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Abstract: This paper is concerned with proving the existence of solutions for a coupled system of
quadratic integral equations of fractional order in Banach algebras. This result is a direct application of
a fixed point theorem of Banach algebras. Some particular cases, examples and remarks are illustrated.
Finally, the stability of solutions for that coupled system are studied.
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1. Introduction and Preliminaries

Operators which have an operator matrix representation occur in various fields such as system theory,
quantum mechanics, hydrodynamics and magnetohydro-dynamics (see [1–3]).

According to their origin, they may have rather different structure, and their study may require quite
different approaches.

Let A be an operator which has the form

A =

(
T1 T2.T′2
T3 T4

)
(1)

where T1, T2, T′2, T3, T4 are nonlinear operators defined on Banach algebras. This kind of operators is
studied by many researchers [4–6].

Amar and et al. [7] introduced and studied a coupled system of differential equations under boundary
conditions of Rotenberg’s model type, the last one arising in growing cell populations. The entries of block
operator matrix associated to this system are nonlinear and act on the Banach space.

Kaddachi and et al. [4] concentrated on answering the question: Under which conditions on its entries
does the 2× 2 operator matrix (Equation (1)) acting on a product of Banach algebras has a fixed point?
In [4], some fixed point theorems of a 2× 2 block operator matrix defined on nonempty bounded closed
convex subsets of Banach algebras are studied, where the entries are nonlinear operators. Furthermore,
the obtained results are applied to a coupled system of nonlinear equations.
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Let X = C(I,R), I = [0, b] and α, β > 0. In this work, the following coupled system of
fractional order

v(t) = f1(t, v(t)) + g1(t, w(t))
∫ t

0

(t − s)α−1

Γ(α)
u1(s, w(s)) ds, t ∈ I,

(2)

w(t) = f2(t, w(t)) + g2(t, v(t))
∫ t

0

(t − s)β−1

Γ(β)
u2(s, v(s)) ds, t ∈ I.

is studied in Banach algebras; some particular cases are given; and some examples and remarks are
illustrated. Finally, the stability of solutions for the coupled system in Equation (2) is studied.

The solution of Equation (2) may be defined by a vector function

(
v
w

)
∈ X× X that satisfies (2).

Now, we introduce the following definitions of fractional operators.

Definition 1 ([8]). The Riemann–Liouville fractional integral of order β > 0 of the function f : [a, b] → R is
given by

Iβ
a f (t) =

∫ t

a

(t− s)β−1

Γ(β)
f (s) ds, t > a (3)

and when a = 0, we have Iβ f (t) = Iβ
0 f (t), t > 0.

Definition 2 ([8]). The Riemann–Liouville fractional derivative of order α ∈ (0, 1) of a function f is defined as

RDα
a f (t) =

d
dt

∫ t

a

(t− s)−α

Γ(1− α)
f (s) ds, t ∈ [a, b]

or

RDα
a f (t) =

d
dt

I1−α
a f (t), t ∈ [a, b].

2. Existence Theorem

Coupled systems of integral and differential equations are studied in many papers [9–13].
Especially, the investigation for coupled systems of fractional differential equations appears in many

studies (e.g., [9,11,14–17]).
Assume that

(i) uj : I ×R → R, j = 1, 2 satisfies the Carathéodory condition and

|uj(s, v)| ≤ mj(s) ∈ L1[I] ∀ (s, v) ∈ I ×R,

k j = max
s∈I

Iγj mj(s) for any γ1 ≤ α and γ2 ≤ β.

(ii) f j, gj : I × R → R are continuous and
Mj = max

(s,v)∈I×R
| f j(s, v)|, j = 1, 2 Nj = max

(s,v)∈I×R
|gj(s, v)|, j = 1, 2 respectively.

(iii) There exist constants lj and hj, which satisfy

| f j(s, v)− f j(s, w)| ≤ lj |v− w|, j = 1, 2

and
|gj(s, v)− gj(s, w)| ≤ hj |v− w|, j = 1, 2
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∀ s ∈ I and v, w ∈ R.

Theorem 1. Let Assumptions (i)–(iii) be satisfied. Moreover, if h1 k1 h2 k2 < (1− l1)(1− l2)Γ(α−γ1 + 1)Γ(β−
γ2 + 1), then the exists at least one solution for Equation (2) in X× X.

Proof. Consider the operators T1, T2, T3, T4 and T′2 on X defined by:

(T1v)(t) = f1(t, v(t))
(T2w)(t) = g1(t, w(t))

(T3w)(t) = g2(t, w(t))
∫ t

0
(t − s)β−1

Γ(β)
u2(s, w(s)) ds

(T4v)(t) = f2(t, v(t))

(T′2w)(t) =
∫ t

0
(t − s)α−1

Γ(α) u1(s, w(s)) ds.

