(w1
k , w2

k)

= max
πk



Ek[Vk+1(w1
k+1, w2

k+1)]− α
T
∑

m=k+2
ξ1

mη1
mVark[ fk+1,m(w1

k+1)]

−(1− α)
T
∑

m=k+2
ξ2

mη2
mVark[gk+1,m(w2

k+1)]

+αξ1
k+1[Ek(w1

k+1)− η1
k+1Vark(w1

k+1)]

+(1− α)ξ2
k+1[Ek(w2

k+1)− η2
k+1Vark(w2

k+1)],
f or k = 0, 1, ..., T − 2,


(5)

as well as the boundary condition:

VT−1(w1
T−1, w2

T−1) = max
πT−1

{
α[ξ1

TET−1(w1
T)− ξ1

Tη1
TVarT−1(w1

T)]

+(1− α)[ξ2
TET−1(w2

T)− ξ2
Tη2

TVarT−1(w2
T)]

}
, (6)

where:

fk,τ(w1
k) =

{
Ek[ fk+1,τ(w1

k+1)], f or τ > k, τ, k = 0, 1, ..., T − 1,

w1
k , f or τ = k, k = 0, 1, ..., T − 1,

(7)

gk,τ(w2
k) =

{
Ek[gk+1,τ(w2

k+1)], f or τ > k, τ, k = 0, 1, ..., T − 1,

w2
k , f or τ = k, k = 0, 1, ..., T − 1.

(8)

Proof. See Appendix A.

According to Proposition 1, we can derive the following theorem.

Theorem 1. Suppose that α ∈ (0, 1), for the multi-period mean-variance investment-reinsurance
optimization problem Equation (3), the time-consistent investment-reinsurance strategies
{π̂t = (û1

t , û2
t , q̂t), t = 0, 1, ..., T − 1} can be expressed as follows.

û1
t =

(
T
∑

m=t+1
ξ1

m
m−1
∏

i=t+1
si

)
µ1

t

2
(

T
∑

m=t+1
ξ1

mη1
m

m−1
∏

i=t+1
(si)2

)
σ1

t

, (9)

û2
t =

(
T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

)
µ2

t

2
(

T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)2

)
σ2

t

, (10)

q̂t = arg max
0≤qt≤1



α

(
T
∑

m=t+1
ξ1

m
m−1
∏

i=t+1
si

)
[−δt(qt)− qtµ̃t]

−α

(
T
∑

m=t+1
ξ1

mη1
m

m−1
∏

i=t+1
(si)

2
)

σ̃t(qt)2

+(1− α)

(
T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

)
[δt(qt)− (1− qt)µ̃t]

−(1− α)

(
T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)

2
)

σ̃t(1− qt)2


. (11)
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Additionally, the value function Vt(w1
t , w2

t ), and the functions ft,τ(w1
t ) and gt,τ(w2

t ) are given as follows.

Vt(w1
t , w2

t ) = α

(
T

∑
m=t+1

ξ1
m

m−1

∏
i=t

si

)
w1

t + (1− α)

(
T

∑
m=t+1

ξ2
m

m−1

∏
i=t

si

)
w2

t + κt, (12)

ft,τ(w1
t ) =

τ−1

∏
i=t

siw1
t + γt,τ , t ≥ τ, τ = 0, 1, ..., T − 1, (13)

gt,τ(w2
t ) =

τ−1

∏
i=t

siw2
t + ρt,τ , t ≥ τ, τ = 0, 1, ..., T − 1. (14)

For convenience, we define that γt,τ = 0 and ρt,τ = 0 for t = τ, then the parameters κt, γt,τ and ρt,τ

satisfy the following equations:

κt =
T
∑

k=t

 α

(
T
∑

m=k+1
ξ1

m
m−1
∏

i=k+1
si

)
(µ1

k)
2

4

(
T
∑

m=k+1
ξ1

mη1
m

m−1
∏

i=k+1
(si)2

)
σ1

k

+
(1−α)

(
T
∑

m=k+1
ξ2

m
m−1
∏

i=k+1
si

)
(µ2

k)
2

4

(
T
∑

m=k+1
ξ2

mη2
m

m−1
∏

i=k+1
(si)2

)
σ2

k


+α

T
∑

k=t

[(
T
∑

m=k+1
ξ1

m
m−1
∏

i=k+1
si

)
[ck − δk(q̂k)− q̂kµ̃k]

]

−α
T
∑

k=t

[(
T
∑

m=k+1
ξ1

mη1
m

m−1
∏

i=k+1
(si)

2

)
σ̃k(q̂k)

2

]

+(1− α)
T
∑

k=t

[(
T
∑

m=k+1
ξ2

m
m−1
∏

i=k+1
si

)
[δk(q̂k)− (1− q̂k)µ̃k]

]

−(1− α)
T
∑

k=t

[(
T
∑

m=k+1
ξ2

mη2
m

m−1
∏

i=k+1
(si)

2

)
σ̃k(1− q̂k)

2

]
,

γt,τ =
τ

∑
k=t


(

T
∑

m=k+1
ξ1

m
m−1
∏

i=k+1
si

)
(µ1

k)
2

2

(
T
∑

m=k+1
ξ1

mη1
m

m−1
∏

i=k+1
(si)2

)
σ1

k

+
τ

∑
k=t

[
τ−1
∏

i=k+1
si[ck − δk(q̂k)− q̂kµ̃k]

]
,

ρt,τ =
τ

∑
k=t


(

T
∑

m=k+1
ξ2

m
m−1
∏

i=k+1
si

)
(µ2

k)
2

2

(
T
∑

m=k+1
ξ2

mη2
m

m−1
∏

i=k+1
(si)2

)
σ2

k

+
τ

∑
k=t

[
τ−1
∏

i=k+1
si[δk(q̂k)− (1− q̂k)µ̃k]

]
.

(15)

Proof. See Appendix B.

