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Abstract: In this paper, the business cycle (BC) is described by a delayed time-fractional-order
model (DTFOM) with a general liquidity preference function and an investment function. Firstly,
the existence and uniqueness of the DTFOM solution are proven. Then, some conditions are presented
to guarantee that the positive equilibrium point of DTFOM is locally stable. In addition, Hopf
bifurcation is obtained by a new method, where the time delay is regarded as the bifurcation
parameter. Finally, a numerical example of DTFOM is given to verify the effectiveness of the proposed
model and methods.
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1. Introduction

Macroeconomics is an essential economic field that analyzes the general law of economics through
macroeconomic indicators such as national income, market investment, and money supply [1]. As one
of the most important issues of macroeconomics, business cycle (BC) theory has been studied by many
economists because of its realistic meaning and practical value [2].

To obtain the factors involved in fluctuations in the business cycle (BC), many mathematical
models are founded on nonlinear dynamics and relative theories that improve the development of
BC theory. Using graph analysis, Kaldor [3] proved that a BC exists when the investment and saving
function are time-varying nonlinear. Chang and Smyth [4] proved the results shown in [3] by using
mathematical theory and gave the conditions required for the existence of limit cycles. J. R.Hicks and
A. H. Hansen proposed the IS-LM model, which is an important tool for describing the macroeconomic
analysis of the interlinked theoretical structure between the product market and the money market [5].
These early studies are of great significance to current and future BC.

Time delay is a phenomenon existing in practice that often appears in engineering
applications [6–8]. Time delay is an important factor that also widely exists in economics. Since
economics is not only affected by the present state, but also by the past state, the delayed mathematical
model is more suitable for describing economic systems, and some significant results have been drawn
in recent years [9–11]. Considering expectation and delay, Liu and Cai [12] studied a BC model and
gave some conditions of stability and bifurcation. Hu and Cao [13,14] studied the Kaldor–Kalecki
model of delayed BC. To summarize, time delay is an important reason for fluctuations in BC.

In recent years, the theory of fractional calculus (FC) has not only rapidly developed, but has
also been widely applied in many fields [15–19]. In fact, most economic systems have long-term
memories. Compared with integer derivatives, since fractional derivatives are related to the entire
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time domain of the economic process, the fractional-order systems are more suitable for describing
economic systems. In the last few years, fractional calculus equations have been widely used to describe
a class of economic processes with power law memory and spatial nonlocality. Some continuous-time
mathematical models describing economic dynamics with long memory have been proposed [20,21],
and some interesting results were obtained. Wang and Huang [22] studied a delayed fractional-order
financial system and obtained some conditions of stability and chaos. Ma and Ren [23] studied a
fractional-order macroeconomic system and obtained some conditions of stability and Hopf bifurcation.
Considering negative parameters, Tacha and Munoz-Pacheco [24] studied a fractional-order finance
system, and the cause of chaos was found. Motivated by the above considerations, a new delayed
fractional-order model (DFOM) for BC with a general liquidity preference function and an investment
function is considered in this paper.

The arrangements of the article are as follows: In Section 2, the model description and some
definitions and lemmas are provided. Section 3 shows the main results. The existence and
uniqueness of the solution and the local stability and bifurcation of the positive equilibrium point of
DFOM for the BC are presented. Numerical simulations and conclusions are respectively presented
in Sections 4 and 5.

2. Preliminaries and Model Descriptions

In this paper, the Caputo form of the fractional-order derivative is used.

Definition 1. [25] For a continuous function f (t) and a positive integer n, if α ∈ (n − 1, n) is satisfied,
the fractional-order Caputo’s derivative is defined as:

Dα f (t) =
1

Γ(n− α)

∫ t

t0

f (n)(τ)
(t− τ)α+1−n dτ, (1)

where t0 ∈ R is the initial time and Γ(·) is the Gamma function.

Definition 2. [26] For 0 < α < 1, under the initial condition x(t0) = xt0 , x∗ is called an equilibrium point of
system Dαx(t) = f (t, x) if and only if f (t, x∗) = 0.

