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Abstract: The objective of this paper is to study a pursuit differential game with finite or countably
number of pursuers and one evader. The game is described by differential equations in l2-space,
and integral constraints are imposed on the control function of the players. The duration of the game
is fixed and the payoff functional is the greatest lower bound of distances between the pursuers and
evader when the game is terminated. However, we discuss the condition for finding the value of
the game and construct the optimal strategies of the players which ensure the completion of the
game. An important fact to note is that we relaxed the usual conditions on the energy resources of
the players. Finally, some examples are provided to illustrate our result.

Keywords: pursuit; control functions; integral constraints; strategies; value of the game

1. Introduction

The differential game has been an area of great interest to many applied mathematicians due to
its application in solving real life problems in knowledge areas such as economics, engineering, missile
guidance, behavioral biology. The first to study differential game was Rufus Isaacs [1], and one of the
games analyzed was “the homicidal chauffeur game”. For the fundamental concepts of differential
games, see [1–8].

There are many different types of differential game problems, and one type is called
pursuit-evasion differential game. Pursuit-evasion differential game is a game involving two players,
called pursuer and evader, with conflicting goals. The aim of the pursuer is to complete the game
in a finite time, whereas that of the evader is contrary. Strategies of pursuit and evasion play a role
in many areas of life, such as missile launched at enemy aircraft, coastguard saving shipwrecked
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sailors, etc. The problem of constructing optimal strategies and finding the value of the game in a
pursuit-evasion differential game motivated a lot of researchers to study this class of differential game
problems, and fundamental results have been obtained, see [9–13].

Differential games of many pursuers with the integral and geometry constrained were studied
by [9,14–19]. The case where the state variables are constraints was studied in [20], they considered
a nonempty closed convex set in a plane, with the pursuers and evader movement restricted within
the set during the game. Conditions under which pursuit could be completed were obtained and the
strategies for the pursuers were constructed.

The evasion differential game of two dimensions, which involves one evader and several pursuers,
was studied in [11]. The control functions of the players were subject with integral constraints.
The game is solved by presenting explicit strategy for the evader, which guarantees evasion under the
condition that there is no relation between the energy resource of the players.

In [21] Levchenko and Pashkov considered differential games described by simple differential
equations, where the controls obeyed integral constraints. However, they showed that irrespective of
the resources for controls of an individual, the completion of the game remains doable.

Ibragimov and Satimov [22] obtained sufficient condition for the completion of pursuit in a
differential game problem of several pursuers and evaders in the space Rn, with integral constraints
on the control functions of the players. The results were obtained under the condition that the energy
resource of the pursuers is greater than that of the evaders.

Ibragimov [9] studied a differential game of a countable number of pursuers pursuing one evader
in Hilbert space l2, with geometric constraints on the control functions of the pursuers and evader.
Optimal strategies of the players were constructed and optimal pursuit time was found, under the
assumption that the energy resource of the pursuers is greater than that of the evader.

Ibragimov and Kuchkarov [10] considered the same problem in [9], with integral constraints
imposed on the control functions of the players. In this case, optimal strategies were constructed and
value of the game was found under the assumption that energy resource of the evader is greater than
that of any pursuers.

Salimi and Ferrara [12] studied a simple motion differential game with finite number of pursuers
and one evader with integral constraints imposed on control of the players in Hilbert space l2.
The equations of motion are described by

Pi : ẋi(t) = ui(t), xi(0) = xi0,

E : ẏ(t) = v(t), y(0) = y0,
(1)

where ui is the control function of the ith pursuers and v is that of the evader. The authors solved
the problem and found the value of the game under the assumption that the energy resource of each
pursuer is not necessarily greater than that of the evader, and optimal strategies of the pursuers were
also constructed.

Inspired by the results in [9–12,22] and some known results on optimal pursuit problem in a
Hilbert space l2, the objective of this paper is to construct the optimal strategies and finding value of
the game such that there is no relation between the energy resource of the players.

This paper is sectioned as follows. The second section present statement of the problems and
some useful definitions which will be required for the later sections. In the third section, attainability
domain of the players, optimal strategies and value of the game and some examples are given to show
the application of the obtained results. In the last section, we give the concluding part of the paper.