Theorem 1 only shows the time-consistent strategies when the weight coefficient α satisfies the
condition that α ∈ (0, 1). While for the case that α = 1 or α = 0, that is, Equation (3) only considers the
benefit of the insurer or the reinsurer, then the corresponding time-consistent investment-reinsurance
strategies can be derived similarly. The details are shown as follows.

Remark 1. Suppose that α = 1, Equation (3) degenerates into the investment-reinsurance optimization
problem only considering the interest of the insurer. In this situation, the time-consistent strategies
{π̂t = (û1

t , q̂t), t = 0, ..., T − 1} can be obtained similarly as follows.

û1
t =

(
T
∑

m=t+1
ξ1

m
m−1
∏

i=t+1
si

)
µ1

t

2
(

T
∑

m=t+1
ξ1

mη1
m

m−1
∏

i=t+1
(si)2

)
σ1

t

, (16)
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q̂t = arg max
0≤qt≤1

{ (
T
∑

m=t+1
ξ1

m
m−1
∏

i=t+1
si

)
[−µ̃tqt − δt(qt)]−

(
T
∑

m=t+1
ξ1

mη1
m

t−1
∏

i=t+1
(si)

2
)
(qt)2σ̃t

}
. (17)

In addition, the value function Vt(w1
t , w2

t ) and the function ft,τ(w1
t ) can be reduced as:

Vt(w1
t , w2

t ) =

(
T

∑
m=t+1

ξ1
m

m−1

∏
i=t+1

si

)
w1

t + κt, (18)

ft,τ(w1
t ) =

τ−1

∏
i=t

siw1
t + γt,τ , t ≥ τ, τ = 0, 1, ..., T − 1, (19)

where κt and γt,τ (note that γt,τ = 1 for t = τ) satisfy the following equations:

κt =
T−1
∑

k=t

[(
T
∑

m=k+1
ξ1

m
m−1
∏

i=k+1
si

)
{ck − δk(q̂k)− µ̃k q̂k}

]

+
T−1
∑

k=t


(

T
∑

m=k+1
ξ1

m
m−1
∏

i=k+1
si

)
(µ1

k)
2

4

(
T
∑

m=k+1
ξ1

mη1
m

m−1
∏

i=k+1
(si)2

)
σ1

k

− T−1
∑

k=t

[(
T
∑

m=k+1
ξ1

mη1
m

m−1
∏

i=k+1
(si)

2

)
(q̂k)

2σ̃k

]
,

γt,τ =
τ−1
∑

k=t

[(
τ−1
∏

i=k+1
si

)
{ck − δk(q̂k)− µ̃k q̂k}

]
+

τ−1
∑

k=t


(

T
∑

m=k+1
ξ1

m
m−1
∏

i=k+1
si

)(
τ−1
∏

i=k+1
si

)
(µ1

k)
2

2

(
T
∑

m=k+1
ξ1

mη1
m

m−1
∏

i=k+1
(si)2

)
σ1

k

 .

(20)

As shown in Remark 1, we can find that the function Vt(w1
t , w2

t ) and ft,τ(w1
t , w2

t ) only depend
on the insurer’s wealth at the time period t, i.e., w1

t . In this situation, decision-makers only
consider the benefit of the insurer, this is also the traditional approach to deal with the optimal
investment-reinsurance problem. However, compared with the existing literature on the study of
optimal investment and reinsurance in the continue-time setting (e.g., Schmidli [1], Zeng and Li [2],
Zhu et al. [3], and Deng et al. [6] and so on), the proposed strategies in Remark 1 also consider the
intermediate performance of the insurer.

Remark 2. Suppose that α = 0, Equation (3) degenerates into the investment-reinsurance optimization
problem only considering the interest of the reinsurer. In this case, the time-consistent strategies
{(û2

t , q̂t), t = 0, ..., T − 1} can be similarly obtained as follows.

û2
t =

(
T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

)
µ2

t

2
(

T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)2

)
σ2

t

, (21)

q̂t = arg max
0≤qt≤1


(

T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

)
[δt(qt)− µ̃t(1− qt)]

−
(

T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)

2
)

σ̃t(1− qt)2

 . (22)

Meanwhile, the value function and the function gt,τ(w1
t , w2

t ) can be reduced as follows.

Vt(w1
t , w2

t ) =
T−1

∏
i=t

siw2
t + κt, (23)
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gt,τ(w2
t ) =

τ−1

∏
i=t

siw2
t + ρt,τ , t ≥ τ, τ = 0, 1, ..., T − 1, (24)

where κt and ρt,τ (note that ρt,τ = 0 for t = τ) satisfy the following equations:

κt =
T−1
∑

k=t

[(
T
∑

m=k+1
ξ2

m
m−1
∏

i=k+1
si

)
{δk(q̂k)− µ̃k(1− q̂k)}

]
+

T−1
∑

k=t


(

T
∑

m=k+1
ξ2

m
m−1
∏

i=k+1
si

)
(µ2

k)
2

4

(
T
∑

m=k+1
ξ2

mη2
m

m−1
∏

i=k+1
(si)2

)
σ2

k


−

T−1
∑

k=t

[(
T
∑

m=k+1
ξ2

mη2
m

m−1
∏

i=k+1
(si)

2

)
σ̃k(1− q̂k)

2

]
,

ρt,τ =
τ−1
∑

k=t

[(
τ−1
∏

i=k+1
si

)
{δk(q̂k)− µ̃k(1− q̂k)}

]
+

τ−1
∑

k=t


(

T
∑

m=k+1
ξ2

m
m−1
∏

i=k+1
si

)(
τ−1
∏

i=k+1
si

)
(µ2

k)
2

2

(
T
∑

m=k+1
ξ2

mη2
m

m−1
∏

i=k+1
(si)2

)
σ2

k

 .

(25)

Remark 2 shows the time-consistent strategies when Equation (3) only considers the interest of
the reinsurer. In this situation, the value function Vt(w1

t , w2
t ) and the function ft,τ(w1

t ) only depend on
the wealth value w2

t (i.e., the reinsurer’s wealth at time period t).
Additionally, from Theorem 1 and Remarks 1 and 2, we can find that the reinsurance strategy

and the investment strategies are independent of each other, that is, some changes in the reinsurance
premium δt(qt) will not affect the form of the investment strategies shown in Theorem 1. In the
following, we will discuss the time-consistent strategies under some classical premium principles
(e.g., the expected value principle and the variance value principle). The detailed results are presented
in Sections 3.1 and 3.2, respectively.