Lemma 1. [26] For α ∈ (0, 1], under the initial condition x(t0) = xt0 , if f (t, x) satisfies the local Lipschitz
condition, then system Dαx(t) = f (t, x) has a unique solution for t > t0.

Lemma 2. [27] Suppose that x∗ is the equilibrium point of system Dαx(t) = f (x); if | arg(λi)| > απ
2 is

satisfied, then x∗ is asymptotically locally stable, where λi is any one of the eigenvalues for the Jacobian matrix
J = ∂ f /∂x evaluated at x∗.

We consider the augmented IS-LM BC model given by Gabisch and Lorenz [28],

Ẏ(t) = a[I(Y(t), K(t), R(t))− S(Y(t), R(t))],

Ṙ(t) = b[L(Y(t), R(t))− M̄],

K̇(t) = I(Y(t), K(t), R(t))− δK(t),

(2)

where Y(t), R(t), and K(t) represent the gross product, interest rate at time t, and capital stock,
respectively. I(Y(t), K(t), R(t)) is the investment function, L(Y(t), R(t)) is the liquidity preference
function, S(Y(t), R(t)) is the saving function, and M̄ is a constant money supply. a > 0 and b > 0
denote the adjustment coefficient of goods and the monetary market, respectively. 0 < δ < 1 represents
the depreciation rate of the capital stock.

We consider an investment delay τ > 0, which is always encountered in capital stock, and suppose
that S(Y(t), R(t)) = s1Y(t)+ s2R(t). The DFOM for the BC with a general liquidity preference function
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and an investment function under the initial conditions Y(θ) = φ1(θ), R(θ) = φ2(θ), K(θ) = φ3(θ) is
described as follows:

DαY(t) = a[I(Y(t), K(t), R(t))− s1Y(t)− s2R(t)],

DαR(t) = b[L(Y(t), R(t))− M̄],

DαK(t) = I(Y(t− τ), K(t− τ), R(t− τ))− δK(t),

(3)

where −τ ≤ θ ≤ 0, 0 < α ≤ 1 and s1 and s2 are positive constants.
Suppose that I(Y(t), K(t), R(t)), and L(Y(t), K(t)) are differentiable. X(t) = K(t + τ) is denoted

as the expected capital stock. By substituting it into System (3), one obtains:

DαY(t) = a[I(Y(t), X(t− τ), R(t))− s1Y(t)− s2R(t)],

DαR(t) = b[L(Y(t), R(t))− M̄],

DαX(t) = I(Y(t), X(t− τ), R(t))− δX(t).

(4)

3. Main Results

We firstly prove that the solution of DFOM for BC exists and is unique. In addition, we give some
conditions to guarantee that the positive equilibrium point is stable and bifurcates.

3.1. Existence and Uniqueness of the Solution

Theorem 1. If C = C([−τ, 0], R3) is the continuous function of the Banach space and Z0(t) ∈ C is an initial
condition, then System (4) has a unique solution Z(t), where Z(t) = (Y(t), R(t), X(t)).

Proof. Consider a mapping H(Z) = (H1(Z), H2(Z), H3(Z)), where:

H1(Z(t)) = −s1aY(t)− s2aR(t) + aI(Y(t), X(t− τ), R(t)),

H2(Z(t)) = −bM̄ + bL(Y(t), R(t)),

H3(Z(t)) = −δX(t) + I(Y(t), X(t− τ), R(t)).

(5)

The following conclusion can be made:

‖H(Z(t1))− H(Z(t2))‖
≤|H1(Z(t1))− H1(Z(t2))|+ |H2(Z(t1))− H2(Z(t2))|+ |H3(Z(t1))− H3(Z(t2))|
=|a{[I(Y(t1), X(t1 − τ), R(t1))− I(Y(t2), X(t2 − τ), R(t2))]− s1[Y(t1)−Y(t2)]− s2[R(t1)− R(t2)]}|
+ |[I(Y(t1), X(t1 − τ), R(t1))− I(Y(t2), X(t2 − τ), R(t2))]− δ(X(t1)− X(t2))|
+ |b[L(Y(t1), R(t1))− L(Y(t2), R(t2))]|

≤|Y(t1)−Y(t2)|[a|s1|+ (a + 1)|∂I(Y(T1), X(t1 − τ), R(t1))

