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Abstract: Combining the ideas and advantages of intuitionistic fuzzy set (IFS) and hesitant fuzzy
set (HFS), dual hesitant fuzzy set (DHFS) could express uncertain and complex information given
by decision makers (DMs) in a more flexible manner. By virtue of the existing measure methods,
elements in DHFSs should be of equal length and thus some values must be added into the shorter
elements according to the risk preference of DMs. The extension of values will increase the subjectivity
of decision-making to some extent, and different extension methods may produce different results.
In order to address this issue, we first propose several new forms of distance and similarity measures
without adding values. Subsequently, according to the proposed distance and similarity measures,
two entropy measures are presented from the viewpoints of complementary set and the fuzziest set,
respectively. Furthermore, based on the new distance and entropy measures, an extended technique
for order preference by similarity to an ideal solution (TOPSIS) method is proposed for dealing with
multi-attribute decision-making problems in the context of DHFS. Finally, two practical examples are
analyzed to show the validity and applicability of the proposed method.
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1. Introduction

In real life, when people want to give evaluation information, the expression of uncertainty
is an important and challenging issue. The theory of fuzzy set (FS) originally introduced by Zadeh [1]
attracted much attention and has been developed into several different types, such as type-2 fuzzy
set [2], IFS [3,4], linguistic fuzzy set [5,6], fuzzy multi-sets [7] and HFS [8–10]. The element in IFS
contains membership information and non-membership information, while membership degree of HFS
has a set of several values between 0 and 1 to describe hesitant information. However, both membership
and non-membership degree of IFS are definite numbers, which do not accord with the hesitation
state that people often have in the real world. The HFS only considers the membership problem and
ignores the non-membership problem. Combining the ideas and advantages of IFS and HFS, Zhu
and his coworkers [11] put forward the definition and related theory of DHFS in 2012. Specifically,
the element in DHFS simultaneously has membership degree and non-membership degree, which
are both composed of several values in [0,1], respectively. It is noted that FS, IFS, and HFS can be
viewed as the particular situations of DHFS under certain conditions. Compared with some existing
tools, DHFS is capable of further reflecting fuzziness and hesitancy in practical applications. Therefore,
DHFS not only gives DMs with a powerful tool for expressing their preference, but also collects the
original information as much as possible.
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To date, many scholars have done a lot of research to further develop the theory of DHFSs,
for example, the correlation measures [12–16], the distance and similarity measures [17–23], the entropy
measures [24–26], the aggregation operators [27–35] and so on. As an important field of dual hesitant
fuzzy theory, information measure received much attention and has been used for MADM problems
in real world. Su and his coworkers [18] put forward a series of distance and similarity measures
of DHFS and showed their application to pattern recognition. Subsequent to that, based on the
matching functions, the set-theoretic method and the geometric distance model and, some novel types
of distance and similarity measures were developed [19]. Garg et al. [21] proposed two distance
measures of probabilistic DHFS and used them to obtain the criteria weights by the maximum deviation
method. Liu et al. [22] discussed the Hamming distance of interval-valued dual hesitant uncertain
linguistic set. Based on the distance of dual hesitant fuzzy elements (DHFEs), Su and his partner [23]
proposed means and the variances of (DHFEs) and applied them to describe the importance degrees
of the arguments. Several entropy measures of DHFSs were presented with the help of some simple
functions [24]. Moreover, Ye [25] developed the cross-entropy and weighted cross-entropy measures
for DHFSs. The new entropy formula of dual hesitating fuzzy set was used to calculate the weight of
attribute, which made the decision result more reasonable [26].

Even though great progress has already been made, there are still some aspects requiring further
investigation. In most cases, membership degrees and non-membership degrees of two DHFEs
always have different numbers of values. Among the existing information measures for DHFSs,
the membership or non-membership degrees of DHFE with a fewer number of values require extension,
based on DMs’ risk preference [36]. Nonetheless, it is difficult to judge and determine the risk attitude
and the value of risk preference of DMs. Adding values into dual hesitant fuzzy elements not only
makes the information lose their original feature and thus increases the subjectivity of decision-making
to some extent. Meanwhile, different extension methods will lead to different results.

In Ref. [37], some distance measures for HFSs were first proposed without adding values
into shorter hesitant fuzzy elements. Subsequently, based on Liao and his coworkers’ work [38],
new correlation coefficients of HFSs were presented without value extension for shorter elements [39].
Motivated by this work, some new distance and similarity measures for DHFS are raised without
adding any values into shorter dual hesitant fuzzy elements. Then two entropy measures are given
on the basis of the complementary set of DHFS and the fuzziest set, respectively.

The organization of this paper is constructed as follows. Section 2 reviews some relevant concepts
of DHFS. Section 3 proposes some new distance and similarity measures for DHFS without adding any
values into shorter DHFEs. Subsequently, two dual hesitant fuzzy entropy measures are presented from
different perspectives. Applying the novel information measures, the TOPSIS method under dual hesitant
fuzzy circumstance is given in Section 4. Two practical examples are provided to illustrate the applicability
and advantages of the developed method in Section 5. The last section concludes this study.

2. Preliminaries

Motivated by IFSs and HFSs, Zhu and Xu [11] proposed the theory of DHFS and then developed
a series of related measures. Here, two basic concepts and a widely used extension rule are introduced.

