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Abstract: Each of the descriptions of vertices, edges, and facets of the order and chain polytope of a
finite partially ordered set are well known. In this paper, we give an explicit description of faces of
2-dimensional simplex in terms of vertices. Namely, it will be proved that an arbitrary triangle in
1-skeleton of the order or chain polytope forms the face of 2-dimensional simplex of each polytope.
These results mean a generalization in the case of 2-faces of the characterization known in the case
of edges.
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1. Introduction

The combinatorial structure of the order polytope OpPq and the chain polytope C pPq of a finite
poset (partially ordered set) P is explicitly discussed in [1]. Moreover, in [2], the problem when the
order polytope OpPq and the chain polytope C pPq are unimodularly equivalent is solved. It is also
proved that the number of edges of the order polytope OpPq is equal to that of the chain polytope C pPq
in [3]. In the present paper we give an explicit description of faces of 2-dimensional simplex of OpPq
and C pPq in terms of vertices. In other words, we show that triangles in 1-skeleton of OpPq or C pPq
are in one-to-one correspondence with faces of 2-dimensional simplex of each polytope. These results
are a direct generalizations of [4] (Lemma 4, Lemma 5).

2. Definition and Known Results

Let P “ tx1, . . . , xdu be a finite poset. To each subset W Ă P, we associate ρpWq “
ř

iPW ei P Rd,
where e1, . . . , ed are the canonical unit coordinate vectors of Rd. In particular ρpHq is the origin of Rd.
A poset ideal of P is a subset I of P such that, for all xi and xj with xi P I and xj ď xi, one has xj P I.
An antichain of P is a subset A of P such that xi and xj belonging to A with i ‰ j are incomparable.
The empty set H is a poset ideal as well as an antichain of P. We say that xj covers xi if xi ă xj and
xi ă xk ă xj for no xk P P. A chain xj1 ă xj2 ă ¨ ¨ ¨ ă xj` of P is called saturated if xjq covers xjq´1 for
1 ă q ď `. A maximal chain is a saturated chain such that xj1 is a minimal element and xj` is a maximal
element of the poset. The rank of P is 7pCq ´ 1, where C is a chain with maximum length of P.

The order polytope of P is the convex polytope OpPq Ă Rd which consists of those pa1, . . . adq P Rd

such that 0 ď ai ď 1 for every 1 ď i ď d together with

ai ě aj

if xi ď xj in P.
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The chain polytope of P is the convex polytope C pPq Ă Rd which consists of those pa1, . . . , adq P Rd

such that ai ě 0 for every 1 ď i ď d together with

aii ` ai2 ` ¨ ¨ ¨ ` aik ď 1

for every maximal chain xi1 ă xi2 ă ¨ ¨ ¨ ă xik of P.
One has dimOpPq “ dimC pPq “ d. The vertices of OpPq is those ρpIq for which I is a poset

ideal of P ([1] (Corollary1.3)) and the vertices of C pPq is those ρpAq for which A is an antichain of
P ([1] (Theorem2.2)). It then follows that the number of vertices of OpPq is equal to that of C pPq.
Moreover, the volume of OpPq and that of C pPq are equal to epPq{d!, where epPq is the number of linear
extensions of P ([1] (Corollary4.2)). It also follows from [1] that the facets of OpPq are the following:

• xi “ 0, where xi P P is maximal;
• xj “ 1, where xj P P is minimal;
• xi “ xj, where xj covers xi,

and that the facets of C pPq are the following:

• xi “ 0, for all xi P P;
• xi1 ` ¨ ¨ ¨ ` xik “ 1, where xi1 ă ¨ ¨ ¨ ă xik is a maximal chain of P.

In [4] a characterization of edges of OpPq and those of C pPq is obtained. Recall that a subposet Q
of finite poset P is said to be connected in P if, for each x and y belonging to Q, there exists a sequence
x “ x0, x1, . . . , xs “ y with each xi P Q for which xi´1 and xi are comparable in P for each 1 ď i ď s.

Lemma 1 ([4] (Lemma 4, Lemma 5)). Let P be a finite poset.

