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Abstract: We, first, propose a new method for solving split common fixed point problems
for demicontractive mappings in Hilbert spaces, and then establish the strong convergence of
such an algorithm, which extends the Halpern type algorithm studied by Wang and Xu to
a viscosity iteration. Above all, the step sizes in this algorithm are chosen without a priori knowledge
of the operator norms.
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1. Introduction

In recent years, the split common fixed point problem (SCFPP) has attracted more and more
attention [1–7] due to its applications in many areas, such as intensity-modulated radiation therapy,
image reconstruction, signal processing, modeling inverse problems, and electron microscopy.
The SCFPP is defined as finding a point in one fixed point set, and its image is in another fixed
point set under a linear transformation. Specifically, assume that H1 andH2 are two Hilbert spaces
and an operator A : H1 → H2 is bounded and linear. The SCFPP is to find

x ∈ F(U) and Ax ∈ F(T), (1)

where the mappings U : H1 → H1 and T : H2 → H2 are nonlinear, and F(T) and F(U) stand for the
sets of all fixed points of T and U, respectively. Especially, if U and T are both orthogonal projections,
the SCFPP (1) becomes the split feasibility problem (SFP) [8], which can be formulated as:

x ∈ C and Ax ∈ Q, (2)

where the sets C ⊂ H1 and Q ⊂ H2 are nonempty closed and convex, and A is as (1).
The SCFPP (1) was firstly studied by Censor and Segal [1]. Noting that p is a solution to the

SCFPP (1) if the fixed-point equation below holds

p = U(p− τA∗(I − T)Ap), τ > 0.

To solve the SCFPP (1), Censor and Segal [1] introduced the following iterative scheme. For any
initial point x1 ∈ H1, define {xn} recursively by

xn+1 = U(xn − γA∗(I − T)Axn), (3)
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where U and T are directed operators, γ ∈ (0, 2/‖A‖2); they show that the sequence generated by
(3) is weakly convergent to a solution of (1). Subsequently, this result was extended to the cases of
quasi-nonexpansive mappings [3] and demicontractive operators [9], but the sequence {xn} is still
weakly convergent to a point of the SCFPP (1).

Though the difficulty occurs when one implements the algorithm (3) because its step size is linked
with the computation of the operator norm ‖A‖, alternative ways of constructing variable step sizes
have been considered to surmount the difficulty (see the works by the authors of [5,6,10]). Of these
step sizes, Wang and Xu [10] suggested the following one,

τn =
ρn

‖xn −Uxn + A∗(I − T)Axn‖
,

where {ρn} ⊂ (0,+∞) is a sequence of real numbers satisfying

∞

∑
k=0

ρk = ∞ and
∞

∑
k=0

ρ2
k < ∞, (4)

and they introduced the following iterative Algorithm 1.

Algorithm 1. Step 1. Choose an anchor, u ∈ H1, and initial guess, x0 ∈ H1, arbitrarily.
Step 2. If

‖xn −Uxn + A∗(I − T)Axn‖ = 0,

then stop, and xn is a solution of (1); otherwise, go on to the next step.
Step 3. Update xn+1 via the iteration formula:

xn+1 = αnu + (1− αn)[xn − τn(xn −Uxn + A∗(I − T)Axn)],

where the step size τn is chosen as

τn =
ρn

‖xn −Uxn + A∗(I − T)Axn‖

with {ρn} satisfying (4), and return to Step 2.

Under suitable conditions they obtained a strong convergence result for Algorithm 1.
In addition, following the idea of Attouch [11], in Hilbert spaces, Moudafi [12], first, proposed

a viscosity approximation iteration for nonexpansive mappings.
Inspired by the above works, we naturally raise the following question. Can we carry the strong

convergence of the SCFPP (1) (Algorithm 1) for nonexpansive mappings due to Wang and Xu [10] over
the one of “a viscosity method” for more general “demicontractive mappings”? In this work, we shall
give a positive answer for the question.

2. Preliminaries

In this section, assume that H is a real Hilbert space and R denotes the set of all real numbers.
{xn} ⊂ H and x ∈ H, xn → x (xn ⇀ x) denote the strong (weak) convergence of {xn}. Let S : H → H
be a mapping. The set of all fixed points of S is denote by F(S).