2. Statement of the Problem

In this section, we present the statement of the problem and some useful definitions that will be
used to prove our main theorem.
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Here, we will consider an optimal pursuit problem with finite or countably many pursuers and
one evader in a Hilbert space l2, in such away that there is no relation between the their energy
resources. In the space l2, with elements

α = (α1, ..., αk, ...),
∞

∑
k=1

α2
k < ∞,

the inner product and norm are defined as

(α, β) =
∞

∑
k=1

αkβk, ‖α‖ =
(

∞

∑
k=1

α2
k

)1/2

.

Let Pi and E denote the motions of the pursuers and the evader, whose equations are described by

Pi : ẋi(t) = η(t)ui(t), xi(0) = xi0,

E : ẏ(t) = η(t)v(t), y(0) = y0,
(2)

where xi(t), xi0, ui(t), y(t), y0, v(t) ∈ l2, ui = (ui1, . . . , uik, . . . ) and v = (v1, . . . , vk, . . . ) are the control
parameters of pursuer Pi and evader E, respectively. Throughout this paper, i ∈ I = {1, 2, 3, ...m}.

Let θ be a fixed time, and the function η(t) be nonzero on any open interval—scalar
measurable and square integrable over the interval [0, τ], τ > 0. It is also assumed to satisfy the
following conditions:

a(τ) =
(∫ τ

0
η2(t)dt

)1/2
< ∞. (3)

H(x0, r) = {x ∈ l2 : ‖x− x0‖ ≤ r}, S(x0, r) = {x ∈ l2 : ‖x− x0‖ = r},

denote the ball and sphere, respectively, in the space l2 with center x0 and radius r. We now give some
useful definitions.

Definition 1. The admissible control of the ith pursuer is a function u(·), ui : [0, θ]→ l2 defined as

‖ui(·)‖2 =

(∫ θ

0
‖ui(s)‖2ds

)1/2

≤ ρi, ‖ui‖ =
(

∞

∑
k=1

u2
ik

)1/2

,

provided that uik : [0, θ]→ R1, k = 1, 2, . . . , are Borel measurable functions and ρi is a fixed positive number
∀i. Let B(ρi) denote the set of all admissible controls of the pursuer xi.

Definition 2. The admissible control of the evader is a function v(·), v : [0, θ]→ l2 defined as

‖v(·)‖2 =

(∫ θ

0
‖v(s)‖2ds

)1/2

≤ σ,

where vk : [0, θ]→ R1, k = 1, 2, . . . , are Borel measurable functions and σ is a fixed positive number. Let B(σ).
denote the set of all admissible controls of the evader y.

Once the players admissible controls ui(·) ∈ B(ρi) and v(·) ∈ B(σ) are chosen, the corresponding
motion xi(·) and y(·) of the players are defined as

xi(t) = (xi1(t), xi2(t), . . . , xik(t), . . . ) , y(t) = (y1(t), y2(t), . . . , yk(t), . . . ) ,

xik(t) = xik0 +
∫ θ

0
η(s)uik(s)ds, yk(t) = yk0 +

∫ θ

0
η(s)vk(s)ds, i ∈ I, k ∈ N.
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It is not difficult to see that xi(·), y(·) ∈ C(0, θ; l2), where C(0, θ; l2) is the space of functions

f (t) = ( f1(t), f2(t), . . . , ) ∈ l2, t ≥ 0,

such that

(i) fk(t), 0 ≤ t ≤ θ, k ∈ N, are absolutely continuous functions;
(ii) f (t), 0 ≤ t ≤ θ, is continuous with respect to the norm on l2 space.

Definition 3. The strategy of the pursuer Pi is a function Ui(t, xi, y, v).Ui : [0, ∞)× l2 × l2 × l2 → l2, such
that the system of equations

ẋi(t) = η(t)Ui(t, xi, y, v(t)), xi(0) = xi0,

ẏ(t) = η(t)v(t), y(0) = y0,

has a unique solution (xi(·), y(·)) for any xi(·), y(·) ∈ C(0, θ; l2) and admissible control v = v(t), 0 ≤ t ≤ θ,
of the evader E. We said that the strategy Ui is admissible if each control formed by strategy Ui is admissible.