Definition 1 ([11]). A DHFS D associated with a fixed set X can be described as:

D = {< x, h(x), g(x) > |x ∈ X}, (1)

where h(x) and g(x) denote the membership and non-membership of the element x ∈ X, they contain several
values in [0, 1], respectively. Meanwhile,

0 ≤ ζ+ + η+ ≤ 1, ζ+ = ∪ζ∈h(x) max{ζ}, η+ = ∪η∈g(x) max{η} (2)

where ζ ∈ h(x), η ∈ g(x) for all x ∈ X.
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For simplicity, ψ(x) = (h(x), g(x)) is called dual hesitant fuzzy element (DHFE), which can be
denoted by ψ = (h, g).

It is easily seen that the DHFE ψ makes no sense if g = h = ∅. If g = ∅ and h 6= ∅, then DHFE
will reduce to HFE. Thus, we only focus on the non-trivial case with the assumption h 6= ∅ and g 6= ∅
in this work. Similarly, the operations about DHFS, such as union, intersection and so on were also
given in Ref. [11].

Definition 2 ([11]). Let ψ = (h, g) be a DHFE, h 6= ∅ and g 6= ∅, the complement of ψ is given by:

ψc = ∪ζ∈h,η∈g{{η}, {ζ}}. (3)

In most cases, the number of membership and non-membership degrees of two DHFEs may be
not same, Specifically, l(h1) 6= l(h2) or l(g1) 6= l(g2) for two DHFEs ψ1 = (h1, g1) and ψ2 = (h2, g2).
In order to operate DHFEs in computations more easily, Zhu and Xu [36] gave the extension principle.

Definition 3 ([36]). Let ψ = (h, g) be a DHFE, then the added membership degree ζ∗ and the added
non-membership degree η∗ can be obtained by using the formulas

ζ∗ = δζ+ + (1− δ)ζ−, η∗ = (1− δ)η+ + δη−, (4)

where the parameter δ (0 ≤ δ ≤ 1) depends on the risk preference of DMs,

ζ+ = ∪ζ∈h(x) max{ζ}, ζ− = ∪ζ∈h(x) min{ζ},
η+ = ∪η∈g(x) max{η}, η− = ∪η∈g(x) min{η}.

Example 1. Given two DHFEs ψ1 = {{0.5, 0.3, 0.2}, {0.3, 0.2}},ψ2 = {{0.3, 0.2},{0.7, 0.6, 0.5}},
then the optimist (δ = 1) may extend ψ1 and ψ2 as ψ1 = {{0.5, 0.3, 0.2},{0.3, 0.2, 0.2}}
and ψ2 = {{0.3, 0.3, 0.2}, {0.7, 0.6, 0.5}}, while the pessimist (δ = 0) may extend them as
ψ1 = {{0.5, 0.3, 0.2},{0.3, 0.3, 0.2}} and ψ2 = {{0.3, 0.2, 0.2},{0.7, 0.6, 0.5}}.

3. Information Measures for DHFSs

Compared with the existing fuzzy sets, DHFS appears to be a more flexible tool in practical
applications because it considers more comprehensive information given by decision makers.
In Ref. [11], some basic operations about complement, union, intersection were proposed, and the
related properties were investigated. Subsequently, distance and similarity measures of DHFSs have
drawn much attention [18–21], including Euclidean distance, Hamming distance, Hausdorff distance
and hybrid distances and so on.

In most situations, the numbers of values of membership degree or non-membership degree
in different DHFEs are not same. Generally speaking, one should adjust the shorter DHFE until both
of them have the same numbers of values in calculating the distance between two DHFEs. It is easily
seen from Definition 3 that the added values depend on the parameter δ, while the values of δ is closely
related with DM’s risk preference. It is quite difficult and challenging to judge and determine the risk
altitude of DMs and the degree of risk preference. At the same time, values in shorter DHFEs may
be extended by different methods. Adding values will make some DHFEs lose their original features
and the decision results more subjective. To address this issue, we first present several new forms
of distance and similarity measures without adding values into the shorter DHFEs. Then two entropy
measures are given according to the proposed distance measures and similarity measures.

3.1. Distance and Similarity Measures

Definition 4. For two DHFEs ψ1 = (h1, g1) and ψ2 = (h2, g2), ψ1 is superior to ψ2 (denoted by ψ1 � ψ2)

if and only if ζ1 > ζ2, η1 < η2 for any ζ1 ∈ h1, η1 ∈ g1; ζ2 ∈ h2, η2 ∈ g2.



Mathematics 2019, 7, 786 4 of 18

Definition 5. Let ψ1, ψ2 and ψ3 be three DHFEs. If d satisfies four properties as follows:
(S1) 0 ≤ d(ψ1, ψ2) ≤ 1;
(S2) d(ψ1, ψ2) = 0 iff ψ1 = ψ2;
(S3) d(ψ1, ψ2) = d(ψ2, ψ1);
(S4) if ψ1 ≺ ψ2 ≺ ψ3, then d(ψ1, ψ3) ≥ d(ψ1, ψ2) and d(ψ1, ψ3) ≥ d(ψ2, ψ3),
then we call d the distance measure for DHFE.

Definition 6. Let ψ1, ψ2 and ψ3 be three DHFEs. If s satisfies four properties as follows:
(S5) 0 ≤ s(ψ1, ψ2) ≤ 1;
(S6) s(ψ1, ψ2) = 1 iff ψ1 = ψ2;
(S7) s(ψ1, ψ2) = s(ψ2, ψ1);
(S8) if ψ1 ≺ ψ2 ≺ ψ3, then s(ψ1, ψ3) ≤ s(ψ1, ψ2) and s(ψ1, ψ3) ≤ s(ψ2, ψ3),
then we call s the similarity measure for DHFE.

On the basis of the above axiomatic definition of distance, we propose several novel distance
measures for DHFE and DHFS without adding values into DHFEs.