(4)

The coupled system in Equation (2) may have the form:{
v(t) = T1v(t) + T2w(t).T′2w(t)
w(t) = T4w(t) + T3v(t),

(5)

and (
v
w

)
=

(
T1 T2.T′2
T3 T4

)
.

(
v
w

)
. (6)

Define

S = {v ∈ X, ||v|| ≤ M1 +
N1 k1 bα−γ1

Γ(α− γ1 + 1)
}

S′ = {w ∈ X, ||w|| ≤ M2 +
N2 k2 bβ−γ2

Γ(β− γ2 + 1)
}.

For, let v1, v2 ∈ S. Thus,
||T1v1(t)− T1v2(t)|| ≤ l1||v1 − v2|| (7)

and
||T2v1(t)− T2v2(t)|| ≤ h1||v1 − v2||. (8)

In addition, set
T3v1(t) = Gv1(t).Uv1(t) = (G.U)v1(t) (9)

where Gv1(t) = g2(t, v1(t)) and Uv1(t) = Iβu2(t, v1(t))

||T3v1(t)− T3v2(t)|| = ||(G.U)v1(t)− (G.U)v2(t)||
≤ ||Uv1(t)||.||Gv1(t)− Gv2(t)|| (10)

≤ k2h2 bβ−γ2

Γ(β− γ2 + 1)
.||v1 − v2||.

Furthermore,

|T3w(t)| ≤ |g2(t, w(t))|
∫ t

0

(t − s)β−1

Γ(β)
|u2(s, w(s))| ds

≤ N2 k2 bβ−γ2

Γ(β− γ2 + 1)
, (11)
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for each t1, t2 ∈ I and t1 < t2, we get

|(T3w)(t2) − (T3w)(t1)| = |g2(t2, w(t2)) Iβ u2(t2, w(t2)) − g2(t1, w(t1)) Iβ u2(t1, w(t1))

+ g2(t1, w(t1)) Iβ u2(t2, w(t2)) − g2(t1, w(t1)) Iβ u2(t2, w((t2))| (12)

≤ |g2(t2, w(t2)) − g2(t1, w(t1))| Iβ |u2(t2, w(t2))|
+ |g(t1, w(t1))| | Iβ u2(t2, w(t2)) − Iβ u2(t1, w(t1)) |,

but

|Iβ u2(t2, w(t2)) − Iβ u2(t1, w(t1))| ≤
∫ t2

t1

(t2 − s)β−1

Γ(β)
|u2(s, w(s))| ds. (13)

Then,

|Iβ u2(t2, w(t2)) − Iβ u2(t1, w(t1))| ≤ k2
(t2 − t1)

β−γ2

Γ(β− γ2 + 1)
. (14)

Then, we get

| (T3w)(t2) − (T3w)(t1) | ≤
k2 h2 bβ−γ2

Γ(β− γ2 + 1)
|w(t2)− w(t1)| +

k2 N2

Γ(β− γ2 + 1)
(t2 − t1)

β−γ2 (15)

Then, US′ is relatively compact.
We prove that T3(S) ⊆ (I − T4)(S′), for v1 ∈ S.
Now, we can introduce a function φv1 : X → X by

w→ T3v1 + T4v2, (16)

then the function φv1 is a contraction with a constant l2 +
h2 k2 bβ−γ2

Γ(β−γ2+1) . Then, there exists a unique point
w ∈ X where T3v + T4w = w implies T3v = (I − T4)w. Thus,

T3(s) ⊆ (I − T4)X. (17)

For w ∈ X, , ∃ s∗ ∈ I such that

||w||∞ = |w(s∗)| = |T3v(s∗) + T4w(s∗)|
≤ |g2(s∗, v(s∗))Iβu2(s∗, v(s∗)) + f2(s∗, w(s∗))| (18)

≤ N2 k2 bβ−γ2

Γ(β− γ2 + 1)
+ M2.