1. Let I and J be poset ideals of P with I ‰ J. Then the convex hull of tρpIq, ρpJqu forms an edge of OpPq if
and only if I Ă J and JzI is connected in P.

2. Let A and B be antichains of P with A ‰ B. Then the convex hull of tρpAq, ρpBqu forms an edge of C pPq
if and only if pAzBq Y pBzAq is connected in P.

3. Faces of 2-Dimensional Simplex

Using Lemma 1, we show the following description of faces of 2-dimensional simplex.

Theorem 1. Let P be a finite poset. Let I, J, and K be pairwise distinct poset ideals of P. Then the convex hull
of tρpIq, ρpJq, ρpKqu forms a 2-face of OpPq if and only if I Ă J Ă K and KzI is connected in P.

Proof. (“Only if”) If the convex hull of tρpIq, ρpJq, ρpKqu forms a 2-face of OpPq, then the convex hulls
of tρpIq, ρpJqu, tρpJq, ρpKqu, and tρpIq, ρpKqu form edges of OpPq. It then follows from Lemma 1 that
I Ă J Ă K and KzI is connected in P.

(“If”) Suppose that the convex hull of tρpIq, ρpJq, ρpKqu has dimension 1. Then there exists a line
passing through the lattice points ρpIq, ρpJq, and ρpKq. Hence ρpIq, ρpJq, and ρpKq cannot be vertices of
OpPq. Thus the convex hull of tρpIq, ρpJq, ρpKqu has dimension 2.

Let P “ tx1, . . . , xdu. If there exists a maximal element xi of P not belonging to I Y J Y K,
then the convex hull of tρpIq, ρpJq, ρpKqu lies in the facet xi “ 0. If there exists a minimal element
xj of P belonging to I X J X K, then the convex hull of tρpIq, ρpJq, ρpKqu lies in the facet xj “ 1.
Hence, working with induction on dpě 2q, we may assume that I Y J Y K “ P and I X J X K “ H.
Suppose thatH “ I Ă J Ă K “ P and KzI “ P is connected.

Case 1. 7pJq “ 1.
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Let J “ txiu and P1 “ Pztxiu. Then P1 is a connected poset. Let xi1 , . . . , xiq be the maximal
elements of P and Aij “ ty P P1 | y ă xiju , where 1 ď j ď q. Then we write

bk “

$

’

’

&

’

’

%

7ptij | xk P Aijuq if k R ti1, . . . , iq, iu

0 if k “ i

´7pAijq if k P ti1, . . . , iqu

.

We then claim that the hyperplane H of Rd defined by the equation hpxq “
řd

k“1 bkxk “ 0 is a
supporting hyperplane of OpPq and that H XOpPq coincides with the convex hull of tρpHq, ρpJq, ρpPqu.
Clearly hpρpHqq “ hpρpPqq “ 0 and hpρpJqq “ bi “ 0. Let I be a poset ideal of P with I ‰ H,
I ‰ P and I ‰ J. We have to prove that hpρpIqq ą 0. To simplify the notation, suppose that
I X txi1 , . . . , xiqu “ txi1 , . . . , xiru, where 0 ď r ă q. If r “ 0, then hpρpJqq ą 0. Let 1 ď r ă q, I1 “ Iztxiu,
and K “

Ťr
j“1pAij Y txijuq. Then I1 and K are poset ideals of P and hpρpKqq ď hpρpI1qq “ hpρpIqq.

We claim hpρpKqq ą 0. One has hpρpKqq ě 0. Moreover, hpρpKqq “ 0 if and only if no z P K belongs to
Air`1 Y ¨ ¨ ¨ YAiq . Now, since P1 is connected, it follows that there exists z P K with z P Air`1 Y ¨ ¨ ¨ YAiq .
Hence hpρpKqq ą 0. Thus hpρpIqq ą 0.

Case 2. 7pJq “ d´ 1.
Let PzJ “ txiu and P1 “ Pztxiu. Then P1 is a connected poset. Thus we can show the existence

of a supporting hyperplane of OpPqwhich contains the convex hull of tρpHq, ρpJq, ρpPqu by the same
argument in Case 1.