Definition 7. Let ψ1 = (h1, g1) and ψ2 = (h2, g2) be two DHFEs, then the distance between ψ1 and ψ2 can
be defined as follows.

1. Dual hesitant normalized Hamming distance:

d(ψ1, ψ2) =
1
4

(
1

l(h1)
∑

ζ1∈h1

min
ζ2∈h2
|ζ1 − ζ2|+

1
l(h2)

∑
ζ2∈h2

min
ζ1∈h1
|ζ2 − ζ1|

+
1

l(g1)
∑

η1∈g1

min
η2∈g2
|η1 − η2|+

1
l(g2)

∑
η2∈g2

min
η1∈g1
|η2 − η1|

)
.

(5)

2. Dual hesitant normalized Euclidean distance:

d(ψ1, ψ2) =

[
1
4

(
1

l(h1)
∑

ζ1∈h1

min
ζ2∈h2
|ζ1 − ζ2|2 +

1
l(h2)

∑
ζ2∈h2

min
ζ1∈h1
|ζ2 − ζ1|2

+
1

l(g1)
∑

η1∈g1

min
η2∈g2
|η1 − η2|2 +

1
l(g2)

∑
η2∈g2

min
η1∈g1
|η2 − η1|2

)] 1
2

.

(6)

3. Generalized dual hesitant normalized distance:

d(ψ1, ψ2) =

[
1
4

(
1

l(h1)
∑

ζ1∈h1

min
ζ2∈h2
|ζ1 − ζ2|λ +

1
l(h2)

∑
ζ2∈h2

min
ζ1∈h1
|ζ2 − ζ1|λ

+
1

l(g1)
∑

η1∈g1

min
η2∈g2
|η1 − η2|λ +

1
l(g2)

∑
η2∈g2

min
η1∈g1
|η2 − η1|λ

)] 1
λ

, λ > 0.

(7)

In (5)–(7), ł(h1), ł(g1), ł(h2), ł(g2) are the numbers of values in h1, g1, h2 and g2, respectively.

Proof. In the following, we will prove that (5) satisfies four axioms given in Definition 5.
(S1). It is obvious that d(ψ1, ψ2) ≥ 0. From the definition of DHFS, we obtain

|ζ1− ζ2| ≤ 1, |η2− η1| ≤ 1, thus we have

min
ζ2∈h2
|ζ1 − ζ2| ≤ 1, min

ζ1∈h1
|ζ2 − ζ1| ≤ 1, min

η2∈g2
|η1 − η2| ≤ 1, min

η1∈g1
|η2 − η1| ≤ 1.
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One can obtain

d(ψ1, ψ2) =
1
4

(
1

l(h1)
∑

ζ1∈h1

min
ζ2∈h2
|ζ1 − ζ2|+

1
l(h2)

∑
ζ2∈h2

min
ζ1∈h1
|ζ2 − ζ1|

+
1

l(g1)
∑

η1∈g1

min
η2∈g2
|η1 − η2|+

1
l(g2)

∑
η2∈g2

min
η1∈g1
|η2 − η1|

)
≤ 1.

Hence, 0 ≤ d(ψ1, ψ2) ≤ 1.
(S2).

d(ψ1, ψ1) =
1
4

(
1

l(h1)
∑

ζ1∈h1

min
ζ11∈h1

|ζ1 − ζ11|+
1

l(h1)
∑

ζ11∈h1

min
ζ1∈h1
|ζ11 − ζ1|

+
1

l(g1)
∑

η1∈g1

min
η11∈g1

|η1 − η11|+
1

l(g1)
∑

η11∈g1

min
η1∈g1
|η11 − η1|

)
= 0.

(S3). It is straightforward.
(S4). Let ψ1 = (h1, g1), ψ2 = (h2, g2), ψ3 = (h3, g3), and ψ1 ≺ ψ2 ≺ ψ3. From Definition 4,

we have
ζ1 < ζ2 < ζ3, for all ζ1 ∈ h1, ζ2 ∈ h2, ζ3 ∈ h3,

η1 > η2 > η3, for all η1 ∈ g1, η2 ∈ g2, η3 ∈ g3.

Consequently, we get |ζ2 − ζ1| < |ζ3 − ζ1| and |η2 − η1| < |η3 − η1|.
Therefore, the following can be obtained:

d(ψ1, ψ3) =
1
4

(
1

l(h1)
∑

ζ1∈h1

min
ζ3∈h3
|ζ1 − ζ3|+

1
l(h3)

∑
ζ3∈h3

min
ζ1∈h1
|ζ3 − ζ1|

+
1

l(g1)
∑

η1∈g1

min
η3∈g3
|η1 − η3|+

1
l(g3)

∑
η3∈g3

min
η1∈g1
|η3 − η1|

)

≥1
4

(
1

l(h1)
∑

ζ1∈h1

min
ζ2∈h2
|ζ1 − ζ2|+

1
l(h2)

∑
ζ2∈h2

min
ζ1∈h1
|ζ2 − ζ1|

+
1

l(g1)
∑

η1∈g1

min
η2∈g2
|η1 − η2|+

1
l(g2)

∑
η2∈g2

min
η1∈g1
|η2 − η1|

)
=d(ψ1, ψ2).

It is concluded that d(ψ1, ψ3) ≥ d(ψ1, ψ2), d(ψ1, ψ3) ≥ d(ψ2, ψ3) can be proved as well.
Similarly, the distance measures (6) and (7) also satisfy the four axioms given by Definition 5,

for simplicity, the proofs are omitted here.

Remark 1. The generalized distance measure (7) depends on the parameter λ, if λ = 1 and λ = 2,
(7) reduces to the dual hesitant normalized Hamming distance (5) and the dual hesitant normalized Euclidean
distance (6), respectively.

