. mathematics ﬁw\o\w

Article

An Efficient Iterative Method Based on Two-Stage
Splitting Methods to Solve Weakly
Nonlinear Systems

Abdolreza Amiri 1, Mohammad Taghi Darvishi L*@® Alicia Cordero 2© and
Juan Ramén Torregrosa 2
1
2

Department of Mathematics, Razi University, Kermanshah 67149, Iran

Institute for Multidisciplinary Mathematics, Universitat Politécnica de Valéncia,
Camino de Vera s/n, 46022 Valencia, Spain

* Correspondence: darvishi@razi.ac.ir; Tel.: +98-83-3428-3929

check for

Received: 17 July 2019; Accepted: 19 August 2019; Published: 3 September 2019 updates

Abstract: In this paper, an iterative method for solving large, sparse systems of weakly nonlinear
equations is presented. This method is based on Hermitian/skew-Hermitian splitting (HSS) scheme.
Under suitable assumptions, we establish the convergence theorem for this method. In addition,
it is shown that any faster and less time-consuming two-stage splitting method that satisfies the
convergence theorem can be replaced instead of the HSS inner iterations. Numerical results, such as
CPU time, show the robustness of our new method. This method is easy, fast and convenient with an
accurate solution.

Keywords: system of nonlinear equations; Newton method; Newton-HSS method; nonlinear
HSS-like method; Picard-HSS method

1. Introduction
For G: D C C" — C™, we consider the following system of nonlinear equations:
G(x) =0. 1)

One may encounter equations like (1) in some areas of scientific computing. In particular,
when the technique of finite elements or finite differences are used to discretize nonlinear boundary
problems, integral equations and certain nonlinear partial differential equations. Finding the roots of
systems like (1) has widespread applications in numerical and applied mathematics. There are many
iterative schemes to solve (1). The most common one is the second order classical Newton’s scheme,
which solves (1) iteratively as

x(H) — (1) _ G’(x("))*lG(x(”)), n=20,1,...,)

where G/(x(") is the Jacobian matrix of G, evaluated in the nth iteration. To avoid computation of
inverse of the Jacobian matrix G’(x), Equation (2) is changed to

G (xM) (x(+D) — x(Wy = —G(x(M). 3)

Equation (3) is a system of linear equations. Hence, by s(") = x("*1) — x(") we have to solve the
following system of equations:

G/(x(n))s(n) _ —G(X(n)), 4)

Mathematics 2019, 7, 815; d0i:10.3390/math7090815 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-5065-1571
https://orcid.org/0000-0002-7462-9173
https://orcid.org/0000-0002-9893-0761
http://www.mdpi.com/2227-7390/7/9/815?type=check_update&version=1
http://dx.doi.org/10.3390/math7090815
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 815 20f17

whence x("t1) = x(") 4 5(") Thus, by using this approach, we have to solve a system of linear
equations such as

Ax =b, %)

which we usually use an iterative scheme to solve it.

Furthermore, an inexact Newton method [1-4] is a generalization of Newton’s method for
solving (1), in which, at the nth iteration, the step-size s(") from current approximate solution x(m)
must satisfy a condition such as

I G(x™) + G (x)s™ | < g || G(x™) |,

for a “forcing term” 17, € [0,1). Let us consider system (1) in which G(x) can be separated into linear
and nonlinear terms, Ax and ¢(x), respectively, that is

G(x) = ¢p(x) — Ax or Ax = ¢(x). (6)

In (6), the m x m complex matrix A is a positive definite, large and sparse matrix. In addition,
vector-valued function ¢ : D C C" — C™ is continuously differentiable. Furthermore, x is an
m-vector and D is an open set. When the norm of linear part Ax is strongly dominant over the norm
of nonlinear part ¢(x) in a specific norm, system (6) is called a weakly nonlinear system [5,6]. Bai [5]
used the separability and strong dominance between the linear and the nonlinear parts and introduced
the following iterative scheme

Axtml) = g(x().)

Equation (7) is a system of linear equations. When the matrix A is positive definite,
Axelsson et al. [7] solved it by a class of nested iteration methods. To solve linear positive definite
systems, Bai et al. [8] applied the Hermitian/skew-Hermitian splitting (HSS) iterative scheme.
For solving the large sparse, non-Hermitian positive definite linear systems, Li et al. [9] used
an asymmetric Hermitian/skew-Hermitian (AHSS) iterative scheme. Moreover, to improve the
robustness of the HSS method, some HSS-based iterative algorithms have been introduced. Bai and
Yang [10] presented Picard-HSS and HSS-like methods to solve (7), when matrix A is a positive definite
matrix. Based on the matrix multi-splitting technique, block and asynchronous two-stage methods are
introduced by Bai et al. [11]. The Picard circulant and skew-circulant splitting (Picard-CSCS) algorithm
and the nonlinear CSCS-like iterative algorithm are presented by Zhu and Zhang [12], when the
coefficient matrix A is a Teoplitz matrix. A class of lopsided Hermitian/skew-Hermitian splitting
(LHSS) algorithms and a class of nonlinear LHSS-like algorithms are used by Zhu [6] to solve the large
and sparse of weakly nonlinear systems.

It must be noted that system (6) is a special form of system (1). Generally, system (6) is nonlinear.
If we classify Picard-HSS and nonlinear HSS-like iterative methods as Jacobian-free schemes, in many
cases, they are not as successful as Jacobian dependent schemes such as the Newton method. Most of
the methods for solving nonlinear systems need to compute or approximate the Jacobian matrix in
the obtained points at each step of the iterative methods, which is a very time-consuming process,
especially when the Jacobian matrices ¢’(x(")) are dense. Therefore, introducing any scheme that does
not need to compute the Jacobian matrix and can solve a wider range of problems than the existing
ones is welcome. In fact, Jacobian-free methods to solve nonlinear systems are very important and
form an attractive area of research.

In this paper, we present a new iterative method to solve weakly nonlinear systems. Even though
the new algorithm uses some notions of mentioned algorithms, but differs from all of them because it
has three important characteristics. At the first, the new algorithm is a fully Jacobian-free one. At the
second, it is easy to use, and, finally, it is very successful to solve weakly nonlinear systems. The new

Mathematics 2019, 7, 815 30f17

iterative method is a synergistic combination of high order Newton-like methods and a special splitting
of the coefficient matrix A in (5).

The rest of this paper has organized as follows: in the following section, we present our new
algorithm. We prove convergence of our algorithm in Section 3. We apply our algorithm to solve some
problems in Section 4. In Section 5, we conclude our results and give some comments and discussions.

