

Article Faces of 2-Dimensional Simplex of Order and Chain Polytopes

Aki Mori

Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan; u035543c@alumni.osaka-u.ac.jp

Received: 11 August 2019; Accepted: 10 September 2019; Published: 14 September 2019

Abstract: Each of the descriptions of vertices, edges, and facets of the order and chain polytope of a finite partially ordered set are well known. In this paper, we give an explicit description of faces of 2-dimensional simplex in terms of vertices. Namely, it will be proved that an arbitrary triangle in 1-skeleton of the order or chain polytope forms the face of 2-dimensional simplex of each polytope. These results mean a generalization in the case of 2-faces of the characterization known in the case of edges.

Keywords: order polytope; chain polytope; partially ordered set

MSC: primary: 52B05; secondary: 06A07

1. Introduction

The combinatorial structure of the order polytope $\mathcal{O}(P)$ and the chain polytope $\mathcal{O}(P)$ of a finite poset (partially ordered set) *P* is explicitly discussed in [1]. Moreover, in [2], the problem when the order polytope $\mathcal{O}(P)$ and the chain polytope $\mathcal{C}(P)$ are unimodularly equivalent is solved. It is also proved that the number of edges of the order polytope $\mathcal{O}(P)$ is equal to that of the chain polytope $\mathcal{C}(P)$ in [3]. In the present paper we give an explicit description of faces of 2-dimensional simplex of $\mathcal{O}(P)$ and $\mathcal{C}(P)$ in terms of vertices. In other words, we show that triangles in 1-skeleton of $\mathcal{O}(P)$ or $\mathcal{C}(P)$ are in one-to-one correspondence with faces of 2-dimensional simplex of each polytope. These results are a direct generalizations of [4] (Lemma 4, Lemma 5).

2. Definition and Known Results

Let $P = \{x_1, \ldots, x_d\}$ be a finite poset. To each subset $W \subset P$, we associate $\rho(W) = \sum_{i \in W} \mathbf{e}_i \in \mathbb{R}^d$, where $\mathbf{e}_1, \ldots, \mathbf{e}_d$ are the canonical unit coordinate vectors of \mathbb{R}^d . In particular $\rho(\emptyset)$ is the origin of \mathbb{R}^d . A *poset ideal* of *P* is a subset *I* of *P* such that, for all x_i and x_j with $x_i \in I$ and $x_j \leq x_i$, one has $x_j \in I$. An *antichain* of *P* is a subset *A* of *P* such that x_i and x_j belonging to *A* with $i \neq j$ are incomparable. The empty set \emptyset is a poset ideal as well as an antichain of *P*. We say that x_j *covers* x_i if $x_i < x_j$ and $x_i < x_k < x_j$ for no $x_k \in P$. A chain $x_{j_1} < x_{j_2} < \cdots < x_{j_\ell}$ of *P* is called *saturated* if x_{j_q} covers $x_{j_{q-1}}$ for $1 < q \leq \ell$. A *maximal chain* is a saturated chain such that x_{j_1} is a minimal element and x_{j_ℓ} is a maximal element of the poset. The *rank* of *P* is $\sharp(C) - 1$, where *C* is a chain with maximum length of *P*.

The *order polytope* of *P* is the convex polytope $\mathscr{O}(P) \subset \mathbb{R}^d$ which consists of those $(a_1, \ldots, a_d) \in \mathbb{R}^d$ such that $0 \leq a_i \leq 1$ for every $1 \leq i \leq d$ together with

$$a_i \ge a_j$$

if $x_i \leq x_j$ in *P*.

The *chain polytope* of *P* is the convex polytope $\mathscr{C}(P) \subset \mathbb{R}^d$ which consists of those $(a_1, \ldots, a_d) \in \mathbb{R}^d$ such that $a_i \ge 0$ for every $1 \le i \le d$ together with

$$a_{i_i} + a_{i_2} + \dots + a_{i_k} \leq 1$$

for every maximal chain $x_{i_1} < x_{i_2} < \cdots < x_{i_k}$ of *P*.