For some decision-making problems, one should take the weight of element xi ∈ X
(i = 1, 2, · · · , n) into consideration. Under dual hesitant fuzzy environment, (5)–(7) can be further
revised as weighted distance measures.

Definition 8. Let X = (x1, x2, · · · , xn), D1 = {< xi, h1(xi), g1(xi) > |xi ∈ X} and D2 = {<
xi, h2(xi), g2(xi) > |xi ∈ X} be two DHFSs, then the generalized dual hesitant weighted distance is defines as:
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d(D1, D2) =

 n

∑
i=1

ωi
4

 1
l(h1(xi))

∑
ζ1(xi)∈h1(xi)

min
ζ2(xi)∈h2(xi)

|ζ1(xi)− ζ2(xi)|λ

+
1

l(h2(xi))
∑

ζ2(xi)∈h2(xi)

min
ζ1(xi)∈h1(xi)

|ζ2(xi)− ζ1(xi)|λ

+
1

l(g1(xi))
∑

η1(xi)∈g1(xi)

min
η2(xi)∈g2(xi)

|η1(xi)− η2(xi)|λ

+
1

l(g2(xi))
∑

η2(xi)∈g2(xi)

min
η1(xi)∈g1(xi)

|η2(xi)− η1(xi)|λ
 1

λ

, λ > 0.

(8)

where ωi ∈ [0, 1] be the weight of each element xi ∈ X and ∑n
i=1 ωi = 1.

In the above distance measures, the variable xi is random. If the domain of discourse and
element’s weight are continuous, the distance measures above can be extended.

Definition 9. Let X = [a, b], D1 = {< x, h1(x), g1(x) > |x ∈ X} and D2 = {< x, h2(x), g2(x) > |x ∈
X} be two DHFSs, then the generalized dual hesitant continuous weighted distance is defined as:

d(D1, D2) =

∫ b

a

ω(x)
4

 1
l(h1(x)) ∑

ζ1(x)∈h1(x)
min

ζ2(x)∈h2(x)
|ζ1(x)− ζ2(x)|λ

+
1

l(h2(x)) ∑
ζ2(x)∈h2(x)

min
ζ1(x)∈h1(x)

|ζ2(x)− ζ1(x)|λ

+
1

l(g1(x)) ∑
η1(x)∈g1(x)

min
η2(x)∈g2(x)

|η1(x)− η2(x)|λ

+
1

l(g2(x)) ∑
η2(x)∈g2(x)

min
η1(x)∈g1(x)

|η2(x)− η1(x)|λ
 dx

 1
λ

, λ > 0.

(9)

where ω(x) ∈ [0, 1] be the weight of x ∈ X and
∫ b

a ω(x)dx = 1.

Remark 2. Distance measure and similarity measure is a close relationship, specifically s = 1 − d.
Once the distance measures are obtained by using Definitions 7–9, the corresponding similarity measures can be
easily derived as well.

3.2. Entropy Measures

Entropy can measure how fuzzy the fuzzy set is. This is considered to be true in the case of DHFS.
Next, two axiomatic definitions of entropy are proposed, then entropy measures for DHFEs will be
given based on the novel distance and similarity measures.

In the proofs of Theorem 1 and Theorem 2, we choose Equation (5) as a distance measure for
DHFE, and the same conclusion will be obtained for other distance measures.

3.2.1. Entropy Measure Based on the Complementary Set

De Luca and Termini [40] proposed an axiomatized definition of non-probabilistic entropy,
whose key idea was that the fuzzy degree of fuzzy set was measured by DMs’ intuitive comprehension.
Based on this idea, Szmidt and Kacprzyk presented the non-probabilistic-type entropy measure
for IFSs [41]. For DHFEs, the entropy can be defined as below.
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Definition 10. Let ψ = (h, g), ψ1 = (h1, g1) and ψ2 = (h2, g2) be three DHFEs. If real-valued function
E : H → [0, 1] possesses the following properties:
(P1) E(ψ) = 0, iff ψ is {{1}, {0}} or {{0}, {1}};
(P2) E(ψ) = 1, iff ζ = η, where ζ ∈ h, η ∈ g;
(P3) E(ψ) = E(ψc);
(P4) E(ψ1) ≤ E(ψ2), if ζ1 ≤ ζ2 and η1 ≥ η2 for ζ2 ≤ η2; or ζ1 ≥ ζ2 and η1 ≤ η2 for ζ2 ≥ η2,
where ζ1 ∈ h1, η1 ∈ g1, ζ2 ∈ h2, η2 ∈ g2,
then E is called an entropy of a DHFE.

As pointed out by Yager [42], the similarity between a set and its complement can measure
fuzziness of a given fuzzy set. Therefore, we can define the following entropy measure for DHFEs.

Theorem 1. Let ψ be an DHFE, its entropy measure is described as,

E1(ψ) = s(ψ, ψc) = 1 − d(ψ, ψc). (10)

Proof. Using Equation (5) and Definition 2, we have

d(ψ, ψc) =
1
4

(
1

l(h) ∑
ζ∈h

min
η∈g
|ζ − η|+ 1

l(g) ∑
η∈g

min
ζ∈h
|η − ζ|

+
1

l(g) ∑
η∈g

min
ζ∈h
|η − ζ|+ 1

l(h) ∑
ζ∈h

min
η∈g
|ζ − η|

)

=
1
2

(
1

l(h) ∑
ζ∈h

min
η∈g
|ζ − η|+ 1

l(g) ∑
η∈g

min
ζ∈h
|η − ζ|

)
.