2. The New Algorithm

In linear system Ax = b, we suppose that A = H + S, where H = %(A + A*), S = %(A — A¥),
and A* is the conjugate transpose of matrix A. Hence, H and S are, respectively, Hermitian and
skew-Hermitian parts of A. By an initial guess xo € C", and positive constants « and tol, in HSS
scheme [8], one computes x; for =1,2,... as

1= -5 b,
{ (chI—l—H)lerf (al — S)x; + ®

(el 4+ S)x; 11 = (al — H)xH% +b,

where [is the identity matrix. Stopping criterion for (8) is ||b — Ax;|| < tol||b — Axp||, for known x
and tol.

Bai and Guo [13] used an HSS scheme as inner iterations to generate an inexact version of
Newton’s method as:

(1) Consider the initial guess x(?), a, tol and the sequence {1}, of positive integers.

(2) Forn=1,2,..until ||G(x")| < tol||G(x©))| do:

1) Setsi” =o.
(22) Forl=1,2,...,I, — 1, apply Algorithm HSS as

S
I+3

(al + H(x™))s") = (aI — §(xM))s!™ — G(x™)
(al + S(xM))s\™) = (aI — H(x™))s™, — G(x(),

and obtain sl(:) such that
| GG+ G ()" 1< g | G™) ||, for some € [0,1).

(23) Setx(r+1) = x(n) 15",

In addition, to solve weakly nonlinear problems, one can use a Picard-HSS method as a simple
and Jacobian-free method, which is described as follows [10].

2.1. Picard-HSS Iteration Method

Suppose that ¢ : D C C" — C" is a continuous function and A € C"*" is a positive definite
matrix. For an initial guess x(?) and for a positive integer sequence {1}, Picard-HSS iterative
method computes x(1HY) for n = 0,1,2,..., by using the following iterative scheme, until the stopping
criterion is satisfied [10],

(1) Set xl(") = x();
(2) Forl=0,1,2,...,n—1, obtain x(11) from solving the following:

(o + H)xl(_?l = (al— S)xl(”) + (x),
2
(@l +S)x" = (al - H)xl(i)% + (x(m).

Mathematics 2019, 7, 815 40f17

(3) Setx(ntl) .= xl(").

n

The numbers I;,,n = 0,1,2,... depend on the problem, so practically they are difficult to be
determined in real computations. A modified form of Picard-HSS iteration scheme, called the nonlinear
HSS-like method, has been presented [10] to avoid using inner iterations as follows.

2.2. Nonlinear HSS-Like Iteration Method

Obtain x("*1) 1 =0,1,2, ... from the following [10], for a given x(©) e D ¢ C", until the stopping
condition is satisfied

(ocI+H)x(n+%) = (al = S)x(™ 4+ g(xM),
(al + 8)x D) = (al — H)x(+3) 4 p(x(n+2)).

However, in this method, it is necessary to evaluate the nonlinear term ¢(x) at each step, which
for complicated nonlinear terms ¢(x) is too costly.

2.3. Our Proposal Iterative Scheme

For solving (6) without computing Jacobian matrices, we present a new algorithm. This algorithm
is a strong tool for solving weakly nonlinear problems, as Picard and nonlinear Picard algorithms,
but, in comparison with Picard and nonlinear Picard algorithms, it solves a wider range of nonlinear
systems. First, we change (7) as

AxUHD = Ax() — Ax() 1 g (x(1)) ©)
and
A = A0 = —Ax0) 4 (), (10)

After computing x("), set b(") = ¢(x(M), G,(x) = b — Ax. Then, by intermediate iterations,
obtain x("+1) as:

o Letx}” = x(™ and until | G(x\")) ||< tol, | G(x{")|| do:

At = G ("), (11)

(n) (n) (n
k

wheres; " = x;;; —x) (k is the counter of the number of iterations (11)).

e For solving (11), one may use any inner solver; here, we use an HSS scheme. Next, for initial value
x(()n) andk=1,2,...,k; — 1 until

1Ga(x™) |1 < toly | Gu(x{™)1I, (12)
apply the HSS scheme as:

(1) Sets!”) =o.
(2) Forl=0,1,2,...,I, —1,apply algorithm HSS (I is the counter of the number of HSS iterations):

(o + H)Slgnli% = (al— S)s](fl) + Gn(xlgn)), 3
(@l +S)sty,, = (al- H)sl(:ll% + Gul(x")

Mathematics 2019, 7, 815 50f17

and obtain s,(ﬁi such that

| Gal™) = Ash) 1< 1Ga (™) m” € 0,1). (14)

(3) Set x,(ci)l = x,((”) + s](:;) (I, is the required number of HSS inner iterations for satisfying (14)).

(n+1) _

Finally, set x; (kn is the required number of iterations (11) in the nth step, for

satisfying (12)), b ”*1) go(xén+l)), Gup1(x) = b"*) — Ax and again apply steps 3-14 in
Algorithm 1 until to achieve the following stopping criterion:

1Ax" — p(x)| < tol | Ax¥ — (=) || .

Algorithm 1: JFHSS Algorithm

N

10

11

12

13
14

15
16
17

18

19

Input: x(0>, tol, a, n <1
Output: The root of Ax — ¢(x) =0
root + x(0)

while ||Ax(”) — (p(x(”))H > tol || Ax(©) — qo(x(o)) || do
Input: tol,

Set: (n)—x() ()—(p(())andGn():b(”)—Ax,kzl
while [|Gy(x") [|> tolu]|Gu(x{")] do

Set: [=0, S,(C/O) =0.

while || G, (x!") — Asy;k 1> 721G (x™)]| do

(the HSS algorithm)

(al + H)s!") = (al - 8)sty) + Gu(x™),

(a1+5)s,§”,>+l (al = H)s\). , Gl)y,

if || Ga(x") — A5y 1< " 1Gu(x")| then

‘ LI, , XM= x,(c") + st

k+1 k1,
else
L I+—1+1
i£1Gu (+) 1< tolal|Gu(x{"™) | then
‘ k < ky x(()n+1) = x]((")
else '
L ke—k+1
if | Ax() — o(x())| < tol || Ax() — ¢(x()) || then
‘ root < x()
else

| nen+1,x00 = M) = o(x), G, (x) = b — Ax

return root

We call this new method a JFHSS (Jacobian-free HSS) algorithm, and its steps are shown in

Algorithm 1.

Mathematics 2019, 7, 815 60of 17

In addition, we call the intermediate iterations Newton-like iteration because this kind of iteration
uses the same procedure as an inexact Newton’s method, except, since the function we use here is
b — Ax forn =1,2,--- , we don’t need to compute any Jacobian and, in fact, the Jacobian is the
matrix A. For this reason, we also call this iterative method a "Jacobian-free method".