3.1. Time-Consistent Investment-Reinsurance Strategies under the Expected Value Principle

In this section, we refer to Waters [27] and assume that the reinsurance premium δt(qt) is
calculated according to the expected value principle, i.e., δt(qt) = (1 + βt)(1 − qt)µ̃t, where βt

(βt > 0) is the safety loading of the reinsurer. For convenience, we define the following notation:

bt =

[
α

(
T
∑

m=t+1
ξ1

m
m−1
∏

i=t+1
si

)
−(1−α)

(
T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

)]
βt µ̃t+2(1−α)

(
T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)

2

)
σ̃t

2

[
α

(
T
∑

m=t+1
ξ1

mη1
m

m−1
∏

i=t+1
(si)2

)
+(1−α)

(
T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)2

)]
σ̃t

.

Based on the conclusions shown in Theorem 1 and Remarks 1 and 2, we can derive the
time-consistent strategies under some special settings. For details see Corollary 1 and Remarks 3–5.

Corollary 1. Suppose that α ∈ (0, 1) and the reinsurance premium δt(qt) is calculated according to the
above expected value principle. In this situation, the time-consistent investment strategies for Equation (3) are
coincident with these in Theorem 1, while the corresponding time-consistent reinsurance strategy (i.e., q̂t, t =
0, 1, ..., T − 1) can be reduced as follows.

q̂t =


0, i f bt < 0,

bt, i f 0 ≤ bt ≤ 1,

1, i f bt > 1.

(26)

As shown in Corollary 1, we can find that the time-consistent reinsurance strategy q̂t is dependent
with the notation bt, since the value of bt will determine whether the time-consistent strategy qt is
to take the interior point or the boundary point. When bt is a negative value, the time-consistent
reinsurance strategy qt is equal to 0, that is, the reinsurer will bear all risk of claims; when bt > 1,
the time-consistent reinsurance strategy can be expressed as qt = 1, in this situation, the insurer
will undertake all the risk of claims; otherwise, qt will be to take interior point bt. Apparently,
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the intertemporal restrictions will affect the form of bt, that is, the time-consistent reinsurance qt is also
influenced by the intertemporal restrictions.

Remark 3. Suppose that α ∈ (0, 1), ξ1
t = ξ2

t = 0 for t = 1, 2, ..., T − 1, ξ1
T = ξ2

T = 1 and the reinsurance
premium δt(qt) is calculated according to the above expected value principle. Therefore, the time-consistent
investment-reinsurance strategies for Equation (3), i.e., π̂t = {(û1

t , û2
t , q̂t), t = 0, 1, ..., T − 1}, can be

reduced as: 
û1

t =
µ1

t

2η1
T

(
T−1
∏

i=t+1
si

)
σ1

t

,

û2
t =

µ2
t

2η2
T

(
T−1
∏

i=t+1
si

)
σ2

t

,
(27)

q̂t =


0, i f bt < 0,

bt, i f 0 ≤ bt ≤ 1,

1, i f bt > 1.

(28)

In this case, bt can be reduced as bt =
(1−α)η2

T
αη1

T+(1−α)η2
T
+ (2α−1)βt µ̃t

2[αη1
T+(1−α)η2

T]
T−1
∏

i=t+1
si σ̃t

.

Remark 3 shows that the insurer and the reinsurer only consider the performance of terminal
wealth and the reinsurance premium is calculated according to the expected value principle. Compared
with Corollary 1 and Remark 3, we can find that the latter only considers the terminal risk aversion
coefficients η1

T and η2
T , while the former is dependent on all the risk aversion coefficients at the different

time periods (i.e., η1
t and η2

t for t = 1, 2, ..., T).

Remark 4. Suppose that α = 1 and the reinsurance premium δt(qt) is calculated according to the above
expected value principle. In this case, the time-consistent investment strategy for Equation (3) is same as that in
Remark 1. However, the time-consistent reinsurance strategy (i.e., q̂t, t = 0, ..., T − 1) can be reduced as follows.

q̂t =

(
T
∑

m=t+1
ξ1

m
m−1
∏

i=t+1
si

)
βtµ̃t

2
(

T
∑

m=t+1
ξ1

mη1
m

m−1
∏

i=t+1
(si)2

)
σ̃t

∧ 1. (29)

Remark 4 shows the time-consistent investment-reinsurance strategies for the insurer under the
expected value principle. In this case, the insurer’s decision only depends on its own performance,
while the performance of the reinsurer is ignored here. However, the intertemporal restrictions still
restrict the formulation of the time-consistent strategy.

Remark 5. Suppose that α = 0 and the reinsurance premium δt(qt) is calculated according to the above
expected value principle. In this situation, the time-consistent investment strategy for Equation (3) is consistent
with that in Remark 2. In addition, the time-consistent reinsurance strategy (i.e., q̂t, t = 0, ..., T − 1) can be
expressed as follows.

q̂t = 0∨

1−

(
T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

)
βtµ̃t

2
(

T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)2

)
σ̃t

 ∧ 1. (30)
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Remark 5 shows the time-consistent investment-reinsurance strategies for the reinsurer under
the expected value principle. Compared with the results shown in Remark 4, the proposed strategies
in Remark 5 are derived from the other extreme, that is, the decision-maker only considers the
performance of the reinsurer.

3.2. Time-Consistent Investment and Reinsurance Strategies under the Variance Value Principle

In this section, we assume that the reinsurance premium δt(qt) is calculated according to the
variance value principle (the readers can refer to Waters [27]), that is, δt(qt) = (1− qt)µ̃t + βt(1−
qt)2σ̃t, t = 0, 1, ..., T − 1. Similarly, we can derive the time-consistent strategies under some special
settings. For details see Corollary 2 and Remarks 6–8.