Definition 4. The optimal strategies Ui0 of the pursuers Pi are defined as

inf
U1,...,Um ,...

Γ1(U1, . . . , Um, . . . ) = Γ1(U10, . . . , Um0, . . . ),

such that

Γ1(U1, . . . , Um, . . . ) = sup
v(·)

inf
i∈I
||xi0 − y(θ)||,

where Ui and v(·) are admissible strategies of the pursuers Pi and evader E, respectively.

Definition 5. The strategy of evader E is a function V(t, x1, . . . , xm, . . . , y), V : [0, ∞)× l2 × · · · × l2 ×
· · · × l2 → l2, such that the system of equations

ẋi(t) = η(t)ui(t, xi, y, v(t)), xi(0) = xi0,

ẏ(t) = η(t)V(t, x1, . . . , xm, . . . , y, ), y(0) = y0,

has a unique solution (xi(·), . . . , xm(·), . . . y(·)) for any xi(·), y(·) ∈ C(0, θ; l2), and admissible controls
ui = ui(t), 0 ≤ t ≤ θ of the pursuers Pi. We said that strategy V is admissible if each control formed by
strategy V is admissible.

Definition 6. The optimal strategy V0 of the evader E is defined as

sup
V

Γ2(V) = Γ2(V0),

provided that

Γ2(V) = inf
u1(·),...,um(·),...

inf
i∈I
||xi0 − y(θ)||,

ui are admissible control of the pursuers Pi and V is that of the evader E.

If Γ1(U10, . . . , Um0, . . . ) = Γ2(V0) = λ, then, problem (2) has a value λ.
Our aim is to find the optimal strategies Ui0, V0 of the players and value of the game, respectively.
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3. Auxiliary Game

It is easily to see that the attainability domain of the pursuer Pi from the initial position xi0 at time
θ is the closed ball H(xi0, a(θ)ρi). Indeed

‖x(θ)− xi0‖ =
∥∥∥∥ ∫ θ

0
η(s)ui(s)ds

∥∥∥∥ ≤ ∫ θ

0
η(s)‖ui(s)‖ds

≤
(∫ θ

0
η2(s)ds

∫ θ

0
||ui(s)||2ds

)1/2

≤ a(θ)ρi.

Moreover, if x̄ ∈ H(xi0, a(θ)ρi), that is, ||x̄− xi0|| ≤ a(θ)ρi, then, for the control

ui(s) =
η(s)
a2(θ)

(x̄− xi0), 0 ≤ s ≤ θ

of the pursuer, we get

xi(θ) = xi0 +
∫ θ

0
η(s)ui(s)ds

= xi0 +
∫ θ

0
η(s)

(
η(s)
a2(θ)

(x̄− xi0))ds

= xi0 +
x̄− xi0
a2(θ)

∫ θ

0
η2(s)ds

= x̄.

Therefore, the admissibility of this control follows from the relation

∫ θ

0
‖ui(s)‖2ds =

∫ θ

0

∥∥∥∥ η(s)
a2(θ)

(x̄− xi0)

∥∥∥∥2

ds ≤ ‖x̄− xi0‖2

a4(θ)
a2(θ) ≤ ρ2

i .

Moreover, applying the same procedure one can see that the attainability domain of the evader E
at time θ from the initial state y0 is the ball H(y0, a(θ)σ).

In this section, we study a differential game of one pursuer x and one evader y. For simplicity, we
use the notation ρi = ρ, xi0 = x0, and xi = x. Then, dynamics of x and y are described by

P : ẋ = η(t)u, x(0) = x0,

E : ẏ = η(t)v, y(0) = y0.
(4)

The target of the pursuer P is to perceive the equality x(τ) = y(τ) at some τ, 0 ≤ τ ≤ θ; and that
of the evader E is contrary.

Let
X = {z : 2(y0 − x0, z) ≤ a2(θ)(ρ2 − σ2) + ‖y0‖2 − ‖x0‖2}.