Since the JFHSS scheme uses many HSS inner iterations, one may use another splitting scheme
instead of the HSS method. In fact, if any faster and less time-consuming splitting method is available
that satisfies the convergence theorem, presented in the next section, then it can be used instead
of the HSS algorithm. One of these methods that is proposed in [14] is GPSS (generalized positive
definite and skew-Hermitian splitting) algorithm that uses a positive-definite and skew-Hermitian
splitting scheme instead of a Hermitian and skew-Hermitian one. Let H and S be the Hermitian and
skew-Hermitian parts of A; then, the GPSS algorithm splits A as A = P; + P, where P; and P; are,
respectively, positive definite and skew-Hermitian matrices. In fact, we have

P =D+2Lg, P=K+L}—Lg+S5, (15)
or
PL=D+2Ls, Po=K+Lg—L5+S5, (16)

where G and K are, respectively, Hermitian and Hermitian positive semidefinite matrices of H, that is,
H = G + K; in addition, D and Lg are the diagonal matrix and the strictly lower triangular matrices of
G, respectively (see [14]).

Thus, to solve the system of linear Equation (5) for an initial guess xp € C", and positive
constants « and tol, the GPSS iteration scheme (until the stopping criterion is satisfied) computes x; for
I=1,2,...by

(§I+P1)Xl+% = (&I*Pz))(l +0, 17
(&I +DP)x; 1 = (al— P1)xl+% + 0, (17)

where « is a given positive constant and I denotes the identity matrix. In addition, if, in Algorithm
1, we use a GPSS scheme instead of an HSS one, we denote the new method by JEGPSS (Jacobian
free GPSS).

3. Convergence of the New Method

As we mentioned in the first section, for solving a nonlinear system, if one can separate (1) into
linear and nonlinear terms, Ax and ¢(x), when Ax is strongly dominant over the nonlinear term,
Picard-HSS and nonlinear HSS-like methods can solve the problem. However, in many cases, even for
weakly nonlinear ones, they may fail to solve the problems. Thus, to obtain a more useful method for
solving (6), based on some splitting methods, we presented a new iterative method. Now, we prove
that Algorithm 1 converges to the solution of a weakly nonlinear problem (6). In the following theorem,
we prove the convergence of the JFHSS scheme.

Theorem 1. Let x(0) € C" and ¢ : D C C" — C" be a G-differentiable function on an open set Ny C D
on which ¢'(x) is continuous and max |A~1¢’(x)|| = L < 1. Let us suppose that H = (A + A*) and
S= %(A — A*) are the Hermitian and skew-Hermitian parts of the positive definite matrix A and also that
M is an upper bound for || A=1G (x(0)) |, and I, is the number of HSS inner iterations in which the stopping
criterion (14) is satisfied,

In((1—77)(1L—17k”‘1) ~1)
In(0) ’

>

(18)

Mathematics 2019, 7, 815 7 of 17

with I = llim infly, forn = 1,2,3,..., 1 is the tolerance in Newton-like intermediate iterations with
n—r 0

L < (1—n)?and 0 = ||T||, where T is the HSS inner iteration matrix that can be written as
T=(al+S) Y al — H)(al + H)"}(al - S).

Then, the sequence of iteration {x(¥) Yoo, Which is generated by a JFHSS scheme in Algorithm 1,
is well-defined and converges to x*, satisfying G(x*) = 0, and also

[0 —) < sMmpr, (19)
D) — O < M (20)
1—p
I I
where 6 = lim supw and p = limsuppy, for p, = ML + k-1,
n—co 1- n—oo 1—-y9

Proof. Note that ||T|| < max
AEA(H) tx+)t

a positive constant in HSS inner iterations of JFHSS scheme. Based on Algorithm 1, we can express
(n+1)
x as

< 1 (see [8]), where A(H) is the spectral radius of H and « is

) = = (1= The) Gl ()) TG)

(

= xk71 IEI - le”) 71G"(xl(<z)—1)

- xk,j y+ (1= T AT1G, (x")) + (1 - len)A‘lGn(ng"))

=" 4 (I—Thi2)A z) TG (1) 5) + (1= Tha 1) A~ (x;}) (21)
+(I = Tha) A 1G"(xk " 1)

=2 4 (1T ATIG, () + (- T2 A6, (") +

+(I— len—z)Aflcn(x,Ef)_S) +(1— len—l)Aflcn(x,(c”))

+(1 = Th) A71G (")) =) + . (1= T A~ 1Gn(x](.ﬁ)1).

Ui
cond(A)

(n)

In the last equality, we used x; ' = x(. If we set i’ = in (14) instead of 1, where

cond(A) = ||Al|||A~!||, then 5 < 1. Because of (14), we have

1Gu (™ < 11Ga(x”) = G) + Gl) (= x|
HIGa(x".) — G <x,£">,1><x,£j? — ")l
= [1Gu(x) — AG” =2) < 7 1Gu (e DL
SO
1A Gu (™) < AT G () < 7' A G (™)
<A AN AT Gu (™)l = gl A7 Gu(x™).

n—1

Therefore, by mathematical induction, we can obtain
1AT1Gu (™) | < ™ AT Ga (™) (22)

Then, from (21), and since || — Tlf|| <1+6i<1+0" forj=1,2,...,k,, we have

Mathematics 2019, 7, 815 8of 17

0+ — x| < g 11— T ATNGa ("))
< (IT=T |+l = T2 + 2 1= T8 + - -
72| = Tho =1 4y |1 = Tha)| A1 Go (") | 23)
= (L4 2 o) (14 0%) A6, (x|

1 — ykn N n
= () A7Gu ()|

Thus, from the last inequality, since G, (x) = b("®) — Ax, b") = ¢(x(")), we have

J— k}l
||x(n+1) _x(n)” < 11 7717 (1+913)\|A_1(b(”) _Ax(n))H
- (24)
1y x - - n— n
= 1_;7,7 (1+6%)(|[A" (@(x) = (x| + A (@ (x" D) — AxtD)).

Then, by using the multivariable Mean Value Theorem (see [15]), we can write
A (@(x™) = p(x" D)) < magl\A_lqo'(X)H () — x (D] = L) — £,
xe
where S = {x : x = tax(m) 4 (1— t)x(”’l), 0 <t <1}. Thus,
AT (@(x™) = (D)) < Lfjx) — 2=, (25)

From the right-hand side of (24), using (22) for n — 1, and (25), we have

D — x| <

1 — ykn " B B

= ﬁ(l + 6" (L) = x0TV 4 | ATIG, 4 (2)]) (26)
1— kn n n—

< 1214 0")(L]|x™ — V|| £ yf1 | ATIG, 4 (D).