Then, T3(S) ⊆ (I − T4)(S′).
For v ∈ S′, then

|T′2v(tn)− T′2v(t)| = |Iαu1(tn, v(tn))− Iαu1(t, v(t))|

≤ k1

Γ(α− γ1 + 1)
|tn − t|, (19)

since tn → t and u1 is continuous in the second argument, then by Lebesgue Dominated Convergence
Theorem, we have

u1(tn, v(tn))→ u1(t, v(t)) in R⇒ T′2v(tn)→ T′2v(t) in R,

thus T′2v ∈ C(I, R).
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Defining T′ = T′2(1− T4)
−1T3, , Assumption (ii) implies that

M = ||T′(S)|| = sup
w∈S
|T′(w)|

≤ sup
t∈I
|
∫ t

0

(t − s)α−1

Γ(α)
u1(s, w(s)) ds| (20)

≤ k1 bα−γ1

Γ(α− γ1 + 1)
,

and therefore h1 k1 h2 k2 < (1− l1)(1− l2)Γ(α− γ1 + 1)Γ(β− γ2 + 1).
Let v1, v2 ∈ S , then ∀ s ∈ I . We obtain

|T1v1(s) + T2(I − T4)
−1T3v1(s)T′2(I − T4)

−1T3v2| ≤ M1 +
N1k1 bα−γ1

Γ(α− γ1 + 1)
. (21)

This implies that

T1v1 + T2(I − T4)
−1T3v1T′2(I − T4)

−1T3v2 ∈ S for any v1, v2 ∈ S. (22)

Now, all conditions of Theorem 4.2 in [4] are verified and our results follows.

Example 1. Let I = [0, 1]. Consider the fractional order coupled system

v(t) = t sin(
v(t)

4
) +

w(t)
3 + t

I3/2 2t w(t)
1 + w(t)

, t ∈ I
(23)

w(t) =
t + sin(w(t)

2 )

2 + t2 +
v(t)

4
I2/3 v(t)

1 + v(t)
, t ∈ I.

Set

f1(s, v) = s sin(
v(s)

4
), u1(s, w) =

2s w(s)
1 + w(s)

, g1(s, w) =
w(s)
3 + s

,

f2(s, w) =
s + sin(w(s)

2 )

2 + s2 , u2(s, v) =
v(s)

1 + v(s)
, g2(s, w) =

w(s)
4

.

Then, we easily get

• |u1(s, v)| ≤ 2 s = m1(s) and |u2(s, v)| ≤ 1 = m2(s).
Choose γ1 = γ2 = 1/2, then we can obtain k1 = 8

3
√

π
and k2 = 2√

π

|g1(t, w1)− g1(t, w2)| ≤
1
3
|w1 − w2|

|g2(t, v1)− g2(t, v2)| ≤
1
4
|v1 − v2|

and

| fi(t, v1)− fi(t, v2)| ≤
1
2
|v1 − v2|, i = 1, 2.

Then, the inequality h1 k1 h2 k2 < (1− l1)(1− l2)Γ(α− γ + 1)Γ(β− γ + 1) is verified.
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3. Stability of Solutions of the Coupled System

Here, asymptotic stability on R+ of the solution z = (v, w) of the coupled system in Equation (2)
is studied.

Definition 3. A pair z1 = (v1, w1) is said to be an asymptotically stable solution of Equation (2) if for any ε > 0
there exists T′ = T′(ε) > 0 such that for very t ≥ T′ and for every other solution z2 = (v2, w2) of (2),

|z1(t)− z2(t)| ≤ ε.

Given two solutions z1 and z2 of Equation (2), then we have

|v1(t)− v2(t)| ≤ | f1(t, v1(t))− f1(t, v2(t))|

+ |g1(t, w1(t))
∫ t

0

(t − s)α−1

Γ(α)
u1(s, w1(s)) ds

− g1(t, w2(t))
∫ t

0

(t − s)α−1

Γ(α)
u1(s, w2(s)) ds|

≤ l1|v1(t)− v2(t)|

+ g1(t, w1(t))|
∫ t

0

(t − s)α−1

Γ(α)
|u1(s, w1(s))− u1(s, w2(s))| ds

+ |g1(t, w2(t))− g1(t, w1(t))|
∫ t

0

(t − s)α−1

Γ(α)
|u1(s, w2(s))| ds

≤ l1|v1(t)− v2(t)|+ 2|g1(t, w1(t))|
∫ t

0

(t − s)α−1

Γ(α)
m1(s) ds

+ |g1(t, w2(t))− g1(t, w1(t))|
∫ t

0

(t − s)α−1

Γ(α)
m1(s) ds

≤ l1|v1(t)− v2(t)|+
2 k1 N1 bα−γ1

Γ(α− γ1 + 1)
+

h1 k1 bα−γ1

Γ(α− γ1 + 1)
|w1 − w2|,

then

(1− l1)||v1(t)− v2(t)|| ≤
2 k1 N1 bα−γ1

Γ(α− γ1 + 1)
+

h1 k1 bα−γ1

Γ(α− γ1 + 1)
||w1 − w2||. (24)