∂Y
|+ b|∂L(Y(T2), R(t1))

∂Y
|]

+ max{|X(t1 − τ)− X(t2 − τ)|, |X(t1)− X(t2)|}[|(a + 1)
∂I(Y(t2), X(T3), R(t1))

∂X
|+ δ]

+ |R(t1)− R(t2)|[s2 + |(a + 1)
∂I(Y(t2), X(t2 − τ), R(T4))

∂R
|+ b|∂L(Y(t2), R(T5))

∂R
|]

≤ L ‖ Z(t1)− Z(t2) ‖ .

(6)
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The constants T1, T2, T4, T5 ∈ [t1, t2], T3 ∈ [t1 − τ, t2 − τ] exist, satisfying:

|∂I(Y(T1), X(t1 − τ), R(t1))

∂Y
| = max

t∈[t1,t2]
|∂I(Y(t), X(t1 − τ), R(t1))

∂Y
|,

|∂L(Y(T2), R(t1))

∂Y
| = max

t∈[t1,t2]
|∂L(Y(t), R(t1))

∂Y
|,

|∂I(Y(t2), X(T3), R(t1))

∂X
| = max

t∈[t1−τ,t2−τ]
|∂I(Y(t2), X(t), R(t1))

∂X
|,

|∂I(Y(t2), X(t2 − τ), R(T4))

∂R
| = max

t∈[t1,t2]
|∂I(Y(t2), X(t2 − τ), R(t))

∂R
|,

|∂L(Y(t2), R(T5))

∂R
| = max

t∈[t1,t2]
|∂L(Y(t2), R(t))

∂R
|,

(7)

where one chooses a positive constant,

L = max{|s2|+ |(a + 1)
∂I(Y(t2), X(t2 − τ), R(T3))

∂R
|+ b|∂L(Y(t2), R(T5))

∂R
|,

|(a + 1)
∂I(Y(t2), X(T3), R(t1))

∂X
|+ δ,

a|s1|+ (α + 1)|∂I(Y(T1), X(t1 − τ), R(t1))

∂Y
|+ b|∂L(Y(T2), R(t2))

∂Y
|}.

(8)

It is quite clear that H(Z) satisfies the Lipschitz condition. According to lemma 1, System (4) with
Zt0 has a unique solution Z(t).

3.2. Stability and Bifurcation

Assume that System (4) contains positive equilibrium points, and let E∗ = (Y∗, R∗, X∗) be one of
them. For convenience, we define:

∂I(Y∗, X∗, R∗)
Y

= IY,
∂L(Y∗, R∗)

Y
= LY,

∂I(Y∗, X∗, R∗)
R

= IR,
∂L(Y∗, R∗)

R
= LR,

∂I(Y∗, X∗, R∗)
X

= IX , x(t) = X(t)− x∗,

y(t) = Y(t)−Y∗, r(t) = R(t)− R∗ .

(9)

By substituting (9) into (4) and using linearization methods for (4), we get:

Dαy(t) = a[IYy(t) + IRr(t) + IXx(t− τ)− s1y(t)− s2r(t)],

Dαr(t) = b[LYy(t) + LRr(t)− M̄],

Dαx(t) = IYy(t) + IRr(t) + IXx(t− τ)− δx(t).

(10)

The Jacobian matrix of (10) is described as:

J =

 a(IY − s1) a(IR − s2) aIXe−sτ

bLY bLR 0
IY IR IXe−sτ − δ

 .

Then, the characteristic equation can be expressed as:

s3α + a1s2α + a2sα + a3 + (a4s2α + a5sα + a6)e−sτ = 0, (11)
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where:
a1 = −a(IY − s1)− bLR + δ,

a2 = a(IY − s1)(bLR − δ)− bLRδ− abLY(IR − s2),

a3 = abδ[(IY − s1)LR − (IR − s2)LY],

a4 = IX ,

a5 = a(IY − s1)IX + bLR IX − aIX IY,

a6 = −ab(IY − s1)LR IX − abLY IR IX + abLR IY IX + ab(IR − s2)LY IX .