1—1

=) < 1—7

If in the last inequality of (26), from (23), we use [x(" — x(
0")| A1G, (x"V) |, then

||x(n+l) _ x(n)H <

1—17k"

n 1-— kn—1 n— _ — _ _
) (=0 AT G () AT G ()
1— ki n 1— kn1 n— 7 _
< 0 (L= (105) ATG (a)

As1— 17k" <1,n=1,2,--- and by the definition of p and §, we have
) =2 < Spl| AT G () @7)
By mathematical induction and since HA’lGO(x((]O)) | <M,
D — x| < 5p" || A7 Go(x”) | < SMp", (28)

which yields (19). By the stopping criterion (18), we must have p < 1 and then, using (19), it is easy
to deduce

Mathematics 2019, 7, 815 90f17

D) — O] < [+ —) 4 [— =D 4 D) — £ < fﬂ
- 1=y
which is the relation (20).
Thus, the sequence {x("} is in a ball with center x(°) and radius r = f_'Mp From (28),

sequence {x(")} also converges to its limit point x*. From the following iteration,
" = x) + (1= T ATIG,(x{"),

when n — oo, ||x(()n) —x*|| —0, ||x§n) — x*|| — 0, 1] —> c0. Moreover, as ||T|| < 1, then T" — 0
and we have

which completes the proof. [

Note that, in some applications, the stopping criterion (18) may be obtained as negative; this shows
that, for all I, > 1, we must have p < 1.

In addition, it is easy to deduce from the above theorem that any iterative method that its iteration
matrix satisfies in ||T|| < 1 can be used instead of the HSS method. For a JEGPSS case, the proof is
similar, except, in the inner iteration, the iterative matrix is

T = (&l +P) Y&l — Py)(xl + Py) " Y(al — P,).
The following result shows the convergence of a JEGPSS algorithm:

Theorem 2. Let x(0) € C"and ¢ : D C C" — C" be a G-differentiable function on an open set Ny C D,
on which ¢'(x) is continuous and max || A=1¢'(x)|| = L < 1. Let us suppose that P and P, are generalized
positive-definite and skew-Hermitian splitting parts of the positive definite matrix A as (15) and (16) and also
that M is an upper bound for || A="G(x0))||; I is the number of GPSS inner iterations in which the stopping
criterion (14) is satisfied,

In((1—'7)(1L—77k”*1) —1)
In(6) ’

>
with II! = lkim infly, forn = 1,2,3,..., 11 is the tolerance in Newton-like intermediate iterations with
n—r
L < (1—#)?and @ = ||T||, where T is the GPSS inner iteration matrix that can be written as
T = (&l +P) Y&l — Py)(&l + Py) " Y(al — P,).

Then, the sequence of iteration {x¥) Yoo o- generated by JEGPSS scheme in Algorithm 1, is well-defined
and converges to x*, satisfying G(x*) = 0, and also

0D — x| < SMp",

D) — 0 < M
L-p
1 I
where 6 = lim supM and p = lim suppy, for p, = 1+79)L + g1,
n—00 - n—oo 1-

Proof. Let us note that, in this theorem, we also have || T|| < 1 (for more details, see [16]). The rest of
the proof is similar to Theorem 1. [

Mathematics 2019, 7, 815 10 of 17

In the next section, we apply our new iterative method on some weakly nonlinear systems
of equations.

4. Application

Now, we use JFHSS and JFGPSS algorithms for solving some nonlinear systems. These examples
show that JFHSS and JFGPSS methods perform better than nonlinear HSS-like and Picard-HSS methods.

Example 1. Consider the following two-dimensional nonlinear convection-diffusion equation

—(xx +uyy) +q(ue +uy) = flxy), (x,y) €Q
u(x,y) = h(xy), (xy) €

where Q) = (0,1) x (0,1), 9QY is its boundary and q is a positive constant for measuring the magnitude of the
convection term. We solve this problem for each of the following cases:

Case1 f(x,y) = e*™¥), h(x,y) = 0.
Case2 f(x,y) = —e*™¥) —sin(1+ uy(x,y) + uy(x,y)), h(x,y) = —e*tV,

To discretize this convection-diffusion equation, for the convective term, we use a central
difference method while, for the diffusion term, we use a five-point finite difference method. These
yield the following nonlinear system

H(u) = Mu + h*p(u), (29)

where h =

N:— 1 is the equidistance step-size with N as a known natural number and M = Ay ®
In + AN ® Iy, B = Cy x Cy with tridiagonal matrices Ay = tridiag(—1 —gh/2,2,1+gh/2),Cy =
tridiag(—1/h,0,1/h) and Iy is N x N identity matrix. For case 1, we have ¢(u#) = —¢(u) and, for
case 2, p(u) = sin(1 + Bu) + ¢(u), where ¢(u) = (e"1,¢*,...,e*")T; moreover, ® is the Kronecker
product symbol, 1 = N x N and sin(u) means (sin(u;),sin(uy), - - - ,sin(u,))". To apply Picard-HSS,
nonlinear HSS-like, JFHSS and JEGPSS methods for solving (29), the stopping criterion for the outer
iteration in all methods is chosen as

| Mul®) () |
107~ 30
MU+ () | = 0

Meanwhile, the Newton-like iteration (in JFHSS and JFGPSS methods) is

I Gu(ul™) |

P P 1077, (31)
| Gn (g) |l

and also the stopping criterion for HSS and GPSS processes in each Newton-like inner iteration is
I Gula) = As) 1< 7llGo (™), (32)

where {1("} is the sequence generated by the JFHSS method. k, and I, are, respectively, the number
of Newton-like inner iterations and HSS and GPSS inner iterations, required for satisfying Relations (31)
and (32).

Moreover, to avoid computing the Jacobian in Picard-HSS method, we propose the following
stopping criterion for inner iterations

1 G(u™) + As{™ |I< yl|G(ut)]]. (33)

Mathematics 2019, 7, 815 11 of 17

In order to use a JEGPSS method, we apply the following decomposition on matrix M in Equation (29),

Pi=D+2Lg, P,=L}—Lg+S5. (34)

In addition, K = 0,s0 G = H is the Hermitian part of M and S = %(M — M*) is the skew Hermitian
part of M.

Numerical results for ¢ = 1000, § = 2000 and initial points u(®) = 1, (%) = 4 x T for both cases
and u(© =12 x 1 for case 1 and u(®) = 13 x 1 for case 2 and different values of N for JFHSS, JEGPSS,
nonlinear HSS-like and Picard-HSS schemes are reported in Tables 1 and 2. Other numerical results
such as CPU-time (total CPU time), the number of outer and inner iteration steps (denoted as [Ty
and ITj,,, respectively), and the norm-2 of the function at the last step (denoted by ||F(u("))||) are also
presented in these tables. For JFHSS and JEGPSS algorithms, the values of IT;,;; and 1T}, are reported.
The former is the obtained number when total inner HSS or GPSS iteration is used in Newton-like
iterations, divided by the sum of total Newton-like iterations, while the latter is the total number of
intermediate iterations of the Newton-like method.

Except for u© = 1, which is relatively close to the solution (in case 1, the real solution u is
near zero and, in case 2, almost for all coordinates of the solution, u;, i = 1,2,--- ,n,0 < u; < 1),
the nonlinear HSS-like method for other initial points of Tables 1 and 2 could not perform the iterations
at all, but JFHSS and JFGPSS methods for all points in both cases could easily solve the problem.
Picard-HSS for these three initial points could not solve the problem and, in all cases, fails to solve the
problem, especially for g > 500.