Case 3. 2 ď 7pJq ď d´ 2.
To simplify the notation, suppose that J “ tx1, . . . , x`u. Then PzJ “ tx``1, . . . , xdu. Since J and

PzJ are subposets of P, these posets are connected. Let xi1 , . . . , xiq be the maximal elements of J and
xiq`1 , . . . , xiq`r the maximal elements of PzJ. Then we write

Aij “

$

&

%

ty P J | y ă xiju if 1 ď j ď q

ty P PzJ | y ă xiju if q` 1 ď j ď r

and

bk “

#

7ptij | xi P Aijuq if k R ti1, . . . , iq, iq`1, . . . , iq`ru

´7pAijq if k P ti1, . . . , iq, iq`1, . . . , iq`ru
.

We then claim that the hyperplane H of Rd defined by the equation hpxq “
řd

k“1 bkxk “ 0 is a
supporting hyperplane of OpPq and H XOpPq coincides with the convex hull of tρpHq, ρpJq, ρpPqu.
Clearly hpρpHqq “ hpρpJqq “ hpρpPzJqq “ 0, then hpρpPqq “ hpρpJqq ` hpρpPzJqq “ 0. Let I be a poset
ideal of P with I ‰ H, I ‰ P and I ‰ J. What we must prove is hpρpIqq ą 0.

If I Ă J, then I is a poset ideal of J. To simplify the notation, suppose that I X txi1 , . . . , xiqu “

txi1 , . . . , xisu , where 0 ď s ă q. If s “ 0, then hpρpIqq ą 0. Let 1 ď s ă q, K “
Ťs

j“1pAij Y txijuq. Then K
is a poset ideal of J and hpρpKqq ď hpρpIqq. Thus we can show hpρpKqq ą 0 by the same argument in
Case 1 (Replace r with s and P1 with J).

If J Ă I, then IzJ is a poset ideal of PzJ. To simplify the notation, suppose that pIzJq X
txiq`1 , . . . , xiq`ru “ txiq`1 , . . . , xiq`tu , where 0 ď t ă r. If t “ 0, then hpρpIqq “ hpρpJqq ` hpρpIzJqq “

hpρpIzJqq ą 0. Let 1 ď t ă r, K “
Ťq`t

j“q`1pAij Y txijuq. Then K is a poset ideal of PzJ and
hpρpKqq ď hpρpIzJqq “ hpρpIqq. Thus we can show hpρpKqq ą 0 by the same argument in Case 1
(Replace r with q` t , q with q` r and P1 with PzJ). Consequently, hpρpIqq ą 0, as desired.

Let A4B denote the symmetric difference of the sets A and B, that is A4B “ pAzBq Y pBzAq.

Theorem 2. Let P be a finite poset. Let A, B, and C be pairwise distinct antichains of P. Then the convex hull
of tρpAq, ρpBq, ρpCqu forms a 2-face of C pPq if and only if A4B, B4C and C4A are connected in P.
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Proof. (“Only if”) If the convex hull of tρpAq, ρpBq, ρpCqu forms a 2-face of C pPq, then the convex
hulls of tρpAq, ρpBqu, tρpBq, ρpCqu, and tρpAq, ρpCqu form edges of C pPq. It then follows from Lemma 1
that A4B, B4C and C4A are connected in P.

(“If”) Suppose that the convex hull of tρpAq, ρpBq, ρpCqu has dimension 1. Then there exists a line
passing through the lattice points ρpAq, ρpBq, and ρpCq. Hence ρpAq, ρpBq, and ρpCq cannot be vertices
of C pPq. Thus the convex hull of tρpAq, ρpBq,
ρpCqu has dimension 2.

