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Abstract: Fischer diagonal condition plays an important role in convergence space since it
precisely ensures a convergence space to be a topological space. Generally, Fischer diagonal
condition can be represented equivalently both by Kowalsky compression operator and Gähler
compression operator. >-convergence spaces are fundamental fuzzy extensions of convergence
spaces. Quite recently, by extending Gähler compression operator to fuzzy case, Fang and Yue
proposed a fuzzy counterpart of Fischer diagonal condition, and proved that >-convergence
space with their Fischer diagonal condition just characterizes strong L-topology—a type of
fuzzy topology. In this paper, by extending the Kowalsky compression operator, we present a
fuzzy counterpart of Fischer diagonal condition, and verify that a >-convergence space with
our Fischer diagonal condition precisely characterizes topological generated L-topology—a
type of fuzzy topology. Hence, although the crisp Fischer diagonal conditions based on the
Kowalsky compression operator and the on Gähler compression operator are equivalent, their
fuzzy counterparts are not equivalent since they describe different types of fuzzy topologies.
This indicates that the fuzzy topology (convergence) is more complex and varied than the crisp
topology (convergence).
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1. Introduction

The notion of convergence space is investigated by generalizing the convergence in
topological space [1]. For a set X, let P(X) (respectively, F(X)) denote the power set (respectively,
filters set) on X. A convergence space is defined by a pair (X, c), where c ⊆ F(X)× X fulfills:

(C1) For every x ∈ X, (ẋ, x) ∈ c, ẋ = {A ∈ P(X)|x ∈ A}.
(C2) For all F, G ∈ F(X), F ⊆ G, (F, x) ∈ c =⇒ (G, x) ∈ c.

If (F, x) ∈ c, we also denote F c−→ x, and say that F converges to x.
A convergence space (X, c) is called pretopological if it satisfies either of the following three

equivalent conditions:

(P1) For {Ft}t∈T ⊆ F(X) and x ∈ X, ∀t ∈ T, Ft
c−→ x =⇒ ⋂

t∈T
Ft

c−→ x.

(P2) For x ∈ X, Uc(x) =
⋂{F ∈ F(X)|F c−→ x} converges to x. Generally, Uc = {Uc(x)}x∈X

is called the neighborhood system associated with c.
(P3) For x ∈ X and F ∈ F(X), F c−→ x ⇔ F ⊇ Uc(x).

A pretopological convergence space is called topological if it fulfills the next condition:
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(U) For any x ∈ X, if A ∈ Uc(x) then there exists a B ∈ Uc(x) such that A ∈ Uc(y) for any
y ∈ B.

Topological convergence spaces can also be characterized by Kowalsky diagonal condition
and Fischer diagonal condition [1,2].

Let T be any set and Φ : T −→ F(X) be a mapping, called a choice mapping of filters. For
F ∈ F(T), let Φ⇒(F) denote the image of F under the mapping Φ, i.e., the filter on F(X) generated
by {Φ(A)|A ∈ F} as a filter base. Then, the Kowalsky compression operator on Φ⇒(F) ∈ F(F(X)) is
defined as

KΦF ∈ F(X) :=
⋃

A∈F

⋂
y∈A

Φ(y).

There is an equivalent statement for KΦF proposed by Gähler [3] (please also see the Remark
in Jäger [4]):

A ∈ KΦF⇐⇒ {t ∈ T|A ∈ Φ(t)} ∈ F,

which is here called Gähler compression operator to distinguish the two descriptions.
For a convergence space (X, c), the Fischer diagonal condition is given as below:

(FD) Let T be any set, ψ : T −→ X and Φ : T −→ F(X) with Φ(t) c−→ ψ(t) for every t ∈ T.
For any F ∈ F(X), ψ⇒(F) c−→ x =⇒ KΦF c−→ x.

Taking T = X and ψ = idX in (FD), we give the Kowalsky diagonal condition (KD).
By using the Kowalsky compression operator, the condition (U) can be restated as:

(U) For any x ∈ X, Uc(x) ⊆ KUcUc(x), where Uc : X −→ F(X) is the selection mapping of
filters determined by neighborhood system.

It is verified that a pretopological convergence space is topological iff it fulfills (KD), and a
convergence space is topological iff it fulfills (FD).

It is known that a topological space (X, δ) corresponds uniquely to a topological convergence
space (X, c) by taking that for each x ∈ X,

Uc(x) = Uδ(x) := {A ⊆ X|∃B ∈ δ s.t. x ∈ B ⊆ A}.