In the same fashion, we obtain

(1− l2)||w1(t)− w2(t)|| ≤
2 k2 N2 bβ−γ2

Γ(β− γ2 + 1)
+

h2 k2 bβ−γ2

Γ(β− γ2 + 1)
||v1 − v2||, (25)

and

[1− l1 − h2 k2 bβ−γ2

Γ(β−γ2+1) ] ||v1 − v2||+ [1− l2 − h1 k1 bα−γ1

Γ(α−γ1+1) ] ||w1 − w2|| ≤ 2 k1 N1 bα−γ1

Γ(α−γ1+1) + 2 k2 N2 bβ−γ2

Γ(β−γ2+1) (26)

Let Λ = min{1− l1 − h2 k2 bβ−γ2

Γ(β−γ2+1) , 1− l2 − h1 k1 bα−γ1

Γ(α−γ1+1)}, then

||v1 − v2||+ ||w1 − w2|| ≤ Λ−1[
2 k1 N1 bα−γ1

Γ(α− γ1 + 1)
+

2 k2 N2 bβ−γ2

Γ(β− γ2 + 1)
]. (27)

Since

z1(t)− z2(t) = (v1(t)− v2(t), w1(t)− w2(t)),
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then

||z1(t)− z2(t)|| ≤ ||v1(t)− v2(t)||+ ||w1(t)− w2(t)||

≤ Λ−1[
2 k1 N1 bα−γ1

Γ(α− γ1 + 1)
+

2 k2 N2 bβ−γ2

Γ(β− γ2 + 1)
] (28)

≤ ε.

Then, we obtain the following theorem.

Theorem 2. Let assumptions of Theorem 1 be satisfied,

l1Γ(β− γ2 + 1) + h2 k2 bβ−γ2 < Γ(β− γ2 + 1), l2Γ(α− γ1 + 1) + h1 k1 bα−γ1 < Γ(α− γ1 + 1),

and

Λ−1[
2 k1 N1 bα−γ1

Γ(α− γ1 + 1)
+

2 k2 N2 bβ−γ2

Γ(β− γ2 + 1)
] ≤ ε.

Then, the solution of Equation (2) is asymptotically stable on R+.

4. Further Results

Consequently, we have the following results in X× X.

(i) Letting α, β→ 1, then we have the coupled system of quadratic integral equations

v(t) = f1(t, v(t)) + g1(t, w(t))
∫ t

0
u1(s, w(s)) ds,

w(t) = f2(t, w(t)) + g2(t, v(t))
∫ t

0
u2(s, v(s)) ds.

(ii) Letting g1 = g2 = 0, we get the coupled system of functional equations

v(t) = f1(t, v(t))

w(t) = f2(t, w(t)).

(iii) Putting f1(t, w) = a1(t), f2(t, v) = a2(t), then we have the coupled system of quadratic integral
equations of fractional order

v(t) = a1(t) + g1(t, w(t))
∫ t

0

(t − s)α−1

Γ(α)
u1(s, w(s)) ds,

w(t) = a2(t) + g2(t, v(t))
∫ t

0

(t − s)β−1

Γ(β)
u2(s, v(s)) ds.

(v) Letting f1(t, w) = a1(t), f2(t, v) = a2(t), then we get the coupled system of fractional
integral equations

v(t) = a1(t) +
∫ t

0

(t − s)α−1

Γ(α)
u1(s, w(s)) ds,

w(t) = a2(t) +
∫ t

0

(t − s)β−1

Γ(β)
u2(s, v(s)) ds.
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System of Fractional Differential Equations

Let

RDαv(t) = u1(t, w(t)), t ∈ J and v(0) = 0, 0 < α < 1
(29)

RDβw(t) = u2(t, v(t)), t ∈ J and w(0) = 0, 0 < β < 1

where RDα is a Riemann–Liouville fractional derivative of order 0 < α < 1.

Theorem 3. Let assumptions of Theorem 1 be satisfied. Then, there exists at least one solution for Equation (29)
in X× X.

The proof is straight forward as in [11].
By direct calculations, we can prove an existence result for the following coupled systems

v′(t) = f1(t, w(t)), v(0) = v0,
(30)

w′(t) = f2(t, v(t)), w(0) = w0.

5. Conclusions

The theory of block operator matrices opens up a new line of attack of mathematical problems.
During the past years, several papers are devoted to the investigation of linear operator matrices defined
by 2× 2 block operator matrices (Equation (1)).

In this paper, we prove an existence theorem of solutions for a coupled system of quadratic integral
equations of fractional order in Banach algebras, by a direct application of a block operator fixed point
theorem [4]. This coupled system includes many key coupled systems of integral and differential equations
that arise in nonlinear analysis and their applications. Some examples and remarks are illustrated. Finally,
we study the stability of solutions for the coupled system in Equation (2).
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