Let P “ tx1, . . . , xdu. If A Y B Y C ‰ P and xi R A Y B Y C, then the convex hull of
tρpAq, ρpBq, ρpCqu lies in the facet xi “ 0. Furthermore, if A Y B Y C “ P and A X B X C ‰ H,
then xj P AX BX C is isolated in P and xj itself is a maximal chain of P. Thus the convex hull of
tρpAq, ρpBq, ρpCqu lies in the facet xj “ 1. Hence, working with induction on dpě 2q, we may assume
that A Y B Y C “ P and A X B X C “ H. As stated in the proof of [3] ([Theorem 2.1]), if A4B is
connected in P, then A and B satisfy either (i) B Ă A or (ii) y ă x whenever x P A and y P B are
comparable. Hence, we consider the following three cases:

(a) If B Ă A, then A4B “ AzB is connected in P, and thus 7pAzBq “ 1. Let AzB “ txku.
If C X A ‰ H, then C X A “ txku, since A X B X C “ C X B “ H. Namely xk is isolated in P.
Hence B4C “ BY C “ AY BY C “ P cannot be connected. Thus CX A “ H. In this case, we may
assume z ă x if x P A and z P C are comparable. Furthermore, P has rank 1.

(b) If B Ć A and BX A ‰ H, then we may assume y ă x if x P A and y P B are comparable.
If C Ă B with CX AX B “ H, then as stated in (a), C4A cannot be connected. Since C Ć B, we may
assume z ă y if y P B and z P C are comparable. If CX B ‰ H, then CX A “ H and P has rank 1 or 2.
Similarly, if CX B “ H, then CX A “ H and P has rank 2.

(c) Let B Ć A and BX A “ H. We may assume that if x P A and y P B are comparable, then
y ă x. If C Ă B, then we regard this case as equivalent to (a). Let C Ć B. We may assume z ă y if
y P B and z P C are comparable. Moreover, if CX B ‰ H, then we regard this case as equivalent to (b).
If CX B “ H, then CX A “ H and P has rank 2.

Consequently, there are five cases as regards antichains for C pPq.
Case 1. B Ă A, CX A “ H, and CX B “ H.
For each xi P B we write bi for the number of elements z P C with z ă xi. For each xj P C we

write cj for the number of elements y P B with xj ă y. Let ak “ 0 for AzB “ txku. Clearly
ř

xiPB bi “
ř

xjPC cj “ q, where q is the number of pairs py, zqwith y P B, z P C and z ă y. Let hpxq “
ř

xiPB bixi `
ř

xjPC cjxj ` akxk and let H be the hyperplane of Rd defined by hpxq “ q. Then hpρpAqq “ hpρpBqq “
hpρpCqq “ q. We claim that, for any antichain D of P with D ‰ A, D ‰ B, and D ‰ C, one has
hpρpDqq ă q. Let D “ B1 Y C1 or D “ txku Y C1 with B1 Ĺ B and C1 Ĺ C. Suppose D “ B1 Y C1.
Since B4C is connected and since D is an antichain of P, it follows that

ř

xiPB1
bi `

ř

xjPC1
cj ă q.

Thus hpρpDqq ă q. Suppose that D “ txkuYC1. It follows that
ř

xjPC1
cj` ak “

ř

xjPC1
cj ă

ř

xjPC cj “ q.
Thus hpρpDqq ă q.

Case 2. B Ć A, BX A ‰ H, C Ć B, CX B ‰ H, CX A “ H, and P has rank 1.
We define four numbers as follows:

αi “ 7pty P BzA | y ă xi , xi P AzBuq;

γj “ 7ptx P AzB | xj ă x , xj P BzAuq;

αk “ 7ptz P CzB | z ă xk , xk P BzCuq;

γ` “ 7pty P BzC | x` ă y , x` P CzBuq.
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Since P has rank 1, B Ă AY C “ P. It follows that A “ pAzBq Y pBzCq, C “ pBzAq Y pCzBq. Then
ÿ

xsPA

αs “
ÿ

xiPAzB

αi `
ÿ

xkPBzC

αk “ q;

ÿ

xjPBzA

γj `
ÿ

xkPBzC

αk “ q;