One has dim $\mathcal{O}(P) = \dim \mathcal{C}(P) = d$. The vertices of $\mathcal{O}(P)$ is those $\rho(I)$ for which *I* is a poset ideal of *P* ([1] (Corollary1.3)) and the vertices of $\mathcal{C}(P)$ is those $\rho(A)$ for which *A* is an antichain of *P* ([1] (Theorem2.2)). It then follows that the number of vertices of $\mathcal{O}(P)$ is equal to that of $\mathcal{C}(P)$. Moreover, the volume of $\mathcal{O}(P)$ and that of $\mathcal{C}(P)$ are equal to e(P)/d!, where e(P) is the number of linear extensions of *P* ([1] (Corollary4.2)). It also follows from [1] that the facets of $\mathcal{O}(P)$ are the following:

- $x_i = 0$, where $x_i \in P$ is maximal;
- $x_i = 1$, where $x_i \in P$ is minimal;
- $x_i = x_j$, where x_j covers x_i ,

and that the facets of $\mathscr{C}(P)$ are the following:

- $x_i = 0$, for all $x_i \in P$;
- $x_{i_1} + \cdots + x_{i_k} = 1$, where $x_{i_1} < \cdots < x_{i_k}$ is a maximal chain of *P*.

In [4] a characterization of edges of $\mathcal{O}(P)$ and those of $\mathcal{C}(P)$ is obtained. Recall that a subposet Q of finite poset P is said to be *connected* in P if, for each x and y belonging to Q, there exists a sequence $x = x_0, x_1, \ldots, x_s = y$ with each $x_i \in Q$ for which x_{i-1} and x_i are comparable in P for each $1 \le i \le s$.

Lemma 1 ([4] (Lemma 4, Lemma 5)). Let P be a finite poset.

- 1. Let I and J be poset ideals of P with $I \neq J$. Then the convex hull of $\{\rho(I), \rho(J)\}$ forms an edge of $\mathcal{O}(P)$ if and only if $I \subset J$ and $J \setminus I$ is connected in P.
- 2. Let *A* and *B* be antichains of *P* with $A \neq B$. Then the convex hull of $\{\rho(A), \rho(B)\}$ forms an edge of $\mathscr{C}(P)$ if and only if $(A \setminus B) \cup (B \setminus A)$ is connected in *P*.

3. Faces of 2-Dimensional Simplex

Using Lemma 1, we show the following description of faces of 2-dimensional simplex.

Theorem 1. Let *P* be a finite poset. Let *I*, *J*, and *K* be pairwise distinct poset ideals of *P*. Then the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ forms a 2-face of $\mathcal{O}(P)$ if and only if $I \subset J \subset K$ and $K \setminus I$ is connected in *P*.

Proof. ("Only if") If the convex hull of { $\rho(I)$, $\rho(J)$, $\rho(K)$ } forms a 2-face of $\mathcal{O}(P)$, then the convex hulls of { $\rho(I)$, $\rho(J)$ }, { $\rho(J)$, $\rho(K)$ }, and { $\rho(I)$, $\rho(K)$ } form edges of $\mathcal{O}(P)$. It then follows from Lemma 1 that $I \subset J \subset K$ and $K \setminus I$ is connected in *P*.

("If") Suppose that the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ has dimension 1. Then there exists a line passing through the lattice points $\rho(I), \rho(J)$, and $\rho(K)$. Hence $\rho(I), \rho(J)$, and $\rho(K)$ cannot be vertices of $\mathcal{O}(P)$. Thus the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ has dimension 2.

Let $P = \{x_1, ..., x_d\}$. If there exists a maximal element x_i of P not belonging to $I \cup J \cup K$, then the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ lies in the facet $x_i = 0$. If there exists a minimal element x_j of P belonging to $I \cap J \cap K$, then the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ lies in the facet $x_j = 1$. Hence, working with induction on $d(\ge 2)$, we may assume that $I \cup J \cup K = P$ and $I \cap J \cap K = \emptyset$. Suppose that $\emptyset = I \subset J \subset K = P$ and $K \setminus I = P$ is connected.

Case 1. $\sharp(J) = 1$.