Corollary 2. Suppose that α ∈ (0, 1) and the reinsurance premium δt(qt) is calculated according to the above
variance value principle. For Equation (3), its time-consistent investment strategies are also coincident with
these in Theorem 1. In addition, the corresponding time-consistent reinsurance strategy (q̂t, t = 0, 1, ..., T − 1)
can be expressed as:

q̂t =


0, i f m̂t 6= 0 and b̂t < 0,

b̂t, i f m̂t 6= 0 and 0 ≤ b̂t ≤ 1,

1, i f m̂t 6= 0 and b̂t > 1,

∀qt ∈ [0, 1], i f m̂t = 0,

(31)

where:

b̂t =

[
α

(
T
∑

m=t+1
ξ1

m

m−1
∏

i=t+1
si

)
−(1−α)

(
T
∑

m=t+1
ξ2

m

m−1
∏

i=t+1
si

)]
βt+(1−α)

(
T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)

2
)

[
α

(
T
∑

m=t+1
ξ1

m

m−1
∏

i=t+1
si

)
−(1−α)

(
T
∑

m=t+1
ξ2

m

m−1
∏

i=t+1
si

)]
βt+

[
α

(
T
∑

m=t+1
ξ1

mη1
m

m−1
∏

i=t+1
(si)2

)
+(1−α)

(
T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)2

)] ,

m̂t =

[
α

(
T
∑

m=t+1
ξ1

m
m−1
∏

i=t+1
si

)
− (1− α)

(
T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

)]
βt

+

[
α

(
T
∑

m=t+1
ξ1

mη1
m

m−1
∏

i=t+1
(si)

2

)
+ (1− α)

(
T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)

2

)]
.

Obviously, the intertemporal restrictions also restrict the formulation of the proposed strategies in
Corollary 2. Compared with Corollary 1 and Corollary 2, we can find that the proposed reinsurance
strategy shown in Corollary 1 will be affected by the expectation and variance of the claim zt (i.e., µ̃t

and σ̃t), while that in Corollary 2 is independent with µ̃t and σ̃t. That is, under the variance value
principle, the reserve level q̂t does not change because of the size of µ̃t and σ̃t. However, with the
increase of parameters µ̃t and σ̃t, the insurer will pay more premiums to the reinsurer since the
reinsurance premium δt(qt) is an increasing function of both µ̃t and σ̃t.

Remark 6. Suppose that α ∈ (0, 1), ξ1
t = ξ2

t = 0 for t = 1, 2, ..., T − 1, ξ1
T = ξ2

T = 1, and the
reinsurance premium δt(qt) is calculated according to the above variance value principle. The time-consistent
investment-reinsurance strategies for Equation (3) (i.e., π̂t = {(û1

t , û2
t , q̂t), t = 0, 1, ..., T − 1}) can be

simplified as: 
û1

t =
µ1

t

2η1
T

(
T−1
∏

i=t+1
si

)
σ1

t

,

û2
t =

µ2
t

2η2
T

(
T−1
∏

i=t+1
si

)
σ2

t

,
(32)



Mathematics 2019, 7, 857 12 of 25

q̂t =


0, i f mt 6= 0, b̂t < 0,

b̂t, i f mt 6= 0, 0 ≤ b̂t ≤ 1,

1, i f mt 6= 0, b̂t > 1,

∀qt ∈ [0, 1], i f mt = 0,

(33)

where: 
b̂t =

(2α−1)βt+(1−α)η2
T

(
T−1
∏

i=t+1
si

)

(2α−1)βt+[αη1
T+(1−α)η2

T]

(
T−1
∏

i=t+1
si

) ,

m̂t = (2α− 1)βt +
[
αη1

T + (1− α)η2
T
] ( T−1

∏
i=t+1

si

)
.

Remark 6 shows the time-consistent strategies for the insurer and the reinsurer who only consider
the performance of their terminal wealth, among which the reinsurance premium is calculated
according to the variance value principle. Compared with Corollary 2 and Remark 6, we can find that
the proposed reinsurance strategy not only relies on the terminal risk aversion coefficients η1

T and η2
T ,

but also has nothing to do with the expectation and variance of a claim.

Remark 7. Suppose that α = 1 and the reinsurance premium δt(qt) is calculated according to the variance
value principle. In this situation, the time-consistent investment strategies for Equation (3) are also coincident
with those in Remark 1, while the time-consistent reinsurance strategy (i.e., q̂t, t = 0, ..., T− 1) can be simplified
as follows.

q̂t =

(
T
∑

m=t+1
ξ1

m
m−1
∏

i=t+1
si

)
βt(

T
∑

m=t+1
ξ1

mη1
m

m−1
∏

i=t+1
(si)2

)
+

(
T
∑

m=t+1
ξ1

m
m−1
∏

i=t+1
si

)
βt

. (34)

Remark 7 shows the time-consistent strategies when the decision-makers only consider the
performance of the insurer rather than that of the reinsurer. Compared with the time-consistent
reinsurance strategy shown in Corollary 2 and Remark 7, we can find that the former might be a
boundary point, while the latter has to be an interior value.

Remark 8. Suppose that α = 0 and the reinsurance premium δt(qt) is calculated according to the above
variance value principle. The time-consistent investment strategy are consistent with these in Remark 2.
However, the corresponding time-consistent reinsurance strategy (i.e., q̂t, t = 0, ..., T − 1) is reduced as follows.

q̂t =



0, i f βt >

(
T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)

2

)
(

T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

) ,

1, i f βt <

(
T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)

2

)
(

T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

) ,

∀qt ∈ [0, 1], i f βt =

(
T
∑

m=t+1
ξ2

mη2
m

m−1
∏

i=t+1
(si)

2

)
(

T
∑

m=t+1
ξ2

m
m−1
∏

i=t+1
si

) .