Numerical results show that the inner iterations for both JFHSS and nonlinear HSS-like are almost
the same but for JEGPSS is less than these two methods. For example, in Table 1, for u0) = 1, g = 1000
and N = 40, the number of inner iterations for JFHSS and JFGPSS methods are, respectively, 133 and
96 and this number for total iterations in the nonlinear HSS-like method (consider that there is only one
kind of iteration in a nonlinear HSS-like method) is 127. However, the nonlinear HSS-like method needs
to evaluate a greater number of the nonlinear term (1) than the JFHSS method (for the JFHSS method,
only 12 function evaluations are required compared to 254 function evaluations for the nonlinear
HSS-like method). Thus, JFHSS and JEGPSS methods can significantly reduce the computational
cost of evaluation of the nonlinear term, especially when the nonlinear part is so complicated, e.g.,
in Example 2, the difference between the computational cost of the nonlinear HSS-like method and the
JFHSS method has increased, since the problem has a more complicated nonlinear term.

It must be noted that, in the inner iteration, for solving the linear systems related to the Hermitian
part (in HSS scheme) and the skew-Hermitian part (in both HSS and GPSS schemes), we have employed
respectively the conjugate gradient (CG) method and the Lanczos method (for more details, see [17]).

In this example, = tol was used for all steps; in most cases, we obtained equal Newton-like
and outer iterations at each step; however, in general, choosing equal 7 and tol does not always
lead to equal Newton-like and outer iterations. For example, in cases that nonlinearity increases
(e.g., when we choose initial value 1(?) = 12 x 1, in the first steps, the nonlinear term h%y(u) is so big)
result in a different number of Newton-like and outer iterations. In all tables of this paper, 4, b denote
the number a - 107.

Mathematics 2019, 7, 815

12 of 17

Table 1. Results for JFHSS, JEGPSS, nonlinear HSS-like and Picard-HSS methods of Example 1, Case 1

(n = tol = 0.1).
N 30 40 60 70 80 100
g = 1000, JFHSS CPU 0.65 1.81 7.46 13.21 24.45 59.32
u® =1 ITyu 12 12 12 12 12 12
ITj 12 12 12 12 12 12
[T, 9 11.08 10.75 10.75 10.41 10.91
|[F(u™)] 186,—11 3.35,—11 1.70,—11 3.41,—11 354, —11 243,11
JFGPSS CPU 0.63 1.46 5.79 9.84 17.28 44.50
ITyut 12 12 11 11 11 11
1T 14 12 11 11 11 11
ITim 8.78 8 7.64 7.45 7.90 8.73
|[F(u™)| 545, —11 1.89,—11 7.69,—11 1.02,—10 9.63,—11 5.9, —11
Nonlinear HSS-like CPU 0.82 2.03 8.26 14.60 24.65 61.35
IT 129 127 123 124 128 126
|[F(u™)] 145,—-10 153,—10 125 —10 1.10,—10 8.60,—11 891, —11
Picard-HSS - - - - - - -
q = 2000, JFHSS CPU 1.04 2.71 11.32 19.87 31.48 76.13
u® =1 ITyut 12 12 12 12 12 12
1T 12 12 12 12 12 12
ITim 16.08 14.67 14.25 14.17 14 14.08
|F(u™)] 147,-10 930,—11 7.92,—11 880,—11 9.56,—11 656, —11
JFGPSS CPU 0.85 2.20 8.57 14.26 23.50 54.90
ITous 12 12 12 12 12 12
IT; 12 12 12 12 12 12
ITim 14.42 12.42 10.58 10 9.84 9.91
|[F(u™)] 157,—10 849, —11 333,—-11 2.80,—11 238 —11 423,11
Nonlinear HSS-like CPU 1.32 2.94 12.11 20.51 33.88 80.97
IT 188 172 167 166 165 165
|F(u™)] 3.24,—10 250,—10 2.07,—10 2.32,—10 2.037,—10 1.81,—10
Picard-HSS - - - - - - -
g = 1000, JFHSS CPU 0.80 2.24 9.34 14.56 23.77 60.21
u® =4x1 ITyut 12 12 12 12 12 12
IT; 12 12 12 12 12 12
[T 11.08 11 10.67 10.75 10.50 11.25
|[F(u™)] 194,—10 1.70,—10 9.33,—-11 9.94,—-11 115 —10 877, —11
JFGPSS CPU 0.56 151 6.55 12.47 21.03 55.50
ITyu 12 12 11 12 11 11
IT; 12 12 11 12 11 11
[T 8.92 8.34 8.72 8.75 9.55 10.63
|F(u™)] 976,-11 7.68,—11 4.60,—10 635 —11 373,-10 3.78,—10
Nonlinear HSS-like - - - - - - -
Picard-HSS - - - - - - -
g = 2000, JFHSS CPU 0.99 2.51 11.20 19.45 3223 77.58
u® =4x1 ITyu 12 12 12 12 12 12
ITi 12 12 12 12 12 12
ITip, 16.08 14.67 14.25 14.17 14 14.08
|F(u™)| 588, —10 3.71,—10 3.20,—10 357,—10 3.75,—10 2.69,—10
JFGPSS CPU 0.85 2.20 8.58 14.02 2322 54.94
ITyut 12 12 12 12 12 12
1T 12 12 12 12 12 12
ITim 14.42 12.41 10.58 9.92 9.84 9.84
|F(u™)] 6.26,—10 3.44,—10 1.31,—10 1.63,—10 1.08,—10 2.08,—10
Nonlinear HSS-like - - - - - - -
Picard-HSS - - - - - - -
g = 1000, JFHSS CPU 0.81 223 10.41 18.89 31.31 81.74
u® =12x1 ITyut 12 12 12 12 12 12
IT; 14 14 14 14 14 14
[T 10.85 12.83 11.28 11.71 11.64 12.93
|F(u™)| 147,-8 1.05,—-8 750,—9 455, -9 3.08,—-9 329,—9
JFGPSS CPU 0.66 1.70 7.95 14.30 25.44 63.80
ITyu 12 12 12 12 12 12
IT; 14 14 14 14 14 14
ITim 8.78 8 7.86 8.64 9.07 9.92
|F(u(m)|| 802, -9 311, -8 340,—9 232,-9 161,-9 6.16,—10
Nonlinear HSS-like - - - - - - -

Picard-HSS

Mathematics 2019, 7, 815

Table 1. Cont.