Definition 1. S : H → H is denoted as

(i) contractive if there exists κ ∈ (0, 1) such that

‖Sy− Sz‖ ≤ κ‖y− z‖, ∀ y, z ∈ H;
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(ii) nonexpansive if
‖Sy− Sz‖ ≤ ‖y− z‖, ∀ y, z ∈ H;

(iii) quasi-nonexpansive if F(S) 6= ∅ and

‖Sy− p‖ ≤ ‖y− p‖, ∀ y ∈ H, p ∈ F(S);

(iv) firmly nonexpansive if
‖Sy− Sz‖2 ≤ 〈y− z, Sy− Sz〉, ∀ y, z ∈ H;

(v) directed if F(S) 6= ∅ and

‖Sy− p‖2 ≤ ‖y− p‖2 − ‖y− Sy‖2, ∀ y ∈ H, p ∈ F(S);

(vi) τ-demicontractive if F(S) 6= ∅ and there exists τ ∈ (−∞, 1), such that

‖Sy− p‖2 ≤ ‖y− p‖2 + τ‖y− Sy‖2, ∀ y ∈ H, p ∈ F(S),

which can also be written as

〈y− Sy, y− p〉 ≥ 1− τ

2
‖y− Sy‖2. (5)

Obviously, if S is a quasi-nonexpansive mapping or a directed mapping, then S is demicontractive.

Remark 1. Note that every 0-demicontractive mapping is quasi-nonexpansive. If 0 ≤ τ < 1, it is also
said to be quasi-strictly pseudo-contractive [13]. Moreover, if τ ≤ 0, every τ-demicontractive mapping is
quasi-nonexpansive. Thus, we only take τ ∈ (0, 1) in (vi) of Definition 1. However, from (v) of Definition 1,
if τ = −1, every directed operator is demicontractive.

Define an orthogonal projection PC : H → C as follows,

PCu := argminv∈C{‖u− v‖}, u ∈ H.

It is known that PC is firmly nonexpansive and has the following property [14,15].

〈u− PCu, v− PCu〉 ≤ 0, v ∈ C. (6)

The mapping I − S is said to be demiclosed at 0, if for any {yk} ⊂ H and y∗ ∈ H, we obtain

yk ⇀ y∗

(I − S)yk → 0

}
⇒ y∗ = Sy∗.

In uniformly convex Banach spaces, Goebel and Kirk [16] presented a case of the demicloseness
principle; especially, ifH is a Hilbert space, C ⊂ H is nonempty, closed, and convex, and if S : C → H
is nonexpansive, then I − S is demiclosed on C. Naturally, we want to know whether I − S is still
demiclosed on C if S : C → H is quasi-nonexpansive. The following example shows that the conclusion
is not true.

Example 1 (see Example 2.11 [17]). The mapping S : [0, 1]→ [0, 1] is defined by

Sx =

{
x
5 , x ∈ [0, 1

2 ],
x sin πx, x ∈ ( 1

2 , 1].
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Then S is quasi-nonexpansive, but I − S is not demiclosed at 0.

Remark 2. Note that there exist some demicontractive mappings which are demiclosed at 0, for instant, for
k > 1, we take H = `2 and Sx = −kx, ∀ x ∈ `2 ([17]; see Example 2.5). Then S is τ-demicontactive but
not quasi-nonexpansive, where τ := k−1

k+1 . However, I − S is demiclosed at 0. In fact, assume that {xn} is any
sequence in `2 such that xn ⇀ x ∈ `2 and ‖xn − Sxn‖ → 0, we can get x = 0 ∈ F(S).

Next, for making the convergence analysis of our algorithm, we give some lemmas as follows.

Lemma 1 ([18]). Assume that {cn} is a sequence of non-negative real numbers, such that

cn+1 ≤ (1− γn)cn + γnδn + εn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence inR, such that

(i) ∑∞
n=0 γn = ∞;

(ii) ∑∞
n=0 εn < ∞;

(iii) lim supn→∞ δn ≤ 0 or Σ∞
n=1γn|δn| < ∞.

Then limn→∞ cn = 0.

Lemma 2 ([13]). Assume C is a closed convex subset of a Hilbert spaceH. Let S be a self-mapping of C. If S is
τ-demicontractive (which is also said to be τ-quasi-strict pseudo-contractive in the work by the authors of [13]),
then F(S) is closed and convex.

Lemma 3 ([19]). The demiclosedness principle of nonexpansive mappings. If V : H → H is a nonexpansive
mapping, then I −V is demiclosed at 0.