Lemma 1. If y(θ) ∈ X, then, there exists an admissible strategy of the pursuer P which ensures x(θ) = y(θ)
in the game (4).

Proof. Suppose the assumption of Lemma 1 holds, construct the strategy of the pursuer as follows:

u(t) =
η(t)
a2(θ)

(y0 − x0) + v(t), 0 ≤ t ≤ θ. (5)

Then, admissibility of this strategy can be proved as follows. Since

y(θ) = y0 +
∫ θ

0
η(s)v(s)ds ∈ X,
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then,
2(y0 − x0, y(θ)) ≤ a2(θ)(ρ2 − σ2) + ‖y0‖2 − ‖x0‖2,

2
(

y0 − x0, y0 +
∫ θ

0
η(t)v(t)dt

)
≤ a2(θ)(ρ2 − σ2θ) + ‖y0‖2 − ‖x0‖2,

2(y0 − x0,
∫ θ

0
η(t)v(t)) ≤ a2(θ)(ρ2 − σ2)− (‖y0‖2 − 2(x0, y0) + ‖x0‖2).

(6)

Hence from the strategy (5) and inequality (6), we have

∫ θ

0
‖u(t)‖2dt =

∫ θ

0

∥∥∥∥( η(t)
a2(θ)

(y0 − x0) + v(t)
)∥∥∥∥2

dt

=
∫ θ

0

η2(t)
a4(θ)

‖y0 − x0‖2dt +
2

a2(θ)

∫ θ

0
η(t)(y0 − x0, v(t))dt +

∫ θ

0
‖v(t)‖2dt

≤ ‖y0 − x0‖2

a4(θ)
a2(θ) +

1
a2(θ)

(
a2(θ)(ρ2 − σ2)− ‖y0 − x0‖2

)
+ σ2

= ρ2.

(7)

This shows that the strategy (5) is admissible. Therefore,

x(θ) = x0 +
∫ θ

0
η(t)

(
η(t)
a2(θ)

(y0 − x0) + v(t)
)

dt

= x0 +
(y0 − x0)

a2(θ)

∫ θ

0
η2(t)dt +

∫ θ

0
η(t)v(t)dt

= x0 + y0 − x0 +
∫ θ

0
η(t)v(t)dt

= y(θ).

This proves the lemma.

Remark 1. It should be noted that in the construction of the pursuer’s strategy we do not require the
inequality ρ ≥ σ.

4. Main Result

We recall the following lemmas in order to prove our main theorem.

Lemma 2. (see Ibragimov et al. 2005. Lemma 9). Suppose r and Ri, i ∈ I, are fixed positive real numbers and
H(xi0, Ri), i ∈ I, and H(y0, r) are collections of finitely or a countable number of closed balls. Let

I0 = {i ∈ I : S(y0, r) ∩ H(xi0, Ri) 6= ∅},
Xi = {z ∈ l2 : 2(y0 − xi0, z) ≤ R2

i − r2 + ‖y0‖2 − ‖xi0‖2}, i ∈ I0.

If (y0 − xi0, p0) ≥ 0, i ∈ I, for a nonzero vector p0, and

H(y0, r) ⊂
⋃
i∈I

H(xi0, Ri),

then,
H(y0, r) ⊂

⋃
i∈I0

Xi.
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Lemma 3. (See Ibragimov 2005. Assertion 5). Let infi∈I Ri = R0 > 0 and (y0 − xi0, p0) ≥ 0, i ∈ I, for a
nonzero vector p0, if for any 0 < δ < R0 the set

⋃
i∈I H(xi0, Ri − δ) does not contain the ball H(y0, r), then,

there exists a point ȳ ∈ H(y0, r) such that ‖ȳ− xi0‖ ≥ Ri, for all i ∈ I.

Theorem 1. Let (y0 − xi0, p0) ≥ 0 for all i ∈ I, for a nonzero vector p0 ∈ l2, then, the number

λ = inf{l ≥ 0 : H(y0, a(θ)σ) ⊂
∞⋃

i∈I
H(xi0, a(θ)ρi + l)} (8)

is the value of the game (2).