13 of 17

N 30 40 60 70 80 100
g = 2000, JEHSS CPU 1.06 2.90 13.55 21.72 38.94 87.18
u® =12x1 ITout 12 12 12 12 12 12
IT; 14 14 14 13 14 13
ITip, 14.93 14.36 14.86 14.62 14.57 15
|lF(u™)| 2.06, -8 148,-8 9.76,—9 6.96,—9 6.58,—9 5.72,—9
JEGPSS CPU 0.95 245 10.03 17.81 29.06 69.57
ITout 12 12 12 12 12 12
1Ty 14 14 14 14 14 13
[Ty 13.71 11.64 10.71 10.85 10.64 11.31
|lF(u()y|| 191, -8 1.30,—8 6.08,—9 326,—9 635 -9 3.23,—9

Nonlinear HSS-like
Picard-HSS

Table 2. Results for JFHSS, JFGPSS, nonlinear HSS-like and Picard-HSS methods of Example 1, Case 2

(n = tol =0.1).
N 30 40 60 70 80 100
q = 1000, JFHSS CPU 0.73 2.03 9.54 16.99 27.27 65.47
u® =1 ITyut 11 11 11 12 12 12
ITi 12 12 12 13 13 13
ITipy 11.25 11.41 11.92 11.23 10.92 12
[F(u™)] 1.64,—10 1.18,—10 1.43,—11 1.32,—11 195 —11 156, —11
JFGPSS CPU 0.57 1.53 7.19 12.59 19.42 53.59
1Tyt 11 11 11 11 11 12
ITins 12 12 12 12 12 13
ITim 9 8.25 8.75 8.92 8.25 9
|[F(u™)] 545,—11 8.19,—11 856, —11 7.6,—11 527,—11 4.81,—12
Nonlinear HSS-like CPU 0.82 2.30 9.86 14.38 29.31 59.91
IT 128 128 123 124 121 126
|[F(u™)] 1.81,-10 143,—10 1.25—10 1.10,—10 1.15—10 1.06,—10
Picard-HSS - - - - - - -
q = 2000, JFHSS CPU 0.98 2.63 11.73 20.51 36.07 77.20
u® =1 ITyut 11 11 11 11 12 12
ITi 12 12 12 12 13 13
ITim 16 15 14.50 14.67 14.30 14.62
|[F(u™)] 249,—10 226,—10 2.03,—10 230,—10 261, —11 174, —11
JFGPSS CPU 0.88 2.26 8.61 15.08 25.83 60.7
ITyut 11 11 11 11 12 11
IT; 12 12 12 12 13 12
ITim 14.33 12.08 10.58 10.66 9.69 11
|[F(u™)] 2.04,—-10 291,-10 1.91,—-10 1.09,—-10 1.64,—11 1.72,—10
Nonlinear HSS-like CPU 1.15 3.85 12.52 19.61 37.70 79.26
IT 187 171 166 166 164 164
|[F(u™)] 3.68-10 3.07,—10 248,—10 2.17,—10 242,—10 2.13,—10
Picard-HSS - - - - - - -
q = 1000, JFHSS CPU 0.72 2.28 9.39 16.62 28.53 67.23
u® =4x1 ITyut 11 11 11 12 11 11
IT; 12 12 12 12 12 12
[T 11.41 11.33 11.41 11.75 12.08 12.34
|[F(u™)] 1.62,-10 2.01,—-10 1.64,—10 192,10 2.89,—-10 247,—10
JFGPSS CPU 0.69 1.97 8.85 16.53 26.53 70.80
ITyu 11 11 11 11 12 11
IT; 12 12 12 12 13 12
ITim 10.91 11.16 11 11.42 11.42 12.34
|F(u)| 218,-10 1.22,—-10 1.21,-10 835 —11 115 —10 1.17,—10
Nonlinear HSS-like - - - - - - -

Picard-HSS

Mathematics 2019, 7, 815 14 of 17

Table 2. Cont.

N 30 40 60 70 80 100
q = 2000, JFHSS CPU 0.97 2.59 11.06 20.24 33.75 79.80
u® =4x1 ITyut 11 11 11 11 11 11
IT; 12 12 12 12 12 12
[T 15.92 15.08 14.50 14.58 14.66 14.92
|[F(u™)] 965 —10 4.15,—10 4.31,—10 4.40,—10 3.82,—10 3.39,—10
JFGPSS CPU 0.88 2.18 8.75 14.60 25.05 64.79
ITyu 11 11 11 11 11 11
IT; 12 12 12 12 12 12
ITim 14.50 12.42 10.66 10.42 10.58 11.08
|[F(u™)] 5.06,—10 3.61,—10 2.53,—10 3.32,—10 295 —10 1.97,—10
Nonlinear HSS-like - - - - - - -
Picard-HSS - - - - - - -
g = 1000, JFHSS CPU 0.77 2.33 10.82 19.56 32.13 85.32
u® =13 x1 IT,ut 12 12 12 12 12 12
ITi 14 14 14 14 14 14
ITip, 10.85 12.83 11.28 11.71 11.64 12.92
[Fum)| 144, -8 136,—8 747,—9 456,—9 38,—-9 3.54,—9
JEGPSS CPU 0.65 1.74 8.00 14.54 25.02 64.19
ITyut 12 12 12 12 12 12
ITi 14 14 14 14 14 14
ITim 8.78 8 8.28 8.64 9.07 9.86

HF(u(”))H 8.03, —9 1.44, -8 335,—9 476,-9 1.69, -9 1.085, —9
Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -
q = 2000, JFHSS CPU 1.08 297 11.27 22.45 39.98 89.15
u® =13 %1 ITout 12 12 12 12 12 12
ITy 14 14 14 14 14 14
ITin 14.93 14.35 14.43 14.62 14.57 15
|[F(u)] 201,-8 149,-8 873,—9 697,-9 657,-9 572,—9
JEGPSS CPU 0.99 2.41 10.15 17.98 29.33 67.45
ITous 12 12 12 12 12 12
IT; 14 14 14 14 14 13
I 13.78 11.64 10.71 10.86 10.64 11.31
|Eu)y|| 1.70,—8 1.30,—8 6.02,—9 323,-9 634, -9 321,—9
Nonlinear HSS-like - - - - - - -
Picard-HSS - - - - - - -

The optimal value for parameter a that minimizes the boundary of spectral radius of the
iteration matrices is important because it also improves the convergence speed of Picard-HSS,
nonlinear HSS-like, JFHSS and JFGPSS methods. There are no general results to determine the
optimal & and &, so we need to obtain the optimal values of parameters « and « experimentally.
However, Bai and Golub [8] proved that spectral radius of HSS iterative matrix that is obtained from

the coefficient matrix M in (29) is bounded by ||T|| < c(a) = max G < 1, and the minimum
NEA(H) &+ A
of this bound is obtained when
=o' = /\min(H)/\mux(H)r

where A, 1) and A,4. (1) are, respectively, the smallest and the largest eigenvalues of Hermitian

matrix H. Usually, in an HSS scheme, aopr # a* = argmin{c(a)} < 1and p(T(a*)) > o(T(&opt))-
>0
When g or gh/2 is small, o(a) is close to p(T(«)) and in this case a* is close to aop: and a* can be a

good estimation for a,p;. However, when g or gh/2 is large (the skew-Hermitian part is dominant),
hence o(a) deviates too much from p(T(«)), so using a* is not useful. In this case, p(T(«)) attains its
minimum at a,p; that is far from a*, but close to gh/2 (see [8]).