3. Main Results

Unless other specified, we always assume thatH1 andH2 are real Hilbert spaces. Let U : H1 →
H1 and T : H2 → H2 be τ-demicontractive and υ-demicontractive, respectively. Let f : H1 → H1

be a contraction with constant α ∈ (0, 1/
√

2). Let an operator A : H1 → H2 be bounded and linear,
and A∗ be the adjoint of A.

Let Ω denote the solution set of the SCFPP (1), i.e.,

Ω = {p : p ∈ F(U) and Ap ∈ F(T)} = F(U) ∩ A−1(F(T)).

Throughout this section, assume Ω 6= ∅.

Algorithm 2. Step 1: Choose an initial guess x0 ∈ H1 arbitrarily.
Step 2: If

‖xn −Uxn + A∗(I − T)Axn‖ = 0,

then stop, and xn is a solution to the problem (1); otherwise, go on to the next step.
Step 3: Update xn+1 by the iteration formula

xn+1 = βn f (xn) + (1− βn)[xn − τn(xn −Uxn + A∗(I − T)Axn)],

where the step size τn is chosen as

τn =
ρn

‖xn −Uxn + A∗(I − T)Axn‖
,

and return to Step 2.
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The following lemma of Yao et al. [6] and the proof will be included for the sake of convenience.

Lemma 4. p solves (1) if and only if ‖p−Up + A∗(I − T)Ap‖ = 0.

Proof. If p solves (1), then p = Up and (I − T)Ap = 0. Obviously ‖p−Up + A∗(I − T)Ap‖ = 0.
Conversely, if ‖p−Up + A∗(I − T)Ap‖ = 0, then for any z ∈ Ω, we obtain

0 = ‖p−Up + A∗(I − T)Ap‖‖p− z‖
≥ 〈p−Up + A∗(I − T)Ap, p− z〉
= 〈p−Up, p− z〉+ 〈A∗(I − T)Ap, p− z〉
= 〈p−Up, p− z〉+ 〈(I − T)Ap, Ap− Az〉. (7)

Since U and T are demicontractive, by Equation (5), we obtain

〈p−Up, p− z〉 ≥ 1− τ

2
‖p−Up‖2, (8)

〈(I − T)Ap, Ap− Az〉 ≥ 1− υ

2
‖(I − T)Ap‖2. (9)

Then, by Equations (7)–(9), we get

0 ≥ 〈p−Up, p− z〉+ 〈(I − T)Ap, Ap− Az〉

≥ 1− τ

2
‖p−Up‖2 +

1− υ

2
‖(I − T)Ap‖2. (10)

Since τ, υ ∈ (0, 1), we deduce p ∈ F(U) and Ap ∈ F(T) by (10). Therefore, p solves the
problem (1), completing the proof.

Lemma 4 implies that Algorithm 2 generally generates an infinite sequence {xn}. Otherwise,
the algorithm terminates in a finite number of iterations and a solution is found.

Lemma 5. Suppose {xn} is a bounded sequence, such that

lim
n→∞

‖xn −Uxn + A∗(I − T)xn‖ = 0.

Then, limn→∞ ‖xn −Uxn‖ = 0 and limn→∞ ‖(I − T)Axn‖ = 0.

Proof. Set yn = xn −Uxn + A∗(I − T)Axn. For any z ∈ Ω we get

〈yn, xn − z〉 = 〈xn −Uxn, xn − z〉+ 〈(I − T)Axn, Axn − Az〉.

Since z ∈ F(U) and Az ∈ F(T), ‖yn‖ → 0 and {xn} is bounded, by Equation (5) we have

1− τ

2
‖xn −Uxn‖2 +

1− υ

2
‖(I − T)Axn‖2 ≤ 〈yn, xn − z〉 ≤ ‖yn‖‖xn − z‖ → 0.

Therefore, by τ, υ ∈ (0, 1), we obtain limn→∞ ‖xn −Uxn‖ = 0 and limn→∞ ‖(I − T)Axn‖ = 0,
completing the proof.

Theorem 1. Assume that the sequences {ρn} ⊆ (0,+∞), {βn} ⊆ (0, 1) and the mappings U, T satisfy the
following conditions.

(a) I −U and I − T are demiclosed at 0.
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(b) ∑∞
n=0 ρ2

n < ∞.
(c) limn→∞ βn = 0 and ∑∞

n=0 βn = ∞.

(d) limn→∞
βn
ρn

= 0.

Then, the sequence {xn} defined by Algorithm 2 converges strongly to a solution p = PΩ ◦ f (p) to the
problem (1).

