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Abstract: Each of the descriptions of vertices, edges, and facets of the order and chain polytope of a
finite partially ordered set are well known. In this paper, we give an explicit description of faces of
2-dimensional simplex in terms of vertices. Namely, it will be proved that an arbitrary triangle in
1-skeleton of the order or chain polytope forms the face of 2-dimensional simplex of each polytope.
These results mean a generalization in the case of 2-faces of the characterization known in the case
of edges.
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1. Introduction

The combinatorial structure of the order polytope €' (P) and the chain polytope €'(P) of a finite
poset (partially ordered set) P is explicitly discussed in [1]. Moreover, in [2], the problem when the
order polytope ¢(P) and the chain polytope % (P) are unimodularly equivalent is solved. It is also
proved that the number of edges of the order polytope &'(P) is equal to that of the chain polytope ¢(P)
in [3]. In the present paper we give an explicit description of faces of 2-dimensional simplex of &'(P)
and %(P) in terms of vertices. In other words, we show that triangles in 1-skeleton of &(P) or €' (P)
are in one-to-one correspondence with faces of 2-dimensional simplex of each polytope. These results
are a direct generalizations of [4] (Lemma 4, Lemma 5).

2. Definition and Known Results

Let P = {xy,...,x;} be a finite poset. To each subset W c P, we associate p(W) = 3.,y €; € RY,
where e, ..., e, are the canonical unit coordinate vectors of R?. In particular p(&) is the origin of RY.
A poset ideal of P is a subset I of P such that, for all x; and x; with x; € [ and x; < x;, one has x; € I.
An antichain of P is a subset A of P such that x; and x; belonging to A with i # j are incomparable.
The empty set (J is a poset ideal as well as an antichain of P. We say that x; covers x; if x; < x; and
x; < x; < xjforno x; € P. A chainx;, < xj, <--- <X, of P is called saturated if Xj, covers x; for
1 < g < {. A maximal chain is a saturated chain such that x; is a minimal element and x;, is a maximal
element of the poset. The rank of P is §(C) — 1, where C is a chain with maximum length of P.

The order polytope of P is the convex polytope &(P) — R? which consists of those (a1, ...a;) € R?
such that 0 < a; < 1 for every 1 < i < d together with

a; = a;

if x; < X in P.

Mathematics 2019, 7, 851; d0i:10.3390/math7090851 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math7090851
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/9/851?type=check_update&version=2

Mathematics 2019, 7, 851 20f6

The chain polytope of P is the convex polytope ¢'(P) = R? which consists of those (ay, ..., a4) € R
such that a; > 0 for every 1 < i < d together with

aj, +a;, +- - +a;, <1

for every maximal chain x;, < x;, <--- < x;_ of P.

One has dim&(P) = dim%(P) = d. The vertices of &(P) is those p(I) for which I is a poset
ideal of P ([1] (Corollary1.3)) and the vertices of € (P) is those p(A) for which A is an antichain of
P ([1] (Theorem?2.2)). It then follows that the number of vertices of &(P) is equal to that of G (P).
Moreover, the volume of ¢ (P) and that of %’ (P) are equal to ¢(P)/d!, where e(P) is the number of linear
extensions of P ([1] (Corollary4.2)). It also follows from [1] that the facets of ¢(P) are the following:

e x; =0, where x; € P is maximal;
e X = 1, where Xj € P is minimal;

*  x; = xj, where x; covers x;,
and that the facets of ¥ (P) are the following:

e x;=0,forallx; e P;
* x+--+x, =1, wherex; <---<ux; isamaximal chain of P.

In [4] a characterization of edges of ¢(P) and those of ¥ (P) is obtained. Recall that a subposet Q
of finite poset P is said to be connected in P if, for each x and y belonging to Q, there exists a sequence
X = Xo,X1,...,X%s =y with each x; € Q for which x;_; and x; are comparable in P foreach 1 <i <.

Lemma 1 ([4] (Lemma 4, Lemma 5)). Let P be a finite poset.

1. Let I and | be poset ideals of P with I # ]. Then the convex hull of {p(I), p(])} forms an edge of O(P) if
and only if I < ] and J\I is connected in P.

2. Let Aand B be antichains of P with A # B. Then the convex hull of {p(A), p(B)} forms an edge of € (P)
if and only if (A\B) u (B\A) is connected in P.

3. Faces of 2-Dimensional Simplex

Using Lemma 1, we show the following description of faces of 2-dimensional simplex.