(11)

(P1). If ψ = {{0},{1}} or {{1},{0}}, from Equation (11), it is easy to get d(ψ, ψc) = 1, specifically
E1(ψ) = 0.

On the other hand, if E1(ψ) = 0, we have d(ψ, ψc) = 1. From Equation (11), it is easily obtained

1
2

(
1

l(h) ∑
ζ∈h

min
η∈g
|ζ − η|+ 1

l(g) ∑
η∈g

min
ζ∈h
|η − ζ|

)
= 1. (12)

According to definition of DHFS, we have 0≤ |η − ζ| ≤ 1. Together with (12), we obtain

min
η∈g
|ζ − η| = 1, min

ζ∈h
|η − ζ| = 1. (13)

Again, using the definition of DHFS, Equation (13) is satisfied if ζ = 0, η = 1 or ζ = 1, η = 0.
Therefore, ψ = {{0}, {1}} or {{1}, {0}}.

(P2). If E1(ψ) = 1, then we have d(ψ, ψc) = 0. Using (11), we obtain(
1

l(h) ∑
ζ∈h

min
η∈g
|ζ − η|+ 1

l(g) ∑
η∈g

min
ζ∈h
|η − ζ|

)
= 0,

which indicates that η = ζ.
(P3). It is straightforward.
(P4). There are two cases to be discussed.
Case (i), if ζ2 ≤ η2, ζ1 ≤ ζ2 and η1 ≥ η2, we have ζ1 − η1 ≤ ζ2 − η2 ≤ 0, thus one can obtain

|ζ1 − η1| ≥ |ζ2 − η2|. (14)



Mathematics 2019, 7, 786 8 of 18

Case (ii), if ζ2 ≥ η2, ζ1 ≥ ζ2 and η1 ≤ η2, we have ζ1 − η1 ≥ ζ2 − η2 ≥ 0, one can find that (14)
is satisfied identically.

Using Equation (11), we obtain

d(ψ1, ψc
1) =

1
2

(
1

l(h1)
∑

ζ1∈h1

min
η1∈g1
|ζ1 − η1|+

1
l(g1)

∑
η1∈g1

min
ζ1∈h1
|η1 − ζ1|

)

≥1
2

(
1

l(h2)
∑

ζ2∈h2

min
η2∈g2
|ζ2 − η2|+

1
l(g2)

∑
η2∈g2

min
ζ2∈h2
|η2 − ζ2|

)
=d(ψ2, ψc

2).

Thus, E1(ψ1) ≤ E1(ψ2) is proved.

3.2.2. Entropy Measure Based on the Fuzziest Set

In Ref. [43], Shang and Jiang pointed out that ψ = {{0.5}, {0.5}} is considered to the fuzziest
set under the dual hesitant fuzzy circumstance. Based on this idea, we present another definition of
entropy for DHFE.

Definition 11. Let ψ = (h, g), ψ1 = (h1, g1) and ψ2 = (h2, g2) be three DHFEs. If real-valued function
E : H → [0, 1] possesses the following conditions:
(P5) E(ψ) = 0, if ψ is {{0}, {1}} or {{1}, {0}};
(P6) E(ψ) = 1, iff ψ is {{0.5}, {0.5}};
(P7) E(ψ) = E(ψc);
(P8) E(ψ1) ≥ E(ψ2) if and only if d(ψ1, {{0.5}, {0.5}}) ≤ d(ψ2, {{0.5}, {0.5}}),
then E is called an entropy of a DHFE.

Remark 3. Condition (P8) in Definition 11 claims that the smaller the distance between the alternative
and the most fuzzy set is, the larger the fuzziness of the alternative is, namely, entropy of the alternative is bigger.

In 2013, Farhadinia [44] adopted the distance between hesitant fuzzy set and the fuzziest hesitant
set to define the entropy for HFSs. We extend the entropy measure for HFSs to the dual hesitant fuzzy
situations. In this work, we give a new entropy measure for DHFS as follows.

Theorem 2. Let ψ be an DHFE, then the entropy measure of ψ is shown as follows:

E2(ψ) = 1 − 2d (ψ, {{0.5}, {0.5}}) . (15)

Proof. In the following, we will prove that (15) satisfies four conditions listed in Definition 11. By using
Equation (5), we have

d (ψ, {{0.5}, {0.5}}) = 1
4

(
1

l(h) ∑
ζ∈h
|ζ − 0.5|+ min

ζ∈h
|0.5− ζ|+ 1

l(g) ∑
η∈g
|η − 0.5|+ min

η∈g
|0.5− η|

)
.

(16)
(P5). If ψ = {{0}, {1}} or {{1}, {0}}, from Equation (16), one can obtain that

d(ψ, {{0.5}, {0.5}}) = 1
2

.

Thus, we have E2(ψ) = 0.



Mathematics 2019, 7, 786 9 of 18

(P6). If E2(ψ) = 1, from (15), we get d(ψ, {{0.5}, {0.5}}) = 0. Using (16), we obtain

1
l(h) ∑

ζ∈h
|ζ − 0.5|+ min

ζ∈h
|0.5− ζ|+ 1

l(g) ∑
η∈g
|η − 0.5|+ min

η∈g
|0.5− η| = 0,

which implies that |ζ − 0.5| = |η − 0.5| = 0. Therefore, we have ψ = {{0.5}, {0.5}}.
If ψ = {{0.5}, {0.5}}, according to (16), we have d(ψ, {{0.5}, {0.5}}) = 0, namely, E2(ψ) = 1.
(P7) and (P8). It is straightforward.