(35)

Remark 8 shows the time-consistent strategies when the decision-makers only consider the
performance of the reinsurer, among which the reinsurance premium is according to the variance value
principle. In this case, the safety loading coefficient βt can be treated as the risk compensation coefficient
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of the reinsurer. That is, the larger the βt, the more the reinsurer can obtain risk compensations from
the insurer. Remark 8 indicates that when βt is large enough, the reinsurer is willing to assume all the
risk of claims; otherwise, the reinsurer is reluctant to assume any claim risks, since the insurer cannot
offer a suitable reinsurance premium as the risk compensation.

4. Numerical Analysis

In this section, we will provide some numerical simulations to show the results presented in
Section 3. We assume that the initial wealth of the insurer and the reinsurer are w1

0 = 1 and w2
0 = 1,

respectively. Using the data provided by Li and Ng [21], we let µ1
t = 1.162, µ2

t = 1.228, σ1
t = 0.0146,

σ2
t = 0.0289, θt = 0.0145 and st = 1.04, t = 0, 1, ..., T − 1. Additionally, we suppose that the

safety loading coefficient of the reinsurer satisfies βt = 0.8, and the claim zt follows an exponential
distribution with the rate parameter λt = 10, t = 0, 1, ..., T − 1. In the following, we will show the
evolutions process of the time-consistent strategies under different settings and investigate how the
intertemporal restrictions affect the time-consistent investment and reinsurance strategies. In addition,
we assume that ξ1

t and ξ2
t have the following situations.

• Case I. Suppose that ξ1
t = ξ2

t = 1 in Equation (3), t = 1, 2, ..., T. In this setting, the insurer’s and
the reinsurer’s decisions will take all the intertemporal restrictions into account.

• Case II. Suppose that ξt = ξ2
t = 0 for t = 1, 2, ..., T − 1 and ξ1

T = ξ2
T = 1 in Equation (3).

In this case, the decision-makers only consider the performance of their terminal wealth.

Based on the above parameter settings, we will discuss the impact of the intertemporal restrictions
on the time-consistent investment and reinsurance strategies. Since the reinsurance premium δt(qt)

and the weight coefficient α have nothing to do with the investment strategies of the insurer and the
reinsurer, we do not have to repeat the evolution process of time-consistent investment strategies when
the δt(qt) and α take different settings. However, the impacts of the δt(qt) and the weight α on the
formulation of the time-consistent reinsurance strategy cannot be ignored. Under this conception,
we can obtain the following simulations.

4.1. Simulations of the Insurer’s and the Reinsurer’s Time-Consistent Investment Strategies

In this section, we will discuss how the intertemporal restrictions affect the time-consistent
investment strategies. Motivated by Xiao et al. [20], we assume that the risk aversion coefficients
of the insurer and the reinsurer satisfy the following two exponential functions: η1

t = η1
T × φT−t

1
and η2

t = η2
T × φT−t

2 , among which φ1 and φ2 are both greater than the return of the risk-free asset,
t = 1, 2, ..., T. Additionally, since the insurer is more risk-averse compared to the reinsurer, we also
assume that η1

T > η2
T and φ1 > φ2. Under this assumption, we let η1

T = 2, η1
T = 1, φ1 = 1.08

and φ1 = 1.06. Therefore, we can derive the corresponding simulation paths of the time-consistent
investment strategies shown in Sections 3.1 and 3.2. For details see Figure 1.

Figure 1 shows the evolution paths of the insurer’s and the reinsurer’s time-consistent investment
strategies when the investment horizon is T = 100. As shown in Figure 1, we find that compared with
the time-consistent investment strategies without considering intertemporal restrictions, the insurer
and the reinsurer will both reduce investment position invested in the risky asset when the
intertemporal restrictions are all considered in the decision-making. This indicates that the insurer
and the reinsurer will increase the amount invested in risk-free assets (i.e., w1

t − û1
t or w2

t − û2
t ),

so as to reduce the risk in the earlier periods. In addition, the above time-consistent strategies are all
increasing functions of the time period t, no matter that the intertemporal restrictions are considered
or not. That is, the closer the insurer and the reinsurer get to the end of their investment, the more
wealth they invest in the risky asset. This cause is that with the accumulation of the insurer’s and the
reinsurer’s wealth, they have enough ability to bear the investment risk.
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Figure 1. Time-consistent investment strategies for the insurer and the reinsurer (T = 100).

In Figure 1, we assume that the risk aversion coefficients of the insurer and the reinsurer follow the
exponential distributions mentioned above. In the following, we want to check the above conclusions
whether is true when the risk aversion coefficient appears in other forms. Inspired by Wang and
Chen [28], we assume the risk aversion coefficients are described by the following linear functions:
η1

t = η1
T + k1 × (T − t) and η2

t = η2
T + k2 × (T − t), t = 1, 2, ..., T, where parameters k1 and k1 are both

greater than 0. Similar to Figure 1, we also assume that η1
T > η2

T and k1 > k2, since the insurer is more
risk-averse than the reinsurer.

Let T = 100, η1
T = 2, η2

T = 1, k1 = 0.5 and k2 = 0.2, and then we can derive the corresponding
simulations presented in Figure 2. As shown in Figure 2, we find that the intertemporal restrictions
also have restriction effects on the time-consistent investment strategies; meanwhile, these investment
strategies are all increasing functions of the time period t. Apparently, the above conclusions are
coincident with these in Figure 1.
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Figure 2. Time-consistent investment strategy for the insurer (α = 0.6 and T = 100).
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4.2. Simulations of the Time-Consistent Reinsurance Strategy

In the following, we will discuss the evolution of the time-consistent reinsurance strategy under
different settings. More importantly, we will investigate the impacts of the reinsurance premium δt(qt)

and the weight coefficient α on the time-consistent reinsurance strategy. In this section, we assume that
the insurer and the reinsurer will adopt the classical expected and variance value principles to make
the time-consistent reinsurance strategy. Using the parameters shown in Figure 1, we can derive the
corresponding simulation path of the time-consistent reinsurance strategy under the expected value
principle and the variance value principle, respectively. For detailed simulation results see Figures 3–6.
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Figure 3. Time-consistent reinsurance strategy under the expected value principle (α = 0.4 and
T = 100).
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Figure 4. Time-consistent reinsurance strategy under the expected value principle (α = 0.6 and
T = 100).
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Figure 5. Time-consistent reinsurance strategy under the variance value principle (α = 0.4 and
T = 100).
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Figure 6. Time-consistent reinsurance strategy under the variance value principle (α = 0.6 and
T = 100).