Then, we obtain a bijection between topological convergence spaces and topological spaces.
In this case, we say that topological convergence spaces characterize topological spaces, or, in
other words, that it establishes the convergence theory associated with topological spaces.

In (FD), change the statement

ψ⇒(F) c−→ x =⇒ KΦF c−→ x as KΦF c−→ x =⇒ ψ⇒(F) c−→ x,

then the resulted condition is denoted as (DFD), called the dual Fischer diagonal condition.
Interestingly, the condition (DFD) precisely characterizes the regularity of convergence space [1,2].

To sum up, both Fischer diagonal condition (FD) and its dual condition (DFD) are based on
Kowalsky (or equivalent, Gähler) compression operator, and (FD) describes topologicalness while
(DFD) characterizes regularity of convergence spaces.

Fuzzy set theory, proposed by Zadeh [5], is a fundamental mathematical tool to deal with
uncertain information. Fuzzy set theory has been widely used in many regards such as medical
diagnosis, data mining, decision-making, machine learning and so on [6–9]. In addition, that fuzzy
set combines traditional mathematics produces many new mathematical branches such as fuzzy
algebra, fuzzy topology, fuzzy order, fuzzy logic, etc. In this paper, we focus on the convergence
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theory associated with lattice-valued topology (i.e., fuzzy topology with the membership values
in a complete lattice L).

Lattice-valued convergence spaces are fuzzy extensions of convergence spaces. Compared
with the classical convergence spaces, the lattice-value convergence spaces are more complex and
varied. L-filters and >-filter are basic tools to study lattice-valued convergence spaces. Based on
L-filters, Jäger [10], Flores [11], Fang [12] and Li [13] defined types of L-convergence spaces. Based
on >-filters, Fang and Yue [14] introduced >-convergence spaces. Nowadays, these spaces have
been widely discussed and developed [4,15–42].

Many interesting lattice-valued versions of Fischer diagonal condition and dual Fischer
diagonal condition were proposed to study the topologicalnesses and regularities of many kinds
of lattice-valued convergence spaces. Precisely,

Under the background of L-filter:

(1) The Gähler compression operator was presented by Jäger [4]. Then, some types of
lattice-valued Fischer diagonal conditions were proposed to discuss the topologicalnesses
of different L-convergence spaces [13,18,28]. Particularly, it was proved in [28] that
stratified L-convergence space with the considered Fischer diagonal condition precisely
characterizes stratified L-topological space. Meanwhile, some lattice-valued dual Fischer
diagonal conditions were introduced to study the regularities of different L-convergence
spaces [19,27,31].

(2) The Kowalsky compression operator was presented by Flores [15]. Then, he introduced a
lattice-valued Fischer diagonal condition and proved that stratified L-convergence space
with his diagonal condition can characterize a tower of stratified L-topological spaces. Later,
Richardson and his co-author used the dual condition of Flores’s diagonal condition to
describe the regularity of stratified L-convergence spaces [15,16].

Under the background of >-filter:

(1) The Gähler compression operator was presented by Fang and Yue in >-convergence space
[14]. Then, they introduced a lattice-valued Fischer diagonal condition and proved that
condition can characterize strong L-topological spaces. They also proposed a lattice-valued
dual Fischer diagonal to describe a regularity of >-convergence spaces. Quite recently, the
author extended Fang and Yue’s diagonal conditions and used them to study the relative
topologicalness and the relative regularity in >-convergence spaces [22,26].

(2) The Kowalsky compression operator was presented by the author in >-convergence space
[30]. Then, we proposed a lattice-valued version of dual Fischer diagonal condition to
discuss the regularity of >-convergence spaces. In preparing the paper [30], we also tried
to consider a lattice-valued version of Fischer diagonal condition such that >-convergence
spaces with the diagonal condition can characterize a kind of lattice-valued topological
spaces. However, we failed to do that.

In this paper, we resolve the above mentioned question. Precisely, we present a lattice-valued
Fischer diagonal condition based on Kowalsky compression operator and prove that there is a
bijection between >-convergence spaces with our diagonal condition and topological generated
L-topological spaces. Thus, our Fischer diagonal condition characterizes precisely topological
generated L-topological spaces. Therefore, we establish the convergence theory associated with
topological generated L-topological spaces. This is the main contribution of the paper.

This paper is organized as follows. In Section 2, we review some notions and notations
as preliminary. In Section 3, we give a lattice-valued Fischer diagonal condition and use it
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to describe a subclass of >-convergence spaces, called topological generated >-convergence
spaces. In Section 4, we establish the relationships between our diagonal condition and Fang
and Yue’s diagonal condition. Then, we further verify that there is a one-to-one correspondence
between topological generated >-convergence spaces and topological generated L-topological
spaces. Hence, we establish the convergence theory associated with the topological generated
L-topological spaces.