(12)

Theorem 2. For τ = 0 and System (4), E∗ = (Y∗, R∗, X∗) is one of the positive equilibrium points.
If the conditions:

(1) ∆ ≤ 0, a1 + a4 > 0, a2 + a5 > 0, a3 + a6 > 0, and (a1 + a4)(a2 + a5)− (a3 + a6) > 0,
(2) ∆ > 0, (A + B− a1+a4

3 ) < 0, and | arg(Aω + Bω2 − a1+a4
3 )| > απ

2 ,

exist, where ∆ = q2

4 + p3

27 , p = 3(a2+a5)−(a1+a4)
2

3 , q = 2(a1+a4)
3−9(a1+a4)(a2+a5)+27(a3+a6)

27 ,

A =
3

√
− q

2 +

√
q2

4 + p3

27 and B =
3

√
− q

2 −
√

q2

4 + p3

27 , then E∗ is locally asymptotically stable.

Proof. If τ = 0, then (11) can be rewritten as:

s3α + (a1 + a4)s2α + (a2 + a5)sα + a3 + a6 = 0. (13)

Let sα = λ, and substitute it into (13). This produces:

λ3 + (a1 + a4)λ
2 + (a2 + a5)λ + a3 + a6 = 0. (14)

Let λ∗ = λ + a1+a4
3 . Then, (14) can be transformed into:

(λ∗)3 + pλ∗ + q = 0, (15)

where p = 3(a2+a5)−(a1+a4)
2

3 , q = 2(a1+a4)
3−9(a1+a4)(a2+a5)+27(a3+a6)

27 .

If ∆ = q2

4 + p3

27 ≤ 0, (15) has three real roots. Thus, (14) has three real roots. Then, according to
the Routh–Hurwitz criterion and the theory of the equilibrium point [29,30], if:

a2 + a5 > 0, a1 + a4 > 0, a3 + a6 > 0,

(a1 + a4)(a2 + a5)− (a3 + a6) > 0,
(16)

all three real roots are negative. Thus, | arg(λi)| = π > απ
2 , and E∗ is locally asymptotically stable.

If ∆ = q2

4 + p3

27 > 0, then λ∗1 = A + B, λ∗2 = Aω + Bω2, and λ∗3 = Aω2 + Bω, where A =

3

√
− q

2 +

√
q2

4 + p3

27 , B =
3

√
− q

2 −
√

q2

4 + p3

27 , and ω = −1+
√

3i
2 . Thus, λ1 = A + B− a1+a4

3 , λ2 = Aω +

Bω2 − a1+a4
3 , and λ3 = Aω2 + Bω− a1+a4

3 . If | arg(Aω + Bω2 − a1+a4
3 )| > απ

2 and A + B− a1+a4
3 < 0,

E∗ is locally asymptotically stable.

Next, we use the method in [31] to deal with the case where τ 6= 0. Assume that (11) has a purely
imaginary root s = iϕ (ϕ > 0) and a4s2α + a5sα + a6 6= 0. By substituting s = iϕ into Equation (11),
we get:

a1 ϕ2α(cos απ + sin(απ)i) + a2 ϕα(cos
απ

2
+ sin

απ

2
i) + a3 + ϕ3α(cos

3απ

2
+ sin

3απ

2
i)

+(a4 ϕ2α(cos απ + i sin απ) + a5 ϕα(cos
απ

2
+ i sin

απ

2
) + a6)(cos ϕτ − i sin ϕτ) = 0.

(17)
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If we write the real and imaginary parts separately, then we have:

ϕ3α cos
3απ

2
+ a1 ϕ2αcosαπ + a2 ϕα cos

απ

2
+ a3

= −[a4 ϕ2α cos(απ − ϕτ) + a5 ϕα cos(
απ

2
− ϕτ) + a6 cos ϕτ],

ϕ3α sin
3απ

2
+ a1 ϕ2α sin απ + a2 ϕα sin

απ

2

= −[a4 ϕ2α sin(απ − ϕτ) + a5 ϕα sin(
απ

2
− ϕτ)− a6 sin ϕτ].