Theorem 1. Let P be a finite poset. Let I, |, and K be pairwise distinct poset ideals of P. Then the convex hull
of {p(I), p(]), p(K)} forms a 2-face of O'(P) if and only if I < | < K and K\I is connected in P.

Proof. (“Only if”) If the convex hull of {p(I), p(]), p(K)} forms a 2-face of &(P), then the convex hulls
of {p(I),p(N}, {p(]), p(K)}, and {p(I), p(K)} form edges of &(P). It then follows from Lemma 1 that
I ¢ J € Kand K\I is connected in P.

(“If”) Suppose that the convex hull of {p(I), p(]), p(K)} has dimension 1. Then there exists a line
passing through the lattice points p(I), p(J), and p(K). Hence p(I), p(J), and p(K) cannot be vertices of
O(P). Thus the convex hull of {p(I), p(]), p(K)} has dimension 2.

Let P = {x1,...,x4}. If there exists a maximal element x; of P not belonging to [ U J U K,
then the convex hull of {p(I),p(]), p(K)} lies in the facet x; = 0. If there exists a minimal element
x; of P belonging to I n ] n K, then the convex hull of {o(I),0(]),p(K)} lies in the facet x; = 1.
Hence, working with induction on d(> 2), we may assume that /U J UK = Pand In]JnK = (.
Suppose that @ = I < ] © K = P and K\I = P is connected.

Case 1. 4(]) = 1.
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Let | = {x;} and P’ = P\{x;}. Then P’ is a connected poset. Let x;,. .-, Xj, be the maximal
elements of Pand A;; = {y e P’ | y < xl-].} , where 1 < j < g. Then we write

ﬁ({l] | X € .Al]}) if k ¢ {il,. . .,iq,i}
by=40 if k=i
—ﬁ(.Aij) if ke {il,...,iq}

We then claim that the hyperplane 7 of RY defined by the equation /(x) = Zzzl byxy =0Oisa
supporting hyperplane of &'(P) and that .2# n 0'(P) coincides with the convex hull of {p(&¥), p(]), o(P)}.
Clearly h(p(d)) = h(p(P)) = 0 and h(p(J)) = b; = 0. Let I be a poset ideal of P with I # ¢,
I # Pand I # ]J. We have to prove that h(o(I)) > 0. To simplify the notation, suppose that
Iodxiy, ..., xi b = {xi,,...,x;,}, where 0 <7 < q.Ifr = 0, then h(p(J)) > 0. Let 1 <r < g, I' = I\{x;},
and K = U]r-:l(A,-], v {xl-].}). Then I’ and K are poset ideals of P and h(p(K)) < h(p(I')) = h(p(I)).
We claim h(p(K)) > 0. One has h(p(K)) = 0. Moreover, h(p(K)) = 0 if and only if no z € K belongs to
A;, IRRCARERY A,’q. Now, since P’ is connected, it follows that there exists z € K with z € A IRRCARERY A; .
Hence h(p(K)) > 0. Thus h(p(I)) > 0.

Case2. f(J) =d—1.

Let P\] = {x;} and P’ = P\{x;}. Then P’ is a connected poset. Thus we can show the existence
of a supporting hyperplane of &'(P) which contains the convex hull of {o(&), p(J), o(P)} by the same
argument in Case 1.

Case3.2 < H#(J) <d-2.

To simplify the notation, suppose that | = {x1,...,x¢}. Then P\] = {x/41,...,x4}. Since | and
P\J are subposets of P, these posets are connected. Let x; , ..., Xi, be the maximal elements of | and

Xigiaro s Xigy, the maximal elements of P\]. Then we write
_Jyelly<x} ifl<j<g
7 {yeP\J|ly<xi} ifq+1<j<r
and

by {ﬁ({i]- |xje Agh) if k¢ {iv,... iggr1, .. iger}
—ﬁ(.A,*]') if ke {il,...,iq,iq+1,...,iq+r}

We then claim that the hyperplane .# of RY defined by the equation /(x) = Zzzl byxy =0Oisa
supporting hyperplane of ¢(P) and % n O (P) coincides with the convex hull of {o(&), o(]), o(P)}.
Clearly h(p(2)) = h(p(])) = h(p(P\J)) = 0, then h(p(P)) = h(p(])) + h(p(P\])) = 0. Let I be a poset
ideal of P with I # 5, I # P and I # |. What we must prove is h(p(I)) > 0.

If I < ], then I is a poset ideal of ]. To simplify the notation, suppose that I n {x;;,...,x; } =
{xiy,...,x;} , where 0 <5 < q.1f s = 0, then h(p(I)) > 0. Let1 <5 < g, K = [ J;_1(A;; U {x; }). Then K
is a poset ideal of | and h(p(K)) < h(p(I)). Thus we can show h(p(K)) > 0 by the same argument in
Case 1 (Replace r with s and P’ with J).