Let $J = \{x_i\}$ and $P' = P \setminus \{x_i\}$. Then P' is a connected poset. Let x_{i_1}, \ldots, x_{i_q} be the maximal elements of P and $A_{ij} = \{y \in P' \mid y < x_{i_i}\}$, where $1 \le j \le q$. Then we write

$$b_{k} = \begin{cases} \#(\{i_{j} \mid x_{k} \in \mathcal{A}_{ij}\}) & \text{if } k \notin \{i_{1}, \dots, i_{q}, i\} \\ 0 & \text{if } k = i \\ -\#(\mathcal{A}_{ij}) & \text{if } k \in \{i_{1}, \dots, i_{q}\} \end{cases}$$

We then claim that the hyperplane \mathscr{H} of \mathbb{R}^d defined by the equation $h(\mathbf{x}) = \sum_{k=1}^d b_k x_k = 0$ is a supporting hyperplane of $\mathscr{O}(P)$ and that $\mathscr{H} \cap \mathscr{O}(P)$ coincides with the convex hull of $\{\rho(\emptyset), \rho(J), \rho(P)\}$. Clearly $h(\rho(\emptyset)) = h(\rho(P)) = 0$ and $h(\rho(J)) = b_i = 0$. Let *I* be a poset ideal of *P* with $I \neq \emptyset$, $I \neq P$ and $I \neq J$. We have to prove that $h(\rho(I)) > 0$. To simplify the notation, suppose that $I \cap \{x_{i_1}, \ldots, x_{i_q}\} = \{x_{i_1}, \ldots, x_{i_r}\}$, where $0 \leq r < q$. If r = 0, then $h(\rho(J)) > 0$. Let $1 \leq r < q$, $I' = I \setminus \{x_i\}$, and $K = \bigcup_{j=1}^r (\mathcal{A}_{i_j} \cup \{x_{i_j}\})$. Then *I'* and *K* are poset ideals of *P* and $h(\rho(K)) \leq h(\rho(I')) = h(\rho(I))$. We claim $h(\rho(K)) > 0$. One has $h(\rho(K)) \geq 0$. Moreover, $h(\rho(K)) = 0$ if and only if no $z \in K$ belongs to $\mathcal{A}_{i_{r+1}} \cup \cdots \cup \mathcal{A}_{i_q}$. Now, since *P'* is connected, it follows that there exists $z \in K$ with $z \in \mathcal{A}_{i_{r+1}} \cup \cdots \cup \mathcal{A}_{i_q}$. Hence $h(\rho(K)) > 0$. Thus $h(\rho(I)) > 0$.

Case 2. $\sharp(J) = d - 1$.

Let $P \setminus J = \{x_i\}$ and $P' = P \setminus \{x_i\}$. Then P' is a connected poset. Thus we can show the existence of a supporting hyperplane of $\mathcal{O}(P)$ which contains the convex hull of $\{\rho(\emptyset), \rho(J), \rho(P)\}$ by the same argument in Case 1.

Case 3. $2 \le \sharp(J) \le d - 2$.

To simplify the notation, suppose that $J = \{x_1, ..., x_\ell\}$. Then $P \setminus J = \{x_{\ell+1}, ..., x_d\}$. Since *J* and $P \setminus J$ are subposets of *P*, these posets are connected. Let $x_{i_1}, ..., x_{i_q}$ be the maximal elements of *J* and $x_{i_{q+1}}, ..., x_{i_{q+r}}$ the maximal elements of $P \setminus J$. Then we write

$$\mathcal{A}_{ij} = \begin{cases} \{y \in J \mid y < x_{i_j}\} & \text{if } 1 \leq j \leq q \\ \{y \in P \setminus J \mid y < x_{i_j}\} & \text{if } q + 1 \leq j \leq r \end{cases}$$

and

$$b_k = \begin{cases} \#(\{i_j \mid x_i \in \mathcal{A}_{ij}\}) & \text{if } k \notin \{i_1, \dots, i_q, i_{q+1}, \dots, i_{q+r}\} \\ -\#(\mathcal{A}_{ij}) & \text{if } k \in \{i_1, \dots, i_q, i_{q+1}, \dots, i_{q+r}\} \end{cases}$$