Under the expected value principle, Figures 3 and 4 show the evolution of the time-consistent
reinsurance strategy with different weight coefficients α (i.e., α = 0.4 and α = 0.6). Under Case II,
we find that the time-consistent reinsurance strategy is a decreasing function of the time period t when
the weight coefficient takes α = 0.4, while for the situation that α = 0.6, the time-consistent reinsurance
strategy increases with the time period t. Actually, the condition α = 0.4 indicates that the reinsurer
is paid more attention (i.e., the reinsurer is the leader), in this case, the reinsurer wants to get more
reinsurance business from the insurer. Therefore, the retention level of the claim q̂t will decrease with
the time period t. On the other hand, the condition α = 0.6 means that the insurer is getting more
attention (i.e., the insurer is the leader), in this situation, the insurer will pass most of claim risks to
the reinsurer, because the bankruptcy probability is higher in the earlier periods. However, with the
accumulation of the insurer’s wealth, the insurer is willing to increase the retention level of the claim
q̂t, that is, q̂t increases with the time period t. Note that this monotonicity is not necessarily true for the
time-consistent reinsurance strategy with consideration of the intertemporal restrictions.

We further consider the impact of the intertemporal restrictions on the time-consistent reinsurance
strategy (i.e., the time-consistent reinsurance strategy under Case I in Figures 3 and 4). As shown in
Figures 3 and 4, we find that the intertemporal restrictions have a significant impact on reinsurance
strategy. However, there are large differences in the impact of intertemporal restrictions on the
time-consistent investment strategies and the time-consistent reinsurance strategy. As mentioned
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in Section 4.1, we have concluded that the intertemporal restrictions will make the insurer and
the reinsurer reduce the positions invested in the risky asset. While for the reinsurance strategy,
the intertemporal restrictions do not necessarily cause the decision-makers to reduce the retention
level q̂t (e.g., the time-consistent reinsurance strategy under Case I in Figure 3). The cause is that
when α = 0.4 (i.e., the reinsurer has the leading role) and the intertemporal restrictions are taken
into consideration, the leading role urges the reinsurer to increase reinsurance proportion (1− q̂t),
but the intertemporal restrictions cause the reinsurer to reduce reinsurance business as much as
possible (i.e., the reinsurer wants the insurer to increase the retention level q̂t). Therefore, only
when the impact of the intertemporal restrictions is higher than that of the reinsurer’s leading role,
the intertemporal restrictions can induce the reinsurer to shrink the reinsurance proportion (1− q̂t).
However, when α = 0.4 (i.e., the insurer has the leading role) and the intertemporal restrictions
are taken into consideration, the target of the intertemporal restrictions and that of the insurer’s
leading role is consistent, that is, reducing the retention level q̂t. Generally speaking, the role of the
intertemporal restrictions on the time-consistent reinsurance strategy depends on who is the leader in
Equation (3).

Similar to Figures 3 and 4, we can derive the evolution path of the time-consistent reinsurance
strategy under the variance value principle. For details see Figures 5 and 6.

Figures 5 and 6 show the corresponding evolution path of the time-consistent reinsurance strategy
under the variance value principle. When the insurer and the reinsurer do not consider the impact
of the intertemporal restrictions (i.e., Case II), we find that the time-consistent reinsurance strategy
q̂t decreases with the time period t when the weight coefficient takes α = 0.4, while for the case that
α = 0.6, the time-consistent reinsurance strategy q̂t is an increasing function of the time period t.
Obviously, the above conclusion is coincident with that in Figures 3 and 4. In addition, under the
different weight coefficients α, it is not difficult to find that the role of the intertemporal restrictions is
basically consistent with that in Figures 3 and 4.

In Figures 3–6, we assume that the risk aversion coefficients η1
t and η2

t follow the two given
exponential distributions, respectively. Using the parameters shown in Figure 2, that is, the risk
aversion coefficients η1

t and η2
t both described by the linear functions, we will further discuss the

evolution path of the time-consistent reinsurance strategy under the expected value principle and the
variance value principle, respectively. For details see Figures 7–10.
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Figure 7. Time-consistent reinsurance strategy under the expected value principle (α = 0.4 and
T = 100).
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Figure 8. Time-consistent reinsurance strategy under the expected value principle (α = 0.6 and
T = 100).
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Figure 9. Time-consistent reinsurance strategy under the variance value principle (α = 0.4 and
T = 100).
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Figure 10. Time-consistent reinsurance strategy under the variance value principle (α = 0.6 and
T = 100).

As shown in Figures 7–10, we find that the evolution trends of the above reinsurance strategy are
basically consistent with those in Figures 3–6. In other words, under the two risk aversion coefficient
functions mentioned above, our conclusions are robust to some extent.
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5. Conclusions

In this paper, we first propose a multi-period investment-reinsurance optimization problem
with consideration of the joint interests of the insurer and the reinsurer under the generalized
mean-variance framework. The proposed model is constructed by maximizing the weighted sum
of the insurer’s and the reinsurer’s mean-variance objectives. We use a game method to derive
the time-consistent investment-reinsurance strategies, and also obtain the exact expression of the
time-consistent reinsurance strategy under two special premium principles. Finally, we provide some
numerical simulations to present the evolution process of the above time-consistent strategies, so as to
show the impact of the intertemporal restrictions on the time-consistent strategies. Some interesting
findings are concluded as follows: (a) The intertemporal restrictions will urge the insurer and the
reinsurer to shrink the positions invested in the risky asset. (b) The role of the intertemporal restrictions
on the time-consistent reinsurance strategy depends on who is the leader in the proposed model.
When the insurer is the leader, the intertemporal restrictions will reduce the retention level of a claim,
while for the case that the reinsurer is the leader, only when the impact of the reinsurer’s leading
role is higher than that of the intertemporal restrictions will the intertemporal restrictions reduce the
retention level of a claim.