Proof. The proof of the theorem in divided into three parts:

1. Constructing the strategies of the pursuers:

We introduce the fictitious pursuers (FPs) zi, whose equations of motions are described by

żi = η(t)wi(t), zi(0) = xi0,
(∫ θ

0
||wi(s)||2ds

)1/2

≤ ρ̄i = ρi +
λ

a(θ)
. (9)

It can be shown easily that the attainability domain of the fictitious pursuers zi at time θ from the
initial position xi0 is the ball

H(xi0, ρ̄ia(θ)) = H(xi0, a(θ)ρi + λ).

Next, we define the strategy of the fictitious pursuers zi, i ∈ I, as follows:

wi(t, v) =


η(t)
a2(θ)

(y0 − xi0) + v(t), i f 0 ≤ t ≤ θi0,

0, i f θi0 < t ≤ θ,
(10)

where θi0 ∈ [0, θ] is the time for which

∫ θi0

0

∥∥∥∥ η(t)
a2(θ)

(y0 − xi0) + v(t)
∥∥∥∥2

dt = ρ̄2
i . (11)

Note that such time θi0 may not exist.
We now define the strategies of the real pursuers xi, i ∈ I, by

ui(t, v) =
ρ

ρ̄i
wi(t, v), 0 ≤ t ≤ θ. (12)

where ρ̄i = ρ̄i(0) = ρi +
λ

a(θ) .

2. The value λ is guaranteed for the pursuers.

We now show that the strategies (12) satisfy the inequality

sup
v(·)

inf
i∈I
‖y(θ)− xi(θ)‖ ≤ λ. (13)

Thus, it follows from definition of λ that

H(y0, a(θ)σ) ⊂
⋃
i∈I

H(xi0, a(θ)ρi + λ).

Then, it follows from Lemma 2 where Ri = a(θ)ρi + λ and r = a(θ)σ, that

H(y0, a(θ)σ) ⊂
⋃
i∈I

Xi,
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where

I0 = {i ∈ I : S(y0, a(θ)σ) ∩ H(xi0, a(θ)ρi + λ) 6= ∅}
and

Xi ={z ∈ l2 : 2(y0 − xi0, z) ≤ (a(θ)ρi + λ)2 − a2(θ)σ2 + ‖y0‖2 − ‖x0‖2}.
(14)

Accordingly, the point y(θ) ∈ H(y0, a(θ)σ) belongs to some half-space Xs, with s ∈ I0 and hence,

2(y0 − xis, y(θ)) ≤ (a(θ)ρs + λ)2 − a(θ)σ2 + ‖y0‖2 − ‖xs0‖2. (15)

By Lemma 1, for the strategies of the pursuers zi, i ∈ I, we obtain zs(θ) = y(θ) and

∫ θ

0

∥∥∥∥ η(t)
a2(θ)

(y0 − xs0) + v(t)
∥∥∥∥2

dt ≤ ρ̄2. (16)

By strategy (12), we have

‖xs(θ)− y(θ)‖ = ‖xs(θ)− z(θ)‖

=

∥∥∥∥ ∫ θ

0
η(t)us(t)dt−

∫ θ

0
η(t)ws(t)dt

∥∥∥∥
=

∥∥∥∥ ∫ θ

0
η(t)(

ρs

ρ̄s
− 1)ws(t)dt

∥∥∥∥
≤ λ

a(θ)ρ̄s

∫ θ

0
η(t)‖ws(t)‖dt.

(17)

Using Cauchy–Schwatz inequality, we obtain

∫ θ

0
η(t)‖ws(t)‖dt ≤

(∫ θ

0
η2(t)dt

)1/2 (∫ θ

0
‖ws(t)‖2dt

)1/2

≤ a(θ)ρ̄s. (18)

Therefore, from inequalities (17) and (18) we obtain

‖xs(θ)− y(θ)‖ ≤ λ. (19)

Hence, the value λ is guaranteed by the actual pursuers.