We then claim that the hyperplane \mathscr{H} of \mathbb{R}^d defined by the equation $h(\mathbf{x}) = \sum_{k=1}^d b_k x_k = 0$ is a supporting hyperplane of $\mathscr{O}(P)$ and $\mathscr{H} \cap \mathscr{O}(P)$ coincides with the convex hull of $\{\rho(\emptyset), \rho(J), \rho(P)\}$. Clearly $h(\rho(\emptyset)) = h(\rho(J)) = h(\rho(P \setminus J)) = 0$, then $h(\rho(P)) = h(\rho(J)) + h(\rho(P \setminus J)) = 0$. Let *I* be a poset ideal of *P* with $I \neq \emptyset$, $I \neq P$ and $I \neq J$. What we must prove is $h(\rho(I)) > 0$.

If $I \subset J$, then *I* is a poset ideal of *J*. To simplify the notation, suppose that $I \cap \{x_{i_1}, \ldots, x_{i_q}\} = \{x_{i_1}, \ldots, x_{i_s}\}$, where $0 \leq s < q$. If s = 0, then $h(\rho(I)) > 0$. Let $1 \leq s < q$, $K = \bigcup_{j=1}^{s} (\mathcal{A}_{i_j} \cup \{x_{i_j}\})$. Then *K* is a poset ideal of *J* and $h(\rho(K)) \leq h(\rho(I))$. Thus we can show $h(\rho(K)) > 0$ by the same argument in Case 1 (Replace *r* with *s* and *P'* with *J*).

If $J \subset I$, then $I \setminus J$ is a poset ideal of $P \setminus J$. To simplify the notation, suppose that $(I \setminus J) \cap \{x_{i_{q+1}}, \ldots, x_{i_{q+r}}\} = \{x_{i_{q+1}}, \ldots, x_{i_{q+r}}\}$, where $0 \leq t < r$. If t = 0, then $h(\rho(I)) = h(\rho(J)) + h(\rho(I \setminus J)) = h(\rho(I \setminus J)) > 0$. Let $1 \leq t < r$, $K = \bigcup_{j=q+1}^{q+t} (\mathcal{A}_{i_j} \cup \{x_{i_j}\})$. Then K is a poset ideal of $P \setminus J$ and $h(\rho(K)) \leq h(\rho(I \setminus J)) = h(\rho(I))$. Thus we can show $h(\rho(K)) > 0$ by the same argument in Case 1 (Replace r with q + t, q with q + r and P' with $P \setminus J$). Consequently, $h(\rho(I)) > 0$, as desired. \Box

Let $A \triangle B$ denote the symmetric difference of the sets *A* and *B*, that is $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

Theorem 2. Let *P* be a finite poset. Let *A*, *B*, and *C* be pairwise distinct antichains of *P*. Then the convex hull of $\{\rho(A), \rho(B), \rho(C)\}$ forms a 2-face of $\mathscr{C}(P)$ if and only if $A \triangle B$, $B \triangle C$ and $C \triangle A$ are connected in *P*.

Proof. ("Only if") If the convex hull of $\{\rho(A), \rho(B), \rho(C)\}$ forms a 2-face of $\mathscr{C}(P)$, then the convex hulls of $\{\rho(A), \rho(B)\}, \{\rho(B), \rho(C)\}$, and $\{\rho(A), \rho(C)\}$ form edges of $\mathscr{C}(P)$. It then follows from Lemma 1 that $A \triangle B, B \triangle C$ and $C \triangle A$ are connected in *P*.

("If") Suppose that the convex hull of { $\rho(A)$, $\rho(B)$, $\rho(C)$ } has dimension 1. Then there exists a line passing through the lattice points $\rho(A)$, $\rho(B)$, and $\rho(C)$. Hence $\rho(A)$, $\rho(B)$, and $\rho(C)$ cannot be vertices of $\mathscr{C}(P)$. Thus the convex hull of { $\rho(A)$, $\rho(B)$,

 $\rho(C)$ } has dimension 2.