In the GPSS case, a spectral radius of T(«) is bounded by ||V (#)||, where V(%) = (&I — Py)(al +
Py)~ L. Since ||V(&)|l2 < 1 (see [18]), GPSS inner iterations unconditionally converge to the exact
solution in each inner iteration of a JFGPSS scheme. However, when P; € C"*" is a general
positive-definite matrix, we do not have any formula to compute a* = argmin{||V(@)||} that is

o>

Mathematics 2019, 7, 815 15 0f 17

the value that minimizes the boundary of iteration matrix T («), nor do we have a formula for ®opt, the
value that minimizes || T(%)||.

In Table 3, the optimal values of a,,: and &yt have been written (tested and optimal a and ®,¢)
that are determined experimentally by using increments as 0.25. In addition, the corresponding
spectral radius of the iteration matrices T'(«) and T (@) for HSS and GPSS algorithms that are used as
inner iterations to solve (29) are reported in this table. One can see that the spectral radius of GPSS
method in all cases is smaller than HSS scheme, which results in faster convergence.

Table 3. Optimal value of « for HSS and GPSS inner iterations for different values of N and g of

Example 1.

N 30 40 50 60 70 80 90 100

g = 1000 HSS Qopt 18 15 10.5 9 8 6 5.75 5.75
p(T(aopt)) 07226 0.6930 0.6743 0.6613 0.6513 0.6485 0.6459 0.6467
o 0.4047 03062 0.2462 0.2059 0.1769 0.1551 0.1381 0.1244
o(T(a*)) 0.8971 09211 09360 0.9461 09535 0.9590 0.9634 0.9669

h

% 16.1290 12.1951 9.8039 8.1967 7.0423 6.1728 5.4945 4.9505
p(T(%)) 0.7236 0.6974 0.6783 0.6674 0.6608 0.6574 0.6562 0.6569

GPSS opt 11.25 9.5 8.5 7.5 7 6.5 6 5.5
p(T(@pt)) 05428 05140 05076 0.4983 0.4959 0.4902 0.4982 0.4983

g = 2000 HSS Qopt 26 22 16 13.5 12 10 8.75 8

p(T(agpt)) 07911 07663 0.6499 07399 0.0.7373 07302 0.7302 0.7242
o* 0.1638 0.0938 0.0606 0.0424 0.0313 0.0241 0.0191 0.0155

T(a* 09579 09757 0.9842 0.9889 0.9918 0.9937 0.9950 0.9959
p

% 322581 2439 1961 163934 140845 1235 1099 9.9010

o(T(%) 07953 077 07512 07439 07343 0728 07282 0.7270

GPSS Topt 15 13 1 10 9 8 75 7
o(T(@opr)) 06424 06212 06144 06063 06036 06028 0.6090 0.6033

Example 2 ([10]). We consider the two-dimensional nonlinear convection-diffusion equation

—(thxx + ttyy) + Y (xuy + yuy) = ue' +sin(\/1+uZ +u2), (x,y)€Q,
u(x,y) =0, (x,y) € 0Q),

where Q) = (0,1) x (0,1), 0Q) is its boundary and q is a positive constant for measuring magnitude of the
convection term. By applying the upwind finite difference scheme on the equidistance discretization grid (stepsize

1)))) . .
h = N+l) with the central difference scheme to the convective term, we obtain a system of nonlinear equations

in the general form (for more details, see [10])
H(x) = Mx — F?y(x). (35)

We have selected zero vector u(®) =0 = (0,0,---, O)T as the initial guess. In addition, again (31) and (32)
are used respectively as the stopping criteria for the inner iterations and Newton-like iterations in the JFHSS
method and (30) for outer iterations in [FHSS, Picard-HSS and nonlinear HSS-like methods. Moreover, to avoid
computing Jacobian in Picard-HSS and nonlinear HSS-like methods, we used (33). Similar to Example 1,
one can use other iterative methods instead of HSS in Algorithm 1, for which the spectral radius of its iteration
matrix is smaller and thus results in faster convergence.

Numerical results for N = 32,48,64, optimal o and different values of q for JENHSS, Picard-HSS
and nonlinear HSS-like schemes are reported in Table 4. In addition, we adopted the experimentally optimal
parameters w to obtain the least CPU times for these iterative methods. One can see that JFHSS performs better
than nonlinear HSS-like and Picard-HSS methods in all cases.

Mathematics 2019, 7, 815 16 of 17

Table 4. Results of JFHSS, nonlinear HSS-like and Picard-HSS methods for Example 2 (7 = tol = 0.1).

q 50 100 200 400 1200 2000
N=32 opt 14 1.6 25 8 215 34
JFHSS CPU 1.23 142 1.29 1.53 1.71 1.86
ITyus 12 12 12 12 12 12
T 12 12 12 12 12 12
T 11.34 11.67 12 12.75 16.25 20.34
|FuM)| 154,-14 22,-14 147,-14 687,—15 822,—15 13,14
Nonlinear HSS-like ~ CPU 2.03 239 225 231 242 245
IT 129 137 140 146 160 167
[FuM)| 1.1,-14 225 -14 231,—14 223,—14 24,-14 23,-14
Picard-HSS CPU 7.96 8.31 7.76 8 8.60 8.86
ITyus 12 12 12 12 12 12
T 121.1 131.91 126.75 145.34 146.34 147
[FM)| 1.1,-14 124,-14 157, -14 196, —14 184, —14 16,—14
N =48 Wopt 0.8 1.4 26 48 13 205
JFHSS CPU 5.25 5.31 55 593 6.21 6.28
Ty 12 12 12 12 12 12
IT; 12 12 12 12 12 12
T 13.66 14.58 15.083 16.08 17.34 17.58
[F(uM)|| 242,-14 6.04,-15 636, —15 196,14 6.15,—15 8.60, —15
Nonlinear HSS-like ~ CPU 8.87 11.828 10.02 10.31 11.28 11.85
IT 161 209 178 186 201 207
[FuM)| 15,-14 159, —14 146, —14 157,—14 1615 —14 146,14
Picard-HSS CPU 50.81 50.01 51.85 53.34 56.32 59.95
Ty 12 12 12 12 12 12
ITjp 177.16 179.1 183.50 189.34 202.75 213.25
|[FM)| 77,-15 967,-15 1.11,—14 123,—14 122,—14 126,—14
N =64 Kopt 0.7 1 1.8 33 8.9 14.2
JFHSS CPU 21.68 18.23 18.65 19.156 20.53 21.39
Tyt 12 12 12 12 12 12
ITis 12 12 12 12 12 12
T 21 17.39 18.17 18.75 19.91 20.84
[Fu™)| 161, —-14 673,-15 9.15,—15 839,—15 7.7,—15 471,15
Nonlinear HSS-like ~ CPU 38.57 31.78 33.50 34.65 36.56 37.70
IT 246 206 213 221 235 242
[FuM)| 117,-14 126,-14 126,—14 116,—14 119,—14 122,—14
Picard-HSS CPU 219.54 217.45 266.83 225.37 228.60 248.35
ITyus 12 12 12 12 12 12
ITjm 219.54 248.58 230.75 252 258.75 264.50