If ] < I, then I\] is a poset ideal of P\J. To simplify the notation, suppose that (I\]) n
{xiq+l,...,xiq+r} = {xiﬁl,...,xiqﬂ} ,where 0 <t < r. If t = 0, then h(p(I)) = h(p(])) + h(p(I\])) =
h(p(I\])) > 0. Letl <t <1 K = U?i;H(A,'], v {xij}). Then K is a poset ideal of P\J and
h(p(K)) < h(p(I1\])) = h(p(I)). Thus we can show h(p(K)) > 0 by the same argument in Case 1
(Replace r with g + t, g with g + r and P’ with P\J). Consequently, h(p(I)) > 0, as desired. [

Let AAB denote the symmetric difference of the sets A and B, thatis AAB = (A\B) u (B\A).

Theorem 2. Let P be a finite poset. Let A, B, and C be pairwise distinct antichains of P. Then the convex hull
of {p(A),p(B),p(C)} forms a 2-face of € (P) if and only if AAB, BAC and CA A are connected in P.
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Proof. (“Only if”) If the convex hull of {p(A), p(B), p(C)} forms a 2-face of € (P), then the convex
hulls of {p(A), p(B)}, {p(B), p(C)}, and {p(A), p(C)} form edges of € (P). It then follows from Lemma 1
that AAB, BAC and CAA are connected in P.

(“If”) Suppose that the convex hull of {p(A), p(B), p(C)} has dimension 1. Then there exists a line
passing through the lattice points p(A), p(B), and p(C). Hence p(A), p(B), and p(C) cannot be vertices
of €' (P). Thus the convex hull of {p(A), p(B),

0(C)} has dimension 2.

Let P = {x1,...,x3}. f AUBuUC # Pand x; ¢ Au BuC, then the convex hull of
{p(A),p(B),p(C)} lies in the facet x; = 0. Furthermore, if AUBUC = Pand AnBnC # (,
then x; € A n B Cisisolated in P and x; itself is a maximal chain of P. Thus the convex hull of
{0(A), p(B), p(C)} lies in the facet x; = 1. Hence, working with induction on d(> 2), we may assume
that AUBUC = Pand AnBnC = &. As stated in the proof of [3] ([Theorem 2.1]), if AAB is
connected in P, then A and B satisfy either (i) B — A or (ii) ¥ < x whenever x € A and y € B are
comparable. Hence, we consider the following three cases:

(@) If B < A, then AAB = A\B is connected in P, and thus §(A\B) = 1. Let A\B = {x4}.
FCnA # g, thenCnA = {x},since AnBnC = CnB = ¢J. Namely x; is isolated in P.
Hence BAC = BuC = AuBuC = P cannot be connected. Thus C n A = . In this case, we may
assume z < x if x € A and z € C are comparable. Furthermore, P has rank 1.

(b)If B+ Aand Bn A # ¢, then we may assume y < x if x € A and y € B are comparable.
If C ¢ BwithCn A n B =, then as stated in (a), CAA cannot be connected. Since C ¢ B, we may
assume z < y if y € B and z € C are comparable. If C n B # (J, then C n A = ¢J and P has rank 1 or 2.
Similarly, if C n B = &, then C n A = & and P has rank 2.

(c)Let B¢ Aand Bn A = J. We may assume that if x € A and y € B are comparable, then
y < x. If C < B, then we regard this case as equivalent to (a). Let C ¢ B. We may assume z < y if
y € Band z € C are comparable. Moreover, if C n B # (¥, then we regard this case as equivalent to (b).
IfCnB=g,thenCn A= ¢ and P has rank 2.

Consequently, there are five cases as regards antichains for ¢ (P).

Casel.Bc A, CnA=g,andCnB = .

For each x; € B we write b; for the number of elements z € C with z < x;. For each xj € Cwe
write ¢; for the number of elements y € B with x; <y. Let ay = 0 for A\B = {x;}. Clearly },, pb; =
ijec ¢j = q, where q is the number of pairs (y,z) withy € B,ze Cand z <y. Let h(x) = X, cp bix; +
ijec ¢jxj + axx and let 7 be the hyperplane of R? defined by h(x) = g. Then h(p(A)) = h(o(B)) =
h(p(C)) = gq. We claim that, for any antichain D of P with D # A, D # B, and D # C, one has
h(p(D)) < g. Let D = BjuCyor D = {x} uCy; with By € Band C; ¢ C. Suppose D = By u Cy.
Since BAC is connected and since D is an antichain of P, it follows that >}, p b; + ijecl ¢j < 4.
Thus h(p(D)) < q.Suppose that D = {x;} u Cy. It follows that ijeq cjtag = ijecl ¢j < ijec ¢cj = 4.
Thus h(p(D)) < gq.