These interesting findings also provide some useful advice for insurers and reinsurers on the actual
investment-reinsurance issue. In the framework of the proposed model, insurers and reinsurers can adjust
the intertemporal restriction conditions when the securities market is in different states. For example,
when the securities market is in a bull market, insurers and reinsurers can appropriately reduce the
intertemporal restrictions to obtain a higher terminal return, while for the case that the securities market
is in a bear market, they can increase the number of the intertemporal restrictions, so as to prevent the
bankruptcies that occur in the investment-reinsurance process. In addition, the proposed reinsurance
strategy takes into account the common interests of the insurer and the reinsurer as well as the impact of
intertemporal restrictions on the reinsurance strategy. Similarly, the insurer and the reinsurer can adjust
the reinsurance strategy dynamically according to their own risk appetites and the market environment,
which also provides a new idea for the actual formulation of the reinsurance contract.

While the proposed model can cover many classical ones, there are also some limits in our study.
First, we assume that the risk aversion coefficient does not depend on decision-makers’ current wealth
level; however, some researchers point out that the greater the wealth of decision-makers, the less
risk-averse they are likely to be. Obviously, the optimal investment-reinsurance problem with the
above state-dependent risk aversion can be regarded as one of research directions. Second, this paper
assumes that the returns of risky assets are statistically independent among different time periods.
However, some empirical studies show that the returns of risky assets always exhibit a certain degree
of dependency among different time periods. Therefore, our work can be further investigated under
the weak assumption that the returns of risky assets have the serially correlated structure.
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Appendix A. The Proof of Proposition 1

When k = T − 1, according the definition of time-consistent strategy, we have:

VT−1(w1
T−1, w2

T−1) = max
πT−1

{
α[ξ1

TET−1(w1
T)− ξ1

Tη1
TVarT−1(w1

T)]

+(1− α)[ξ2
TET−1(w2

T)− ξ2
Tη2

TVarT−1(w2
T)]

}
. (A1)



Mathematics 2019, 7, 857 20 of 25

This indicates that Proposition 1 holds for k = T − 1. Then for k = 0, 1, ..., T − 2, the function
Jk(w1

k , w2
k , π) can be expressed as:

Jk(w1
k , w2

k , π) = α ∑T
t=k+1 ξ1

t [Ek(w1
t )− η1

t Vark(w1
t )] + (1− α)∑T

t=k+1 ξ2
t [Ek(w2

t )− η2
t Vark(w2

t )]

= α ∑T
t=k+2 ξ1

t [Ek(w1
t )− η1

t Vark(w1
t )] + (1− α)∑T

t=k+2 ξ2
t [Ek(w2

t )− η2
t Vark(w2

t )]

+αξ1
k+1[Ek(w1

k+1)− η1
k+1Vark(w1

k+1)]

+(1− α)ξ2
k+1[Ek(w2

k+1)− η2
k+1Vark(w2

k+1)].

(A2)

By using the law of iterated expectation and the law of total variance, we have:

Ek(wi
t) = Ek[Ek+1(wi

t)], i = 1, 2, (A3)

Vark(wi
t) = Ek[Vark+1(wi

t)] + Vark[Ek+1(wi
t)], i = 1, 2. (A4)

Then, Jk(w1
k , w2

k , π) can be rewritten as:

Jk(w1
k , w2

k , π)

= Ek

{
α ∑T

t=k+2 ξ1
t [Ek+1(w1

t )− η1
t Vark+1(w1

t )] + (1− α)∑T
t=k+2 ξ2

t [Ek+1(w2
t )− η2

t Vark+1(w2
t )]
}

−α ∑T
t=k+2 ξ1

t η1
t Vark[Ek+1(w1

t )]− (1− α)∑T
t=k+2 ξ2

t η2
t Vark[Ek+1(w2

t )]

+αξ1
k+1[Ek(w1

k+1)− η1
k+1Vark(w1

k+1)] + (1− α)ξ2
k+1[Ek(w2

k+1)− η2
k+1Vark(w2

k+1)],
= Ek[Jk+1(w1

k+1, w2
k+1, π)]− α ∑T

t=k+2 ξ1
t η1

t Vark[Ek+1(w1
t )]− (1− α)∑T

t=k+2 ξ2
t η2

t Vark[Ek+1(w2
t )]

+αξ1
k+1[Ek(w1

k+1)− η1
k+1Vark(w1

k+1)] + (1− α)ξ2
k+1[Ek(w2

k+1)− η2
k+1Vark(w2

k+1)].

(A5)

Let fk,t(w1
k) = Ek(w1

t )|π̂(k) = Ek[ fk+1,t(w1
k+1)] and gk,t(w2

k) = Ek(w2
t )|π̂(k) = Ek[gk+1,t(w2

k+1)].
Additionally, due to the fact that Vk(w1

k , w2
k) = max

πk
Jk(w1

k , w2
k , π(k)) = Jk(w1

k , w2
k , π̂(k)), we can derive

the following iterative formula:

Vk(w1
k , w2

k)

= max
πk



Ek[Vk+1(w1
k+1, w2

k+1)]− α
T
∑

t=k+2
ξ1

t η1
t Vark[ fk+1,t(w1

k+1)]

−(1− α)
T
∑

t=k+2
ξ2

t η2
t Vark[gk+1,t(w2

k+1)]

+αξ1
k+1[Ek(w1

k+1)− η1
k+1Vark(w1

k+1)]

+(1− α)ξ2
k+1[Ek(w2

k+1)− η2
k+1Vark(w2

k+1)]


, (A6)

k = 0, 1, ..., T − 2.

Therefore, we complete the proof of Proposition 1.