(18)

By squaring the corresponding sides of (18) and adding them, we get:

ϕ6α + 2a1 cos
απ

2
ϕ5α + (a2

1 + 2a2 cos απ − a2
4)ϕ4α + (2a3 cos

3απ

2
+ 2a1a2 cos

απ

2
− 2a4a5 cos

απ

2
)ϕ3α

+ (a2
2 + 2a1a3 cos απ − a2

5 − 2a4a6 cos απ)ϕ2α + (2a4a3 cos
απ

2
− 2a5a6 cos

απ

2
)ϕα + a2

3 − a2
6 = 0.

(19)

If we let h(ϕ) = ϕ6α + 2a1 cos απ
2 ϕ5α + (a2

1 + 2a2 cos απ − a2
4)ϕ4α + (2a3 cos 3απ

2 + 2a1a2 cos απ
2 −

2a4a5 cos απ
2 )ϕ3α +(a2

2 + 2a1a3 cos απ− a2
5− 2a4a6 cos απ)ϕ2α +(2a4a3 cos απ

2 − 2a5a6 cos απ
2 )ϕα + a2

3−
a2

6, and suppose that a2
3 − a2

6 < 0, then ϕ0 is one of the positive roots of h(ϕ). Using (17), we get:

τj =
1
ϕ0
{arccos−CE + DF

E2 + F2 + 2jπ}, j = 0, 1, 2, . . . , n, (20)

where:
C = ϕ3α

0 cos
3απ

2
+ a1 ϕ2α

0 cos απ + a2 ϕα
0 cos

απ

2
+ a3,

D = ϕ3α
0 sin

3απ

2
+ a1 ϕ2α

0 sin(απ) + a2 ϕα
0 sin

απ

2
,

E = a4 ϕ2α
0 cos απ + a5 ϕα

0 cos
απ

2
+ a6,

F = a4 ϕ2α
0 sin απ + a5 ϕα

0 sin
απ

2
.

(21)

Then, τ appears to be a bifurcation parameter. If we assume that (11) has an eigenvalue λ(τ) =

ω(τ) + iϕ(τ), then we get ω(τ0) = 0 and ϕ(τ0) = ϕ0, where τ0 = min{τj}.

Theorem 3. If we assume that a2
3 − a2

6 < 0, if h
′
(ϕ0) 6= 0 is satisfied, Hopf bifurcation occurs.

Proof. By using the implicit function theorem and differentiating (11) with respect to τ, we get:

ds
dτ

=
sP2(s)e−sτ

−τP2(s)e−sτ + P′2(s)e
−sτ + P′1(s)

, (22)

where P1(s) = s3α + a1s2α + a2sα + a3, P2(s) = a4s2α + a5sα + a6. Therefore,

ds
dτ

−1
=
−τ

s
+

P
′
2(s)

sP2(s)
+

P
′
1(s)

sP2(s)e−sτ

=
−τ

s
+

P
′
2(s)

sP2(s)
−

P
′
1(s)

sP1(s)
.

(23)



Mathematics 2019, 7, 846 7 of 10

Then,

(
Re

ds
dτ

)−1∣∣∣
s=iϕ0

=Re[
P
′
2(s)

sP2(s)
−

P
′
1(s)

sP1(s)
]|s=iϕ0

=Re[
2αa4s2α + αa5sα

s2(a4s2α + a5sα + a6)
− 3αs3α + 2αa1s2α + αa2sα

s2(s3α + a1s2α + a2sα + a3)
]|s=iϕ0

=
h
′
(ϕ0)

2ϕ0(a2
4 ϕ4α

0 + 2a4a5 cos απ
2 ϕ3α

0 + (a2
5 + 2a4a6)cosαπϕ2α

0 + 2a5a6 cos απ
2 ϕα

0 + a2
6)

.

(24)

By assuming a4s2α + a5sα + a6 6= 0, we get 2ϕ0(a2
4 ϕ4α

0 + 2a4a5 cos απ
2 ϕ3α

0 +(a2
5 + 2a4a6) cos απϕ2α

0 +

2a5a6 cos απ
2 ϕα

0 + a2
6) 6= 0. Thus, if h

′
(ϕ0) 6= 0, Re ds

dτ 6= 0, then the transversality condition holds.
Therefore, Hopf bifurcation occurs at τ = τ0.