[Fu™)| 612, -15 7.7,-15 89,-15 10,—14 11,-14 11,14

5. Conclusions

In this paper, an iterative method based on two-stage splitting methods has been proposed to
solve weakly nonlinear systems and a convergence property of this method has been investigated.
This method is a combination of an inexact Newton method, Hermitian and skew-Hermitian splitting
(or generalized positive definite and skew-Hermitian splitting) scheme. The advantage of our new
method, Picard-HSS and nonlinear HSS-like over the methods like Newton method is that they don’t
need explicit construction and accurate computation of the Jacobian matrix. Hence, computation
works and computer memory may be saved in actual application; however, numerical results show
that JFHSS and JFGPSS methods perform better than the two other ones.

Numerical results show that JFHSS and JFGPSS iteration algorithms are effective, robust,
and feasible nonlinear solvers for a class of weakly nonlinear systems. Moreover, employing these
algorithms to solve nonlinear systems is found to be simple, accurate, fast, flexible, convenient and
have small computation cost. In addition, it must be noted that, even though our inner iteration
scheme in this paper are HSS and GPSS methods, another inner iteration solver can be used subject to
the condition that the iteration matrix satisfies in ||T|| < 1.

Mathematics 2019, 7, 815 17 of 17

Author Contributions: The contributions of authors are roughly equal.

Funding: This research received no external funding.

Acknowledgments: The third and fourth authors have been partially supported by the Spanish Ministerio de
Ciencia, Innovacién y Universidades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shen, W,; Li, C. Kantorovich-type convergence criterion for inexact Newton methods. Appl. Numer. Math.
2009, 59, 1599-1611. [CrossRef]

2. An, H.-B.; Bai, Z.-Z. A globally convergent Newton-GMRES method for large sparse systems of nonlinear
equations. Appl. Numer. Math. 2007, 57, 235-252. [CrossRef]

3. Eisenstat, S.C.; Walker, H.E. Globally convergent inexact Newton methods. SIAM |. Optim. 1994, 4, 393—-422.
[CrossRef]

4. Gomes-Ruggiero, M.A.; Lopes, V.L.R.; Toledo-Benavides, J.V. A globally convergent inexact Newton method
with a new choice for the forcing term. Ann. Oper. Res. 2008, 157, 193-205. [CrossRef]

5. Bai, Z.-Z. A class of two-stage iterative methods for systems of weakly nonlinear equations. Numer. Algorithms
1997, 14, 295-319. [CrossRef]

6. Zhu, M.-Z. Modified iteration methods based on the Asymmetric HSS for weakly nonlinear systems.
J. Comput. Anal. Appl. 2013, 15, 188-195.

7. Axelsson, O.; Bai, Z.-Z.; Qiu, S.-X. A class of nested iteration schemes for linear systems with a coefficient
matrix with a dominant positive definite symmetric part. Numer. Algorithms 2004, 35, 351-372. [CrossRef]

8. Bai, Z.-Z.; Golub, G.H.; Ng, M.K. Hermitian and skew-Hermitian splitting methods for non-Hermitian
positive definite linear systems. SIAM]. Matrix Anal. Appl. 2003, 24, 603-626. [CrossRef]

9. Li, L;Huang, T.-Z,; Liu, X.-P. Asymmetric Hermitian and skew-Hermitian splitting methods for positive
definite linear systems. Comput. Math. Appl. 2007, 54, 147-159. [CrossRef]

10. Bai, Z.-Z.; Yang, X. On HSS-based iteration methods for weakly nonlinear systems. Appl. Numer. Math. 2009,
59, 2923-2936. [CrossRef]

11. Bai, Z.-Z,; Migallén, V.; Penadés, J.; Szyld, D.B. Block and asynchronous two-stage methods for mildly
nonlinear systems. Numer. Math. 1999, 82, 1-20. [CrossRef]

12. Zhu, M.-Z.; Zhang, G.-F. On CSCS-based iteration methods for Toeplitz system of weakly nonlinear equations.
J. Comput. Appl. Math. 2011, 235, 5095-5104. [CrossRef]

13. Bai, Z.-Z.; Guo, X.-P. On Newton-HSS methods for systems of nonlinear equations with positive-definite
Jacobian matrices. J. Comput. Math. 2010, 28, 235-260.

14. Li, X.;; Wu, Y.-J. Accelerated Newton-GPSS methods for systems of nonlinear equations. J. Comput. Anal. Appl.
2014, 17, 245-254.

15. Edwards, C.H. Advanced Calculus of Several Variables; Academic Press: New York, NY, USA, 1973.

16. Cao, Y;; Tan, W.-W.; Jiang, M.-Q. A generalization of the positive-definite and skew-Hermitian splitting
iteration. Numer. Algebra Control Optim. 2012, 2, 811-821.

17. Bai, Z.-Z.; Golub, G.H.; Ng, M.K. On inexact Hermitian and skew-Hermitian splitting methods for
non-Hermitian positive definite linear systems. Linear Algebra Appl. 2008, 428, 413—440. [CrossRef]

18. Bai, Z.-Z.; Golub, G.H.; Lu, L.-Z; Yin, J.-F. Block triangular and skew-Hermitian splitting methods for

positive-definite linear systems. SIAM J. Sci. Comput. 2005, 26, 844-863.

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apnum.2008.11.002
http://dx.doi.org/10.1016/j.apnum.2006.02.007
http://dx.doi.org/10.1137/0804022
http://dx.doi.org/10.1007/s10479-007-0196-y
http://dx.doi.org/10.1023/A:1019125332723
http://dx.doi.org/10.1023/B:NUMA.0000021766.70028.66
http://dx.doi.org/10.1137/S0895479801395458
http://dx.doi.org/10.1016/j.camwa.2006.12.024
http://dx.doi.org/10.1016/j.apnum.2009.06.005
http://dx.doi.org/10.1007/s002110050409
http://dx.doi.org/10.1016/j.cam.2011.04.038
http://dx.doi.org/10.1016/j.laa.2007.02.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The New Algorithm
	Picard-HSS Iteration Method
	Nonlinear HSS-Like Iteration Method
	Our Proposal Iterative Scheme

	Convergence of the New Method
	Application
	Conclusions
	References