Let $P = \{x_1, \ldots, x_d\}$. If $A \cup B \cup C \neq P$ and $x_i \notin A \cup B \cup C$, then the convex hull of $\{\rho(A), \rho(B), \rho(C)\}$ lies in the facet $x_i = 0$. Furthermore, if $A \cup B \cup C = P$ and $A \cap B \cap C \neq \emptyset$, then $x_j \in A \cap B \cap C$ is isolated in P and x_j itself is a maximal chain of P. Thus the convex hull of $\{\rho(A), \rho(B), \rho(C)\}$ lies in the facet $x_j = 1$. Hence, working with induction on $d \geq 2$, we may assume that $A \cup B \cup C = P$ and $A \cap B \cap C = \emptyset$. As stated in the proof of [3] ([Theorem 2.1]), if $A \triangle B$ is connected in P, then A and B satisfy either (i) $B \subset A$ or (ii) y < x whenever $x \in A$ and $y \in B$ are comparable. Hence, we consider the following three cases:

(a) If $B \subset A$, then $A \triangle B = A \setminus B$ is connected in *P*, and thus $\sharp(A \setminus B) = 1$. Let $A \setminus B = \{x_k\}$. If $C \cap A \neq \emptyset$, then $C \cap A = \{x_k\}$, since $A \cap B \cap C = C \cap B = \emptyset$. Namely x_k is isolated in *P*. Hence $B \triangle C = B \cup C = A \cup B \cup C = P$ cannot be connected. Thus $C \cap A = \emptyset$. In this case, we may assume z < x if $x \in A$ and $z \in C$ are comparable. Furthermore, *P* has rank 1.

(b) If $B \Leftrightarrow A$ and $B \cap A \neq \emptyset$, then we may assume y < x if $x \in A$ and $y \in B$ are comparable. If $C \subset B$ with $C \cap A \cap B = \emptyset$, then as stated in (a), $C \triangle A$ cannot be connected. Since $C \Leftrightarrow B$, we may assume z < y if $y \in B$ and $z \in C$ are comparable. If $C \cap B \neq \emptyset$, then $C \cap A = \emptyset$ and P has rank 1 or 2. Similarly, if $C \cap B = \emptyset$, then $C \cap A = \emptyset$ and P has rank 2.

(c) Let $B \Leftrightarrow A$ and $B \cap A = \emptyset$. We may assume that if $x \in A$ and $y \in B$ are comparable, then y < x. If $C \subset B$, then we regard this case as equivalent to (a). Let $C \Leftrightarrow B$. We may assume z < y if $y \in B$ and $z \in C$ are comparable. Moreover, if $C \cap B \neq \emptyset$, then we regard this case as equivalent to (b). If $C \cap B = \emptyset$, then $C \cap A = \emptyset$ and P has rank 2.

Consequently, there are five cases as regards antichains for $\mathscr{C}(P)$.

Case 1. $B \subset A$, $C \cap A = \emptyset$, and $C \cap B = \emptyset$.

For each $x_i \in B$ we write b_i for the number of elements $z \in C$ with $z < x_i$. For each $x_j \in C$ we write c_j for the number of elements $y \in B$ with $x_j < y$. Let $a_k = 0$ for $A \setminus B = \{x_k\}$. Clearly $\sum_{x_i \in B} b_i = \sum_{x_i \in C} c_j = q$, where q is the number of pairs (y, z) with $y \in B$, $z \in C$ and z < y. Let $h(\mathbf{x}) = \sum_{x_i \in B} b_i x_i + \sum_{x_j \in C} c_j x_j + a_k x_k$ and let \mathscr{H} be the hyperplane of \mathbb{R}^d defined by $h(\mathbf{x}) = q$. Then $h(\rho(A)) = h(\rho(B)) = h(\rho(C)) = q$. We claim that, for any antichain D of P with $D \neq A$, $D \neq B$, and $D \neq C$, one has $h(\rho(D)) < q$. Let $D = B_1 \cup C_1$ or $D = \{x_k\} \cup C_1$ with $B_1 \subsetneq B$ and $C_1 \subsetneq C$. Suppose $D = B_1 \cup C_1$. Since $B \triangle C$ is connected and since D is an antichain of P, it follows that $\sum_{x_i \in B_1} b_i + \sum_{x_j \in C_1} c_j < q$. Thus $h(\rho(D)) < q$.