4. Dual Hesitant Fuzzy TOPSIS Method for MADM

Let m alternatives A = {A1, A2, · · · , Am} be evaluated with respect to n attributes
C = {C1, C2, · · · , Cn}. Suppose the information about the weight ωj of the attributes Cj is completely
unknown. The evaluation value ψij(i = 1, 2, · · · , m; j = 1, 2, · · · , n) of alternative Ai with respect
to the criterion Cj is DHFE, which can be constructed as the dual hesitant fuzzy decision matrix
M = (ψij)m×n.

Among the various MADM methods, the TOPSIS method [45–49] is one of the most powerful
and effective tools, which has been widely used to deal with MADM problems. According to the novel
information measures given in Section 3, we present the TOPSIS method for MADM with dual hesitant
fuzzy decision evaluation, which consists of five steps as follows.

Step 1: Calculate the weight ωj of criteria by using the formula,

ωj =
1− Ej

n−
n
∑

j=1
Ej

, (j = 1, 2, · · · , n), (17)

where

Ej =
1
m

m

∑
i=1

E(hij), (18)

where the value of E(hij) is determined by Equation (10) or (15).
Step 2: Get the dual hesitant fuzzy positive idea solution (PIS) and negative idea solution

(NIS), namely,
ψ+ = (ψ+

1 , ψ+
2 , · · · , ψ+

n ), ψ− = (ψ−1 , ψ−2 , · · · , ψ−n ). (19)

If criterion Cj is benefit, we take ψ+
j = {{1}, {0}} and ψ−j = {{0}, {1}}. Otherwise, we take

ψ+
j = {{0}, {1}} and ψ−j = {{1}, {0}}.

Step 3: Using the new distance measure in Definition 7, calculate the weighted distances D+
i

and D−i as follows

D+
i = ωi

n

∑
j=1

d(ψ+
j , ψij), D−i = ωi

n

∑
j=1

d(ψ−j , ψij). (20)

Step 4: Determine the relative closeness RCi of Ai by the following equation:

RCi =
D+

i
D+

i + D−i
, i = 1, 2, · · · , m, (21)

where D+
i and D−i are determined by (20).

Step 5: By the relative closeness, rank the alternatives. If RCi < RCj, then Ai � Aj. That is to say,
Ai is superior to Aj.
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5. Numerical Examples

This section will choose two practical examples to illustrate the effectiveness of the dual hesitant
fuzzy TOPSIS method based on the proposed information measures.

5.1. Practical Example I

As is well known, investment is an important part in the socioeconomic environment. Here we
reconsider the investment selection problem [13]: An investment company plans to choose a best
option. Three criteria are considered, namely C1: the risk analysis, C2: the growth analysis, C3:
the environmental impact analysis. There are four potential alternatives, A1, A2, A3 and A4 denote a
car company, a food company, a computer company and an arms company, respectively. Evaluation
value of the alternative Ai with respect to the criterion Cj given by DMs can be considered to be a
DHFE, which are depicted in Table 1.

Table 1. Dual hesitant fuzzy decision matrix.

C1 C2 C3

A1 {{0.5, 0.4, 0.3}{0.4, 0.3}} {{0.6, 0.4}, {0.4, 0.2}} {{0.3, 0.2, 0.1}, {0.6, 0.5}}
A2 {{0.7, 0.6, 0.4}, {0.3, 0.2}} {{0.7, 0.6}, {0.3, 0.2}} {{0.7, 0.6, 0.4}, {0.2, 0.1}}
A3 {{0.6, 0.4, 0.3}, {0.3}} {{0.6, 0.5}, {0.3}} {{0.6, 0.5}, {0.3, 0.1}}
A4 {{0.8, 0.7, 0.6}, {0.2, 0.1}} {{0.7, 0.6}, {0.2}} {{0.4, 0.3}, {0.2, 0.1}}

According to the dual hesitant fuzzy TOPSIS method given in Section 4, one can choose the
optimal alternative, the detailed steps are as follows:

Step 1: Based on Equations (10) and (17), the entropy measures of the DHFSs are calculated and
then the weights of criteria are obtained as

ω = (0.2667, 0.3826, 0.3507)T .

Step 2: PIS and NIS of C1, C2, C3 are the same, because they are benefit attributes, namely
ψ+

j = {{1}, {0}} and ψ−j = {{0}, {1}}.
Step 3: Using Equation (20), one can get the following distances of Ai to PIS and NIS,

D+
i = (0.4742, 0.2703, 0.3440, 0.2820), D−i = (0.4413, 0.6488, 0.6002, 0.6709).

Step 4: By Equation (21), we calculate the relative closeness of Ai:

RC1 = 0.5180, RC2 = 0.2941, RC3 = 0.3643, RC4 = 0.2959.

Step 5: Due to RC2 < RC4 < RC3 < RC1, the ranking order is A2 � A4 � A3 � A1, which
means A2 is the best choice. It is easily seen that the ranking result is agreement with those given in
Refs. [13,19].

According to the proposed method, both the criteria weights and the distances of alternatives
to PIS (NIS) depend on distance and entropy measures. Thus, we first make a comparison analysis
adopting different distance and entropy measures given in Section 3. The Hamming distance (5) is
denoted as d1, and the Euclidean distance (6) is denoted as d2. Table 2 gives the weighted distances
between Ai and PIS, from which one can see that A2 � A4 � A3 � A1. Table 3 gives the weighted
distances between Ai and NIS, from which we know that A4 � A2 � A3 � A1.

With the change of distance and entropy measure, the ranking result obtained by the proposed
method may be little different. Table 4 gives the ranking results when two different distance and
entropy measures are used, as well as the ranking results by the methods given by Ye [13] and
Singh [19].
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Table 2. Dual hesitant weighted distances of alternatives to PIS.