In conclusion, we have the following theorem.

Theorem 4. If we assume that a2
3 − a2

6 < 0, h
′
(ϕ0) 6= 0 and the conditions in Theorem 2 are satisfied, we get

the following results:

(1) If τ < τ0, E∗ is stable;
(2) If τ > τ0, E∗ is unstable;
(3) A Hopf bifurcation exists at τ = τ0.

Remark 1. According to (20), it is easy to see that τ0 relates to the order α. Therefore, if τ is selected, the order
α may be the cause of bifurcation.

4. Numerical Simulation

There are many numerical simulation methods like the Monte Carlo [19] and the predict-evaluate
and correct-evaluate (PECE) method [32,33], and the PECE method is used for numerical simulation
presented in this section. According to [12], the following Kaldor investment function is used:

I(Y(t), R(t), K(t)) =
eY(t)

1 + eY(t)
− cR(t)− dK(t), (25)

where c, d > 0. According to the literature [12,34], the following liquidity preference function is chosen:

L(Y(t), R(t)) = mY(t) +
n

R(t)− R̂
, (26)

where m, n, R̂ > 0. The following parameter values are chosen:

a = 2, b = 1.5, s1 = 0.2, s2 = 0.1, c = 0.1, d = 0.2,

m = 0.05, n = 0.0005, R̂ = 0.001, δ = 0.1, M̄ = 0.05,
(27)

one can get the following system:

DαY(t) = 2[
eY(t)

1 + eY(t)
− 0.1R(t)− 0.2X(t− τ)− 0.2Y(t)− 0.1R(t)],

DαR(t) = 1.5[0.05Y(t) +
0.0005

R(t)− 0.001
− 0.05],

DαX(t) =
eY(t)

1 + eY(t)
− 0.1R(t)− 0.2X(t− τ)− 0.1X(t).

(28)

It is easy to see that E∗ = (0.97, 0.36, 2.30) is a positive equilibrium point of (28). In this case,
a2

3 − a2
6 < 0, h

′
(ϕ0) 6= 0, and the conditions in Theorem 2 are satisfied. By calculating, the critical value
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of System (28) is determined to be τ0 = 3.10 when α = 0.98. The initial values are chosen to be Y0 = 1,
R0 = 0.35, and X(θ) = 2.3 where θ ∈ (−τ, 0). This is shown in Figures 1–3.
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Figure 1. E∗ is asymptotically stable, when α = 0.98, τ = 3.
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Figure 3. E∗ is asymptotically stable, when α = 0.9, τ = 3.2.

In contrast with the results shown in Figures 1 and 2, if τ < τ0, E∗ is stable, and if τ > τ0, E∗ is
unstable, which conforms to Theorem 4. When comparing Figures 2 and 3, it can be seen that the order
α is an important factor in the stability of E∗ when τ is selected, which conforms to Remark 1.



Mathematics 2019, 7, 846 9 of 10

By virtue of this important discovery, it can be seen that it is necessary to establish a fractional
financial model with an appropriate fractional-order. Moreover, through analyzing the current capital
stock, predicting the future capital stock is beneficial to weaken the level of fluctuations.

5. Conclusions

In this paper, a DFOM for BC was established to describe the interaction of markets using
the interest rate. The existence and uniqueness of the proposed model were obtained. By mathematical
analysis, we found that the investment delay is an important factor in the stability and bifurcation of the
economic equilibrium in dynamic macroeconomics. Moreover, we also found that the fractional-order
affects the economic equilibrium’s stability and bifurcation.

In order to reduce the factors of macroeconomic instability and to promote stable development,
the government can adjust its investment activities from the following aspects, according to
the conclusions of this paper. On the one hand, through a series of measures, such as improving
the production equipment and working efficiency to reduce investment delay, the economic
fluctuations can be weakened. On the other hand, considering the output efficiency of various
industries under the current macroeconomic environment, by calculating the average investment
delay, the shortage of short-term capital stock in the future can be reasonably predicted, so investment
policy and the expected results can be combined to restrain the economic fluctuations caused by
investment delay.
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