Proof. Firstly, Lemma 2 yields that F(U) and F(T) are both closed convex sets. Since A is bounded
and linear, A−1(F(T)) is also closed convex. Therefore, Ω is closed convex. Thus, PΩ ◦ f : H1 → H1

is contractive. By Banach’s contraction principle there exists a unique element p ∈ H1 such that
p = PΩ ◦ f (p) ∈ Ω. In particular, by Equation (6), we have

〈 f (p)− p, y− p〉 ≤ 0, y ∈ Ω. (11)

Secondly we show that {xn} is bounded.
Indeed, set yn = xn −Uxn + A∗(I − T)Axn, zn = xn − τnyn. By Equation (5), we have

〈yn, xn − p〉 = 〈xn −Uxn + A∗(I − T)Axn, xn − p〉
= 〈xn −Uxn, xn − p〉+ 〈(I − T)Axn, Axn − Ap〉

≥ 1− τ

2
‖xn −Uxn‖2 +

1− υ

2
‖(I − T)Axn‖2

≥ 1− τ

2
‖xn −Uxn‖2 +

1− υ

2‖A‖2 ‖A∗(I − T)Axn‖2

≥ min{1− τ, 1− υ}
2 max{1, ‖A‖2} (‖xn −Uxn‖2 + ‖A∗(I − T)Axn‖2)

≥ min{1− τ, 1− υ}
4 max{1, ‖A‖2} ‖xn −Uxn + A∗(I − T)Axn‖2

= τ∗‖yn‖2, (12)

where τ∗ = min{1−τ,1−υ}
4 max{1,‖A‖2} . It follows from (12) and τn‖yn‖ = ρn that

‖zn − p‖2 = ‖xn − p− τnyn‖2

= ‖xn − p‖2 − 2τn〈yn, xn − p〉+ τ2
n‖yn‖2

≤ ‖xn − p‖2 − 2τ∗τn‖yn‖2 + τ2
n‖yn‖2

≤ ‖xn − p‖2 − 2τ∗ρn‖yn‖+ ρ2
n (13)

≤ ‖xn − p‖2 + ρ2
n. (14)

From Algorithm 2, Equation (14), and α ∈ (0, 1/
√

2) we obtain

‖xn+1 − p‖2

= ‖βn( f (xn)− p) + (1− βn)(zn − p)‖2

≤ βn‖ f (xn)− p‖2 + (1− βn)‖zn − p‖2

≤ 2βn[α
2‖xn − p‖2 + ‖ f (p)− p‖2] + (1− βn)(‖xn − p‖2 + ρ2

n)

≤ [1− βn(1− 2α2)]‖xn − p‖2 + 2βn‖ f (p)− p‖2 + ρ2
n

= [1− βn(1− 2α2)]‖xn − p‖2 + βn(1− 2α2)
2‖ f (p)− p‖2

1− 2α2 + ρ2
n.
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By induction, we can get

‖xn+1 − p‖2 ≤ max{‖x0 − p‖2,
2‖ f (p)− p‖2

1− 2α2 }+
n

∑
i=0

ρ2
i .

Hence, {xn} is bounded due to the condition (b). The condition (b) implies that ρ2
n → 0. So {yn}

and {zn} are bounded by (12) and (14).
It follows from Algorithm 2 and (13) that

‖xn+1 − p‖2

= ‖(1− βn)(zn − p) + βn( f (xn)− p)‖2

≤ (1− βn)
2‖zn − p‖2 + 2βn(1− βn)〈 f (xn)− p, zn − p〉+ β2

n‖ f (xn)− p‖2

≤ (1− βn)
2‖zn − p‖2 + β2

n‖ f (xn)− p‖2

+2βn(1− βn)(〈 f (xn)− f (p), zn − p〉+ 〈 f (p)− p, zn − p〉)
≤ (1− βn)

2‖zn − p‖2 + β2
n‖ f (xn)− p‖2

+βn(1− βn)[‖ f (xn)− f (p)‖2 + ‖zn − p‖2] + 2βn(1− βn)〈 f (p)− p, zn − p〉
≤ (1− βn)