Entropy Distance A1 A2 A3 A4

E1 d1 0.4742 0.2703 0.3440 0.2820
E1 d2 0.4919 0.2935 0.3665 0.3150

E2 d1 0.4822 0.2713 0.3450 0.2785
E2 d2 0.5048 0.2945 0.3660 0.3202

Table 3. Dual hesitant weighted distances of alternatives to NIS.

Entropy Distance A1 A2 A3 A4

E1 d1 0.4413 0.6488 0.6002 0.6709
E1 d2 0.4675 0.6637 0.6144 0.6954

E2 d1 0.4349 0.6443 0.5956 0.6711
E2 d2 0.4567 0.6624 0.6141 0.6927

Table 4. Relative closeness RCi (i = 1, 2, 3, 4) and ranking results by three methods.

Entropy Distance A1 A2 A3 A4 Ranking Results

E1 d1 0.5180 0.2941 0.3643 0.2959 A2 � A4 � A3 � A1
E1 d2 0.5127 0.3066 0.3736 0.3118 A2 � A4 � A3 � A1

E2 d1 0.5259 0.2963 0.3668 0.2933 A4 � A2 � A3 � A1
E2 d2 0.5250 0.3078 0.3734 0.3161 A2 � A4 � A3 � A1

Ye (2014) / / / / / A2 � A4 � A3 � A1

Singh (2017) / / / / / A2 � A4 � A1 � A3

When entropy and distance measures are selected as {E1, d1}, {E1, d2} and {E2, d2}, the rankings
by the proposed method accord with the results given by the other two methods. However, when
entropy and distance measures is selected as {E2, d1}, the ranking order gained by the developed
method is little different. In Refs. [13,19], only the distance between alternatives and the PIS
{{1}, {0}}was considered, while the distance between alternatives with NIS were neglected. By contrast,
the proposed method is based on the TOPSIS method, whose key idea is that the best alternative should
be as close as possible to the PIS and as far as possible from the NIS. So, the distance of alternatives to the
NIS has some impact on the ranking for the case of {E2, d1}. Therefore, the proposed method seems to be
more comprehensive, which can provide more flexible and reasonable choices to DMs.

5.2. Practical Example II

Because of relatively limited iron resources in China, a large domestic company in iron and steel
wants to select the best nation to invest in and source iron ores from [33]. Suppose that there are five
nations: A1 = Australia, A2 = India, A3 = Brazil, A4 = Canada, A5 = Russia. The company considered
seven attributes which depicted in Table 5. Evaluation values under the DHFS environment are shown
in Table 6.

Table 5. Description of the seven attributes.

Attributes Description

C1 Quality and quantity of iron ore resources
C2 Situations of trade barriers, legal and taxation systems
C3 Competition from other overseas investment in iron resources
C4 Uncertainty about availability of skilled labor and environmental regulations
C5 Infrastructure of overseas investments
C6 Conditions of socioeconomic agreements/community developments
C7 Political stability and security level
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Table 6. Dual hesitant fuzzy decision matrix.

A1 A2 A3 A4 A5

C1 {{0.9, 0.8, 0.7}, {0.1}} {{0.7, 0.6}, {0.2, 0.1}} {{0.9, 0.7}, {0.1}} {{0.7, 0.6, 0.5}, {0.3, 0.2, 0.1}} {{0.8, 0.7}, {0.2, 0.1}}
C2 {{0.8, 0.7}, {0.2, 0.1}} {{0.4, 0.3}, {0.6, 0.5}} {{0.8, 0.6, 0.5}, {0.2, 0.1}} {{0.8, 0.5}, {0.2, 0.1}} {{0.6, 0.3}, {0.4, 0.3}}
C3 {{0.2, 0.1}, {0.7, 0.6}} {{0.6, 0.4}, {0.4, 0.3}} {{0.4, 0.3, 0.2}, {0.6, 0.5}} {{0.3, 0.2}, {0.6, 0.5}} {{0.3, 0.1}, {0.6, 0.5}}
C4 {{0.2, 0.1}, {0.7, 0.6}} {{0.6, 0.5, 0.4}, {0.3, 0.2, 0.1}} {{0.4, 0.3}, {0.6, 0.5}} {{0.4, 0.3, 0.2}, {0.6, 0.5, 0.4}} {{0.4}, {0.5, 0.4}}
C5 {{0.8, 0.6}, {0.2, 0.1}} {{0.5, 0.3}, {0.3, 0.2}} {{0.6, 0.5}, {0.3, 0.2}} {{0.6, 0.5}, {0.3, 0.2}} {{0.5, 0.4, 0.1}, {0.5, 0.4}}
C6 {{0.6, 0.5}, {0.3, 0.2}} {{0.6, 0.5, 0.4, 0.3}, {0.4, 0.3, 0.2}} {{0.5, 0.4}, {0.5}} {{0.7, 0.6, 0.5}, {0.3, 0.2, 0.1}} {{0.4, 0.3}, {0.5, 0.4}}
C7 {{0.9, 0.8, 0.7}, {0.1}} {{0.5, 0.3}, {0.5, 0.4}} {{0.6, 0.5, 0.4}, {0.23, 0.2}} {{0.7, 0.5}, {0.3, 0.1}} {{0.7, 0.6, 0.4}, {0.2, 0.1}}
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Based on entropy measure E1, we can use the improved method in Section 4 to get the ranking
order of these five alternatives. To reflect the influence of the parameter λ in (7) on the ranking results,
the value of λ ranges from 1 to 10 with Step 1 and the ranking orders are summarized in Table 7.
It shows that different values of λ may produce different solutions to the invest problem. To sum up,
two slightly different solutions are created, which are A1 � A3 � A4 � A2 � A5 and A1 � A4 � A3 �
A2 � A5. Meanwhile, A1 is always the best choice no matter what λ is. Figure 1 plots the movement of
RCi(i = 1, · · · , 5) with a variation in λ. Along with the increase of λ, relative closeness RCi(i = 1, · · · , 5)
of the five nations steadily increase. Through further observation, the curve of RC3 crosses the curve of
RC4, when λ is changed from 1 to 3.