Appendix B. The proof of Theorem 1

When t = T − 1, we have:

VT−1(w1
T−1, w2

T−1)

= max
πT−1

{
α[ξ1

TET−1(w1
T)− ξ1

Tη1
TVarT−1(w1

T)]

+(1− α)[ξ2
TET−1(w2

T)− ξ2
Tη2

TVarT−1(w2
T)]

}

= max
πT−1


αξ1

T [sT−1w1
T−1 + µ1

T−1u1
T−1 + cT−1 − δT−1(qT−1)− qT−1µ̃T−1]

−αξ1
Tη1

T [σ
1
T−1(u

1
T−1)

2 + σ̃T−1(qT−1)
2]

+(1− α)ξ2
T [sT−1w2

T−1 + µ2
T−1u2

T−1 + δT−1(qT−1)− (1− qT−1)µ̃T−1]

−(1− α)ξ2
Tη2

T [σ
2
T−1(u

2
T−1)

2 + σ̃T−1(1− qT−1)
2]

 .
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Then, we have:

û1
T−1 =

µ1
T−1

2η1
Tσ1

T−1
, (A7)

û2
T−1 =

µ2
T−1

2η2
Tσ2

T−1
, (A8)

q̂T−1 = arg max
0≤qT−1≤1


(ξ2

T − αξ1
T − αξ2

T)δT−1(qT−1)

−µ̃T−1[αξ1
TqT−1 + (1− α)ξ2

T(1− qT−1)]

−[αξ1
Tη1

T(qT−1)
2 + (1− α)ξ2

Tη2
T σ̃T−1(1− qT−1)

2]

 . (A9)

Then, we have:

VT−1(w1
T−1, w2

T−1)

=


αξ1

TsT−1w1
T−1 + (1− α)ξ2

TsT−1w2
T−1 +

α(µ1
T−1)

2

4η1
T σ1

T−1
+

(1−α)(µ2
T−1)

2

4η2
T σ2

T−1
+ αξ1

TcT−1

+(ξ2
T − αξ1

T − αξ2
T)δT−1(q̂T−1)− µ̃T−1[αξ1

T q̂T−1 + (1− α)ξ2
T(1− q̂T−1)]

−[αξ1
Tη1

T(q̂T−1)
2σ̃T−1 + (1− α)ξ2

Tη2
T(1− q̂T−1)

2]σ̃T−1


= αξ1

TsT−1w1
T−1 + (1− α)ξ2

TsT−1w2
T−1 + κT−1,

(A10)

where:

κT−1 =


α(µ1

T−1)
2

4η1
Tσ1

T−1
+

(1−α)(µ2
T−1)

2

4η2
Tσ2

T−1
+ αξ1

TcT−1 + (ξ2
T − αξ1

T − αξ2
T)δT−1(q̂T−1)

−µ̃T−1[αξ1
T q̂T−1 + (1− α)ξ2

T(1− q̂T−1)]

−[αξ1
Tη1

T(q̂T−1)
2 + (1− α)ξ2

Tη2
T(1− q̂T−1)

2]σ̃T−1

 . (A11)

Assume that Theorem 1 holds for t = j + 1, j + 2, ..., T − 1, then when t = j we have:

Vj(w1
j , w2

j )

= maxπj


α

(
T
∑

m=j+2
ξ1

m
m−1
∏

i=j+1
si

)
Ej(w1

j+1) + (1− α)

(
T
∑

m=j+2
ξ2

m
m−1
∏

i=j+1
si

)
Ej(w2

j+1) + κj+1

−α
T
∑

m=j+2
ξ1

mη1
mVarj[ f j+1,m(w1

j+1)]− (1− α)
T
∑

m=j+2
ξ2

mη2
mVarj[gj+1,m(w2

j+1)]

+αξ1
j+1[Ej(w1

j+1)− η1
j+1Varj(w1

j+1)] + (1− α)ξ2
j+1[Ej(w2

j+1)− η2
j+1Varj(w2

j+1)]



= maxπj



α

(
T
∑

m=j+1
ξ1

m
m−1
∏

i=j+1
si

)
[sjw1

j + µ1
j u1

j + cj − δj(qj)− qjµ̃j]

−α

(
T
∑

m=j+1
ξ1

mη1
m

m−1
∏

i=j+1
(si)

2

)
[σ1

j (u
1
j )

2 + σ̃j(qj)
2] + κj+1

+(1− α)

(
T
∑

m=j+1
ξ2

m
m−1
∏

i=j+1
si

)
[sjw2

j + µ2
j u2

j + δj(qj)− (1− qj)µ̃j]

−(1− α)

(
T
∑

m=j+1
ξ2

mη2
m

m−1
∏

i=j+1
(si)

2

)
[σ2

j (u
2
j )

2 + σ̃j(1− qj)
2]



.

(A12)

Then, we have:

û1
j =

(
T
∑

m=j+1
ξ1

m
m−1
∏

i=j+1
si

)
µ1

j

2

(
T
∑

m=j+1
ξ1

mη1
m

m−1
∏

i=j+1
(si)2

)
σ1

j

, (A13)
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û2
j =

(
T
∑

m=j+1
ξ2

m
m−1
∏

i=j+1
si

)
µ2

j

2

(
T
∑

m=j+1
ξ2

mη2
m

m−1
∏

i=j+1
(si)2

)
σ2

j

, (A14)

q̂j = arg max
0≤qj≤1



α

(
T
∑

m=j+1
ξ1

m
m−1
∏

i=j+1
si

)
[−δj(qj)− qjµ̃j]

−α

(
T
∑

m=j+1
ξ1

mη1
m

m−1
∏

i=j+1
(si)

2

)
σ̃j(qj)

2

+(1− α)

(
T
∑

m=j+1
ξ2

m
m−1
∏

i=j+1
si

)
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. (A15)

Then, we have:

Vj(w1
j , w2

j )
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(A16)

f j,τ(w1
j ) =

τ−1
∏
i=j

siw1
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∏
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(A17)

gj,τ(w2
j ) =
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∏
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siw2
j + ρj,τ .

(A18)
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Then, we have:
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(A19)

This indicates that:
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(A20)

From the above proof, we can conclude that Theorem 1 holds for all t = 0, 1, .., T − 1.
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