2. Preliminaries

In this section, we recall some notions and conclusions about L-fuzzy sets, >-convergence
spaces and L-topological spaces for later use.

By an integral, commutative quantale we mean a pair L = (L, ∗) such that:

(i) (L,≤) is a complete lattice, and its top (respectively, bottom) element is denoted as >
(respectively, ⊥).

(ii) ∗ is a commutative semigroup operation on L satisfying

∀α ∈ L, ∀{βi}i∈I ⊆ L, α ∗
∨
i∈I

βi =
∨
i∈I

(α ∗ βi).

(iii) For every α ∈ L,> ∗ α = α.

For any α, β ∈ L, we define

α→ β =
∨
{γ ∈ L : α ∗ γ ≤ β}.

The properties of the binary operations ∗ and→ can be referred to [43–45]. We list some of
them used in the sequel.

(1) α ∗ β ≤ γ⇔ β ≤ α→ γ.
(2) α ∗ (α→ β) ≤ β.
(3) α→ (β→ γ) = (α ∗ β)→ γ.
(4) (

∨
i∈I

αi)→ β =
∧
i∈I

(αi → β).

(5) α→ (
∧
i∈I

βi) =
∧
i∈I

(α→ βi).

For α, β ∈ L, we define α� β iff for every directed subsets D ⊆ L, β ≤ ∨D always implies
the existence of γ ∈ D such that α ≤ γ. Note that α � β implies α ≤ β. When L = [0, 1],
α� β⇐⇒ α < β.

A complete lattice (L,≤) is called meet continuous if, for α ∈ L and {βi}i∈I being directed in
L, it holds that α ∧ ∨

i∈I
βi =

∨
i∈I

(α ∧ βi). A complete lattice (L,≤) is called continuous if α = ∨{β ∈

L|β� α} for each α ∈ L. A continuous lattice is a natural meet continuous lattice [44].
In this paper, if not otherwise stated, we always let L = (L, ∗) be an integral, commutative

quantale with the underlying lattice (L,≤) being meet continuous.
A mapping A : X −→ L is called an L-fuzzy set on X, and the family of L-fuzzy sets on X is

denoted as LX. For A ∈ P(X), let >A denote its characteristic mapping. The operations
∨

,
∧

, ∗
and→ on L can translate onto LX pointwisely. Precisely, for A, B, Ai(i ∈ I) ∈ LX ,

(
∨
i∈I

Ai)(x) =
∨
i∈I

Ai(x), (
∧
i∈I

Ai)(x) =
∧
i∈I

Ai(x),
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(A ∗ B)(x) = A(x) ∗ B(x), (A→ B)(x) = A(x)→ B(x).

Let f : X −→ Y be a mapping. Then, define f→ : LX −→ LY and f← : LY −→ LX as
follows [45]:

∀A ∈ LX , ∀y ∈ Y, f→(A)(y) =
∨

f (x)=y

A(x), ∀B ∈ LY, ∀x ∈ X, f←(B)(x) = B( f (x)).

For A, B ∈ LX , the degree of A in B is defined as follows [46–48]:

SX(A, B) =
∧

x∈X
(A(x)→ B(x)).

Definition 1 ([45,49]). A nonempty subset F ⊆ LX is called a >-filter on X if it holds that:

(1) A ∈ F =⇒ ∨
x∈X

A(x) = >.

(2) A, B ∈ F =⇒ A ∧ B ∈ F.
(3)

∨
B∈F

SX(B, A) = > =⇒ A ∈ F.

The family of >-filters on X is denoted as F>L (X).

Definition 2 ([45]). A nonempty subset B ⊆ LX is called a >-filter base on X if it satisfies:

(1) A ∈ B =⇒ ∨
x∈X

A(x) = >.

(2) A, B ∈ B =⇒ ∨
C∈B

SX(C, A ∧ B) = >.

Each >-filter base B generates a >-filter FB := {A ∈ LX | ∨
B∈B

SX(B, A) = >}. In [38], it is proved that

for any A ∈ LX ,
∨

B∈B
SX(B, A) =

∨
B∈FB

SX(B, A).

We collect some fundamental facts about >-filters in the following proposition.

Proposition 1 ([14,45]).

(1) For every x ∈ X, [x]> =: {A ∈ LX |A(x) = >} is a >-filter.
(2) {Fi}i∈I ⊆ F>L (X) =⇒ ⋂

i∈I
Fi ∈ F>L (X).