Case 2. $B \notin A$, $B \cap A \neq \emptyset$, $C \notin B$, $C \cap B \neq \emptyset$, $C \cap A = \emptyset$, and *P* has rank 1. We define four numbers as follows:

$$\begin{split} \alpha_i &= \sharp(\{y \in B \setminus A \mid y < x_i , x_i \in A \setminus B\});\\ \gamma_j &= \sharp(\{x \in A \setminus B \mid x_j < x , x_j \in B \setminus A\});\\ \alpha_k &= \sharp(\{z \in C \setminus B \mid z < x_k , x_k \in B \setminus C\});\\ \gamma_\ell &= \sharp(\{y \in B \setminus C \mid x_\ell < y , x_\ell \in C \setminus B\}). \end{split}$$

Since *P* has rank 1, $B \subset A \cup C = P$. It follows that $A = (A \setminus B) \cup (B \setminus C)$, $C = (B \setminus A) \cup (C \setminus B)$. Then

$$\sum_{x_s \in A} \alpha_s = \sum_{x_i \in A \setminus B} \alpha_i + \sum_{x_k \in B \setminus C} \alpha_k = q;$$
$$\sum_{x_j \in B \setminus A} \gamma_j + \sum_{x_k \in B \setminus C} \alpha_k = q;$$
$$\sum_{x_u \in C} \gamma_u = \sum_{x_j \in B \setminus A} \gamma_j + \sum_{x_\ell \in C \setminus B} \gamma_\ell = q,$$

where q_1 is the number of pairs (x, y) with $x \in A \setminus B$, $y \in B \setminus A$ and y < x, q_2 is the number of pairs (y, z) with $y \in B \setminus C$, $z \in C \setminus B$ and z < y, and $q = q_1 + q_2$. Let

$$h(\mathbf{x}) = \sum_{x_s \in A} \alpha_s x_s + \sum_{x_u \in C} \gamma_u x_u$$
$$= \sum_{x_i \in A \setminus B} \alpha_i x_i + \left(\sum_{x_j \in B \setminus A} \gamma_j x_j + \sum_{x_k \in B \setminus C} \alpha_k x_k\right) + \sum_{x_\ell \in C \setminus B} \gamma_\ell x_\ell$$

and \mathscr{H} the hyperplane of \mathbb{R}^d defined by $h(\mathbf{x}) = q$. Then $h(\rho(A)) = h(\rho(B)) = h(\rho(C)) = q$. We claim that, for any antichain D of P with $D \neq A$, $D \neq B$ and $D \neq C$, one has $h(\rho(D)) < q$. Let $D = D_1 \cup D_2$ with D_1 is an antichain of $A \triangle B$ and D_2 is an antichain of $B \triangle C$. Since $A \triangle B$, $B \triangle C$ are connected, it follows that $h(\rho(D_1)) < q_1$ and $h(\rho(D_2)) < q_2$. Thus $h(\rho(D)) = h(\rho(D_1)) + h(\rho(D_2)) < q_1 + q_2 = q$.

Case 3. $B \notin A$, $B \cap A \neq \emptyset$, $C \notin B$, $C \cap B \neq \emptyset$, $C \cap A = \emptyset$, and *P* has rank 2.