2‖zn − p‖2 + β2
n‖ f (xn)− p‖2

+βn(1− βn)[α
2‖xn − p‖2 + ‖zn − p‖2] + 2βn(1− βn)〈 f (p)− p, zn − p〉

= (1− βn)‖zn − p‖2 + βn(1− βn)α
2‖xn − p‖2

+2βn(1− βn)〈 f (p)− p, zn − p〉+ β2
n‖ f (xn)− p‖2

≤ (1− βn)[‖xn − p‖2 − 2τ∗ρn‖yn‖+ ρ2
n] + βn(1− βn)α

2‖xn − p‖2

+2βn(1− βn)〈 f (p)− p, zn − p〉+ β2
n M

≤ [1− βn(1− (1− βn)α
2)]‖xn − p‖2 + ρ2

n

+2βn(1− βn)〈 f (p)− p, zn − p〉 − 2τ∗(1− βn)ρn‖yn‖+ β2
n M

= [1− βn(1− (1− βn)α
2)]‖xn − p‖2 + ρ2

n

+βn(1− (1− βn)α
2)[

2(1− βn)

1− (1− βn)α2 〈 f (p)− p, zn − p〉

− 2τ∗(1− βn)

1− (1− βn)α2
ρn

βn
‖yn‖+

βn M
1− (1− βn)α2 ], (15)

where M = supn≥0{‖ f (xn)− p‖2}. Set

bn =
2(1− βn)

1− (1− βn)α2 〈 f (p)− p, zn − p〉 − 2τ∗(1− βn)

1− (1− βn)α2
ρn

βn
‖yn‖+

βn M
1− (1− βn)α2 .

Next we show that lim supn→∞ bn ≤ 0.
It is obvious that {bn} is bounded from above, so lim supn→∞ bn is finite, and

‖zn − xn‖ = ‖τnyn‖ = ρn → 0.
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Therefore, we can choose a subsequence {nk} in {n} satisfying

lim sup
n→∞

bn = lim
k→∞

bnk

= lim
k→∞

[
2(1− βnk )

1− (1− βnk )α
2 〈 f (p)− p, znk − xnk + xnk − p〉

−
2τ∗(1− βnk )

1− (1− βnk )α
2

ρnk

βnk

‖ynk‖+
βnk M

1− (1− βnk )α
2 ]

= lim
k→∞

[
2(1− βnk )

1− (1− βnk )α
2 〈 f (p)− p, xnk − p〉

−
2τ∗(1− βnk )

1− (1− βnk )α
2

ρnk

βnk

‖ynk‖]. (16)

Due to the boundedness of {xn}, there exists a weakly convergent subsequence, and we suppose
that {xnk} converges weakly to some point x∗, such that

lim
k→∞
〈 f (p)− p, xnk − p〉 = 〈 f (p)− p, x∗ − p〉. (17)

It follows from (16) and (17) and βnk → 0 that

lim
k→∞

ρnk

βnk

‖ynk‖

exists. Therefore, from condition (d), we have

‖ynk‖ =
βnk

ρnk

ρnk

βnk

‖ynk‖ → 0,

that is,
lim
k→∞
‖ynk‖ = lim

k→∞
‖xnk −Uxnk + A∗(I − T)Axnk‖ = 0,

which together with Lemma 5 implies that

lim
k→∞
‖xnk −Uxnk‖ = lim

k→∞
‖(I − T)Axnk‖ = 0.

Therefore, by the condition (a) we have x∗ ∈ F(U) and Ax∗ ∈ F(T), i.e., x∗ ∈ Ω. So from (11),
(16), and (17) we get

lim sup
n→∞

bn ≤ 2
1− α2 lim

k→∞
〈 f (p)− p, xnk − p〉 = 2

1− α2 〈 f (p)− p, x∗ − p〉 ≤ 0.

Finally, we prove that {xn} is strongly convergent to p = PΩ ◦ f (p).
From the condition (b), (c), applying Lemma 1 to Equation (15) we get ‖xn − p‖ → 0, that is,

the sequence {xn} converges strongly to p = PΩ ◦ f (p), completing the proof.

Remark 3. Choose ρn = 1
nr , βn = 1

ns , 1
2 < r < s ≤ 1. The sequences {ρn} and {βn} satisfy the conditions

(b)–(d) in Theorem 1.
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If U and T are nonexpansive with F(U) 6= ∅ and F(T) 6= ∅, then U and T are demicontractive;
by Lemma 3, the condition (a) in Theorem 1 is satisfied. Hence, by Theorem 1, we get the result below.

Corollary 1. Assume that U and T are two nonexpansive mappings and Ω 6= ∅. "Assume that two control
sequences {βn} and {ρn} satisfy the conditions the conditions (b)–(d) in Theorem 1. Then, the sequence {xn}
generated by Algorithm 2 converges strongly to a solution p = PΩ ◦ f (p) to the problem (1).
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