3. The value λ is guaranteed for the evader.

Define the evader’s strategy that satisfies

inf
u1(·),...,um(·),...

inf
i∈I
‖y(θ)− xi(θ)‖ ≥ λ, (20)

where u1(·), . . . , um(·), . . . are the admissible control of the pursuers. If λ = 0, then, the result follows
from (20). Suppose that λ > 0, then, by definition of λ, for any 0 < δ < λ, the set⋃

i∈I
H(xi0, a(θ)ρi + λ− δ)

does not include the ball H(y0, a(θ)σ). According to Lemma 3, there exists a point ȳ ∈ S(y, a(θ)σ)
such that ‖ȳ− xi0‖ ≥ a(θ)ρi + λ, i ∈ I. Therefore, by the inequality

‖xi(θ)− xi0‖ ≤ a(θ)ρi, i ∈ I,
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We obtain

‖ȳ− xi(θ)‖ ≥ ‖ȳ− xi0‖ − ‖xi(θ)− xi0‖ ≥ a(θ)ρi + λ− a(θ)ρi = λ.

Hence, if the evader comes to the point ȳ at the time θ, the inequality (20) is guaranteed. This is
achievable using the control function

v(t) =
σ

a(θ)
η(t)e, 0 ≤ t ≤ θ, e =

ȳ− y0

||ȳ− y0||
, (21)

that is,

y(θ) = y0 +
∫ θ

0
η(t)v(s)ds = ȳ. (22)

Hence, the value of the game is not less than λ and the inequality is satisfied. This complete the
proof of Theorem 1.

We now present some examples to demonstrate our result.

Example 1. Consider the differential game problem (2) with ρi = 1, θ = 9, σ = 5, and denoting η(t) = 1.
Consider the following initial positions of the players:

xi0 = (0, · · · , 0, 8, 0, · · · ), y0 = (0, 0, · · · ).

We can easily see that by simple computation we obtain that a(θ) = 3, a(θ)ρi = 3, and a(θ)σ = 15.
Next, we show that λ = 14. is value of the game. Firstly, it is enough to show that

i) Given any ε > 0, the insertion

H(O, 15) ⊂
∞⋃

i=1

H(xi0, 17 + ε)

holds, where O is the origin.

ii) Since the ball H(O, 15) is not contained in the set
∞⋃

i=1

H(xi0, 13), that is, let z = (z1, z2, . . . ) be an

arbitrary point of the ball H(O, 10). This implies that ∑∞
i=1 z2

i ≤ 225. The following two cases are possible,
either z has a non negative coordinate or all coordinates of z are negative. Suppose that there exists a
non-negative coordinate zk of the vector z, then,

‖z− xk0‖ =
(

z2
i + · · ·+ z2

k−1 + (8− zk)
2 + z2

k+1 + . . .
)1/2

=

(
∞

∑
i=1

z2
i + 64− 16zk

)1/2

≤ (289− 16zk)
1/2 ≤ 17 ≤ 17 + ε,

(23)

hence, z ∈ H(xi0, 17 + ε).

Now, suppose that all the coordinates of z are negative. This implies that the inequality

‖z− xk0‖ =
(

∞

∑
i=1

z2
i + 64− 16zk

)1/2

≤ (289− 16zk)
1/2 ≤ 17 + ε
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is satisfied for sufficiently large k, since the series ∑∞
i=1 z2

k , zk → 0 as k→ ∞ is convergent. Additionally,

any point z ∈ S(O, 15) with negative coordinates does not belong to the set
∞⋃

i=1

H(xi0, 13), since for any

number i, ‖z− xi0‖ = (289− 16zi)
1/2 > 13.

Therefore, the number

λ = inf

{
l ≥ 0 : H(y0, a(θ)σ) ⊂

∞⋃
i=1

H(xi0, a(θ)ρi) + l

}

= inf

{
l ≥ 0 : H(O, 15) ⊂

∞⋃
i=1

H(xi0, 3) + l

}
= 14

(24)

is the value of the game by the theorem.

5. Conclusions

We have studied a fixed duration pursuit–evasion differential game of a countable number of
pursuers pursuing one evader with integral constraints on control functions of the players. We obtained
a sufficient condition for completion of pursuit and obtained the value of the game. It worth noting
the following points:

• There is no relationship between the players energy resources;
• The case η(t) = 1 was studied in [12].
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