For each $x_i \in P$ we write c(i) for the number of maximal chains, which contain x_i . Let q be the number of maximal chains in P. Since each $x_i \in A$ is maximal element and each $x_k \in C$ is minimal element, $\sum_{x_i \in A} c(i) = \sum_{x_k \in C} c(k) = q$. Then

$$\sum_{x_j \in B} c(j) = \sum_{x_s \in B \cap A} c(s) + \sum_{x_t \in B \cap C} c(t) + \sum_{x_u \in B \setminus (A \cup C)} c(u)$$
$$= \sum_{x_s \in B \cap A} c(s) + \sum_{x_t \in B \cap C} c(t) + \left(\sum_{x_v \in A \setminus B} c(v) - \sum_{x_t \in B \cap C} c(t)\right)$$
$$= \sum_{x_i \in A} c(i) = q.$$

Let $h(\mathbf{x}) = \sum_{x_i \in P} c(i)x_i$ and \mathscr{H} the hyperplane of \mathbb{R}^d defined by $h(\mathbf{x}) = q$. Then $h(\rho(A)) = h(\rho(B)) = h(\rho(C)) = q$. We claim that, for any antichain *D* of *P* with $D \neq A$, $D \neq B$ and $D \neq C$, one has $h(\rho(D)) < q$. $D = A_1 \cup B_1 \cup C_1$ with $A_1 \subset A \setminus B$, $B_1 \subsetneq B$, and $C_1 \subsetneq C \setminus B$. Now, we define two subsets of *B*:

$$B_2 = \{ x_j \in B \mid x_j < x_i, \ x_i \in A_1 \}; B_3 = \{ x_j \in B \mid x_k < x_j, \ x_k \in C_1 \}.$$

Then $B_1 \cap B_2 = B_1 \cap B_3 = B_2 \cap B_3 = \emptyset$ and $B_1 \cup B_2 \cup B_3 \subset B_3$. Let $\sum_{x_i \in A} c(i) = q_1$, $\sum_{x_j \in B_1} c(j) = q_2$, $\sum_{x_k \in C_1} c(k) = q_3$, $\sum_{x_j \in B_2} c(j) = q'_1$, and $\sum_{x_j \in B_3} c(j) = q'_3$. Since $A \triangle B$, $B \triangle C$ are connected, it follows that $q_1 < q'_1$ and $q_3 < q'_3$. Hence

$$\begin{split} h(\rho(D)) &= \sum_{x_i \in A_1} c(i) + \sum_{x_j \in B_1} c(j) + \sum_{x_k \in C_1} c(k) \\ &= q_1 + q_2 + q_3 < q'_1 + q_2 + q'_3 \\ &= \sum_{x_j \in B_2} c(j) + \sum_{x_j \in B_1} c(j) + \sum_{x_j \in B_3} c(j) \leqslant \sum_{x_j \in B} c(j) = q. \end{split}$$

Thus $h(\rho(D)) < q$. **Case 4.** $B \notin A, B \cap A \neq \emptyset, C \cap B = \emptyset$, and $C \cap A = \emptyset$. Since *P* has rank 2, we can show $h(\rho(D)) < q$ by the same argument in Case 3 (Suppose $C \cap B = \emptyset$).

Case 5. $B \notin A$, $B \cap A = \emptyset$, $C \cap B = \emptyset$ and $C \cap A = \emptyset$.

Since *P* has rank 2, we can show $h(\rho(D)) < q$ by the same argument in Case 3 (Suppose $B \cap A = C \cap B = \emptyset$).

In conclusion, each \mathscr{H} is a supporting hyperplane of $\mathscr{C}(P)$ and $\mathscr{H} \cap \mathscr{C}(P)$ coincides with the convex hull of $\{\rho(A), \rho(B), \rho(C)\}$, as desired. \Box

Corollary 1. Triangles in 1-skeleton of $\mathcal{O}(P)$ or $\mathcal{C}(P)$ are in one-to-one correspondence with faces of 2-dimensional simplex of each polytope.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Stanley, R. Two poset polytopes. Discrete Comput. Geom. 1986, 1, 9–23. [CrossRef]
- 2. Hibi, T.; Li, N. Unimodular equivalence of order and chain polytopes. *Math. Scand.* **2016**, *118*, 5–12. [CrossRef]
- 3. Hibi, T.; Li, N.; Sahara, Y.; Shikama, A. The numbers of edges of the order polytope and the chain polytope of a finite partially ordered set. *Discret. Math.* **2017**, *340*, 991–994. [CrossRef]
- 4. Hibi, T.; Li, N. Cutting convex polytopes by hyperplanes. *Mathematics* 2019, 7, 381. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).