Case2. Bd A, BnA+#J,CEB,CnB+# g, CnA=,and P hasrank 1.

We define four numbers as follows:

aj =§({y € B\A |y <x;, xj € A\B});
vj =t({xe A\B | x; < x, xj € B\A});
o =3({ze C\B | z < x, xx € B\C});
Ye=t({y e B\C|x, <y, x € C\B)).
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Since P hasrank 1, B< A u C = P. It follows that A = (A\B) u (B\C), C = (B\A) u (C\B). Then

Zﬂés: 2 o + Z & = q;

YsEA x;€A\B x€B\C
Z Vit Z & =4q;
XjGB\A XkEB\C
Z'Yu: Z i+ Z Ye=4
xy€C xj€B\A x,€C\B

where g1 is the number of pairs (x,y) with x € A\B, y € B\A and y < x, q; is the number of pairs (y, z)
withy e B\C,ze C\Band z < y,and q = q; + . Let

h(x) = Z NgXg + Z YuXy

XsEA x,€C
= 2 aix; + < Z YiXj + Z akxk) + Z YeXy
x,EA\B ijB\A XkEB\C X[GC\B

and # the hyperplane of R? defined by h(x) = q. Then h(p(A)) = h(o(B)) = h(p(C)) = q. We claim
that, for any antichain D of P with D # A, D # Band D # C, one has h(p(D)) < q. Let D = D; u D,
with D; is an antichain of AAB and D, is an antichain of BAC. Since AAB, BAC are connected,
it follows that h(p(D1)) < g1 and h(p(D2)) < g2. Thus h(p(D)) = h(p(D1)) + h(p(D2)) < g1+ g2 = q.
Case3.Bd- A, BnA+#J,CEB,CnB+#g,CnA=, and P has rank 2.
For each x; € P we write c(i) for the number of maximal chains, which contain x;. Let g be the
number of maximal chains in P. Since each x; € A is maximal element and each x; € C is minimal

element, >}, 4 c(i) = Xy, cc c(k) = g. Then

Zc(j): Z c(s) + Z c(t) + Z c(u)

xj€B xs€BNA xt€BNC x,€B\(AUC)
= Z c(s) + Z c(t) + ( Z c(v) — Z c(t))
Xs€EBNA xt€BNC x,€A\B xt€BNC
= Y cli) =q.
XZEA

Let h(x) = X, epc(i)x; and 2 the hyperplane of R? defined by h(x) = g. Then h(p(A)) =
h(p(B)) = h(p(C)) = q. We claim that, for any antichain D of Pwith D # A, D # Band D # C, one has
h(p(D)) < g. D = A1 u By v Cy with A; € A\B, B; € B, and C; < C\B. Now, we define two subsets
of B:

BZZ{X]'GB|X]'<JC1', xieAl};
B3 = {xje B | xx < xj, xx € Cq}.
Then By n By = By n B3 = By n By = @ and By U By U By < Bs. Let 3y 4 (i) = q1, Sy e, () =

92, 2ixec, (k) = q3, ijeBz c(j) = 4}, and ij€B3 c(j) = q5. Since AAB, BAC are connected, it follows
that q; < g7 and g3 < g5. Hence

hp(D)) = D c(i)+ D) c()+ D, (k)

X €A, x/‘GBl xeCq

M+ a2+ 03 < g1+ 92+ 45

e+ D e+ X ety < Y el =g

X]EBZ x]EBl x]-EB3 X]'EB
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Thus k(p(D)) < g.

Cased. BE A BnA+#J,CnB=g,andCn A = .

Since P has rank 2, we can show h(p(D)) < g by the same argument in Case 3 (Suppose C n
B = ).

Case5. B¢ A, BnA=g,CnB=ZandCn A =¢.

Since P has rank 2, we can show h(p(D)) < g by the same argument in Case 3 (Suppose Bn A =
CnB= ).

In conclusion, each 4 is a supporting hyperplane of ¢'(P) and s n € (P) coincides with the
convex hull of {p(A), p(B), p(C)}, as desired. O

Corollary 1. Triangles in 1-skeleton of CO(P) or € (P) are in one-to-one correspondence with faces of
2-dimensional simplex of each polytope.
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