ÿ

xuPC

γu “
ÿ

xjPBzA

γj `
ÿ

x`PCzB

γ` “ q,

where q1 is the number of pairs px, yq with x P AzB, y P BzA and y ă x, q2 is the number of pairs py, zq
with y P BzC, z P CzB and z ă y, and q “ q1 ` q2. Let

hpxq “
ÿ

xsPA

αsxs `
ÿ

xuPC

γuxu

“
ÿ

xiPAzB

αixi `

ˆ

ÿ

xjPBzA

γjxj `
ÿ

xkPBzC

αkxk

˙

`
ÿ

x`PCzB

γ`x`

and H the hyperplane of Rd defined by hpxq “ q. Then hpρpAqq “ hpρpBqq “ hpρpCqq “ q. We claim
that, for any antichain D of P with D ‰ A, D ‰ B and D ‰ C, one has hpρpDqq ă q. Let D “ D1 YD2

with D1 is an antichain of A4B and D2 is an antichain of B4C. Since A4B, B4C are connected,
it follows that hpρpD1qq ă q1 and hpρpD2qq ă q2. Thus hpρpDqq “ hpρpD1qq ` hpρpD2qq ă q1 ` q2 “ q.

Case 3. B Ć A, BX A ‰ H, C Ć B, CX B ‰ H, CX A “ H, and P has rank 2.
For each xi P P we write cpiq for the number of maximal chains, which contain xi. Let q be the

number of maximal chains in P. Since each xi P A is maximal element and each xk P C is minimal
element,

ř

xiPA cpiq “
ř

xkPC cpkq “ q. Then

ÿ

xjPB

cpjq “
ÿ

xsPBXA

cpsq `
ÿ

xtPBXC

cptq `
ÿ

xuPBzpAYCq

cpuq

“
ÿ

xsPBXA

cpsq `
ÿ

xtPBXC

cptq `
ˆ

ÿ

xvPAzB

cpvq ´
ÿ

xtPBXC

cptq
˙

“
ÿ

xiPA

cpiq “ q.

Let hpxq “
ř

xiPP cpiqxi and H the hyperplane of Rd defined by hpxq “ q. Then hpρpAqq “
hpρpBqq “ hpρpCqq “ q. We claim that, for any antichain D of P with D ‰ A, D ‰ B and D ‰ C, one has
hpρpDqq ă q. D “ A1 Y B1 Y C1 with A1 Ă AzB, B1 Ĺ B, and C1 Ĺ CzB. Now, we define two subsets
of B:

B2 “ txj P B | xj ă xi, xi P A1u;

B3 “ txj P B | xk ă xj, xk P C1u.

Then B1 X B2 “ B1 X B3 “ B2 X B3 “ H and B1 Y B2 Y B3 Ă B3. Let
ř

xiPA cpiq “ q1,
ř

xjPB1
cpjq “

q2,
ř

xkPC1
cpkq “ q3,

ř

xjPB2
cpjq “ q11, and

ř

xjPB3
cpjq “ q13. Since A4B, B4C are connected, it follows

that q1 ă q11 and q3 ă q13. Hence

hpρpDqq “
ÿ

xiPA1

cpiq `
ÿ

xjPB1

cpjq `
ÿ

xkPC1

cpkq

“ q1 ` q2 ` q3 ă q11 ` q2 ` q13
“

ÿ

xjPB2

cpjq `
ÿ

xjPB1

cpjq `
ÿ

xjPB3

cpjq ď
ÿ

xjPB

cpjq “ q.
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Thus hpρpDqq ă q.
Case 4. B Ć A, BX A ‰ H, CX B “ H, and CX A “ H.
Since P has rank 2, we can show hpρpDqq ă q by the same argument in Case 3 (Suppose C X

B “ H).
Case 5. B Ć A, BX A “ H, CX B “ H and CX A “ H.
Since P has rank 2, we can show hpρpDqq ă q by the same argument in Case 3 (Suppose BX A “

CX B “ H).
In conclusion, each H is a supporting hyperplane of C pPq and H X C pPq coincides with the

convex hull of tρpAq, ρpBq, ρpCqu, as desired.

Corollary 1. Triangles in 1-skeleton of OpPq or C pPq are in one-to-one correspondence with faces of
2-dimensional simplex of each polytope.
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