Table 7. Ranking results taking different values of the parameter λ.

λ A1 A2 A3 A4 A5 Ranking

1 0.3089 0.4190 0.3749 0.3805 0.4260 A1 � A3 � A4 � A2 � A5
2 0.3174 0.4254 0.3900 0.3904 0.4302 A1 � A3 � A4 � A2 � A5
3 0.3252 0.4299 0.4031 0.3977 0.4343 A1 � A4 � A3 � A2 � A5
4 0.3324 0.4334 0.4126 0.4031 0.4387 A1 � A4 � A3 � A2 � A5
5 0.3385 0.4364 0.4193 0.4071 0.4433 A1 � A4 � A3 � A2 � A5
6 0.3434 0.4390 0.4242 0.4100 0.4477 A1 � A4 � A3 � A2 � A5
7 0.3474 0.4414 0.4280 0.4122 0.4516 A1 � A4 � A3 � A2 � A5
8 0.3506 0.4434 0.4309 0.4138 0.4550 A1 � A4 � A3 � A2 � A5
9 0.3532 0.4452 0.4333 0.4150 0.4578 A1 � A4 � A3 � A2 � A5
10 0.3553 0.4468 0.4352 0.4159 0.4602 A1 � A4 � A3 � A2 � A5

Figure 1. Relative closeness of the five nations with a variation in λ.

Su and his coworkers defined a series of distance measures of DHFSs in 2015 [18]. Among these
measures, the elements of membership or non-membership degrees in two DHFEs should be
adjusted as introduced in Section 1. For the convenience of comparison, suppose that λ = 1 and
w = (0.2565, 0.1669, 0.1305, 0.0985, 0.1172, 0.0724, 0.1580)T. It is noted that the attitude of the DM is
assumed as optimism, pessimism or neutrality, in the process of solving evaluation problem through
distance measure in [18]. With this assumption, the original DHFEs can be changed into the same length.
For the sake of simplicity, Su’s distance measure with different attitudes i.e., optimism (δ = 1), pessimism
(δ = 0) or neutrality (δ = 0.5) are denoted as Su(op),Su(pe) and Su(ne), respectively. Using Su(op), Su(pe),
Su(ne) and the proposed measure respectively, RCi and the ranking results of the five nations are obtained
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and shown in Table 8. To facilitate the comparison analysis, RCi under four different measures are plotted
in Figure 2.

As shown in Table 8, the ranking result obtained by the proposed distance measure is significantly
different from that using distance in [18]. More specifically, even adopting the distance measure
proposed by Su, the ordering of the alternatives has also changed due to different attitude of DMs.
Using Su(op), Su(pe) and Su(ne), the ranking of A3 go from the third to the second and the ranking of
A5 is demoted from the fourth to the fifth. The main reason for this difference is that the values are
added in DHFEs based on different risk attitude of DMs in the process of calculation. If more elements
are added, the ranking of alternatives will be unstable. However, the proposed distance measure need
not adjust any DHFEs, so the obtained decision-making result is more objective and reasonable.

Figure 2. Relative closeness derived from different distance measures.
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Table 8. Ranking order of five nations derived from different distance measures.

Alternatives RCi(proposed) Ranking Order RCi(Su(pe)) Ranking Order RCi(Su(ne)) Ranking Order RCi(Su(op)) Ranking Order

A1 0.3089 1 0.3304 1 0.3203 1 0.3148 1
A2 0.4190 4 0.4358 5 0.4187 5 0.4074 4
A3 0.3749 2 0.3987 3 0.3819 3 0.3688 2
A4 0.3805 3 0.3895 2 0.3771 2 0.3692 3
A5 0.4260 5 0.4355 4 0.4173 4 0.4083 5
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6. Conclusions

DHFS is one of the most powerful tools for expressing uncertain and fuzzy information.
In the decision-making process, the distance between two different DHFEs should be measured.
According to the existing methods, DMs always must add values into shorter DHFEs based on risk
preference. Adding values into dual hesitant fuzzy elements not only makes the information lose their
original feature and thus increases the subjectivity of decision-making to some extent.

In this study, motivated by the ideas of existing literature, we first develop some novel
distance and similarity measures for DHFS without adjusting any DHFEs, including dual hesitant
normalized Hamming distance, dual hesitant normalized Euclidean distance, generalized dual
hesitant normalized distance, the weighted distance measures as well as the corresponding distance
measures in the continuous situations. Then two types of entropy measures are given based
on the complementary set of DHFS and the fuzziest set, respectively. The proposed entropy measures
can be used to determine the weights of evaluation attributes. Making use of these novel information
measures, an improved TOPSIS method with evaluation values in the form of DHFE is proposed to
deal with MADM problems.

To illustrate the applicability and advantages of the proposed method, we consider two practical
examples, which are the investment selection problem and the choice of countries to import from iron
and steel in China, respectively. Compared to several existing methods, the results of experiments
show that the proposed method seems to be more comprehensive, which can provide more flexible
and reasonable choices to DMs. The more study on how to measure different DHFEs and solve other
MADM problems in a dual hesitant fuzzy environment will be performed in the future.
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