(3) Let f : X −→ Y be a mapping and F ∈ F>L (X). Then, define f⇒(F) as the >-filter on Y generated
by the >-filter base { f→(A)|A ∈ F}. Furthermore, B ∈ f⇒(F) iff f←(B) ∈ F.

Given F ∈ F>L (X), then the set η(F) = {A ⊆ X|>A ∈ F} is a filter on X. Conversely, given
F ∈ F(X), then the set {>A|A ∈ F} forms a >-filter base and the associated >-filter is denoted
as v(F).

Lemma 1 (Lemma 2.6 in [30]). Let f : X −→ Y, F ∈ F(X) and F ∈ F>L (X). Then,

(1) ηv(F) = F.
(2) vη(F) ⊆ F.
(3) For every x ∈ X, v(ẋ) = [x]>.
(4) For every x ∈ X, η([x]>) = ẋ.
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(5) η( f⇒(F)) = f⇒(η(F)).

Definition 3 ([14]). A >-convergence space is a pair (X, q), where q ⊆ F>L (X)× X satisfies:

(TC1) For every x ∈ X, ([x]>, x) ∈ q.
(TC2) (F, x) ∈ q, F ⊆ G =⇒ (G, x) ∈ q.

If (F, x) ∈ q, we also denote F
q−→ x and say that F converges to x.

Obviously, a >-convergence space reduces to a convergence space whenever L = {⊥,>}.

Let T be any set, φ : T −→ F>L (X) and F ∈ F>L (T). In [26], the author defined an extending
Kowalsky compression operator on φ⇒(F) ∈ F>L (F

>
L (X)) by

kφF :=
⋃

A∈η(F)

⋂
y∈A

φ(y) ∈ F>L (X).

Lemma 2 (Lemma 3.2 in [30]). Let f : X −→ Y, φ : T −→ F>L (X) and Φ : T −→ F(X). Then, for
every F ∈ F>L (T) and every F ∈ F(T),

(1) f⇒(kφF) = k( f⇒ ◦ φ)F.
(2) put Φ1 = η ◦ φ, then η(kφF) = KΦ1η(F).
(3) put φ1 = v ◦Φ, then η(kφ1v(F)) = KΦF.
(4) taking σ : T −→ F>L (X) with σ(t) ⊆ φ(t) for every t ∈ T, then kσF ⊆ kφF.

Definition 4 ([45,47]). A subset τ ⊆ LX is called an L-topology (L-Top) on X if it contains >X ,>∅ and
is closed with respect to finite meets and arbitrary joins. The pair (X, τ) is called an L-topological space.
Furthermore, τ is called stratified (SL-Top) if α ∗ A ∈ τ for each α ∈ L and each A ∈ τ. A stratified
L-topology τ is called strong (STrL-Top) if α→ A ∈ τ for each α ∈ L and each A ∈ τ.

Definition 5 ([25,45]). Assume that L to be a continuous lattice. For a topological space (X, δ), all L-fuzzy
sets A ∈ LX with

Aα = {x ∈ X|α� A(x)} ∈ δ for each α ∈ L

form an L-topology on X. Such space is called a topological generated L-topological space (TGL-Top).
The L-topological space generated by (X, δ) is denoted as (X, $(δ)). When ∗ = ∧, $(δ) is precisely the
L-topology generated by {>A|A ∈ δ} and all constant value L-fuzzy sets on X as a subbase.

In [25], Lai and Zhang introduced a kind of L-topological space, called conical neighborhood
space (CNS). We do not give the definition of CNS here; please see Definition 5.1 in [25]. Lai and
Zhang proved that the mentioned L-topological spaces have the following inclusive relation:

STrL-Top⊆ CNS ⊆ SL-Top⊆ L-Top and TGL-Top⊆ CNS.
By suitable lattice-valued Fischer diagonal condition:

(1) The convergence theory associated with SL-Top is presented in [28].
(2) The convergence theory associated with STrL-Top is given in [14].
(3) The convergence theory associated with CNS is developed in [29].

In the following, we establish the convergence theory associated with TGL-Top by appropriate
lattice-valued Fischer diagonal condition.
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3. Topological Generated >-Convergence Spaces vs. Fischer Diagonal Condition Based on
Extending Kowalsky Compression Operator

In this section, we present a lattice-valued Fischer diagonal condition based on extending
Kowalsky compression operator. We also prove that >-convergence spaces with our diagonal
condition precisely characterize those spaces generated by topological convergence spaces.

First, we consider the pretopological conditions for a >-convergence space (X, q). It is not
difficult to verify that the following three conditions are equivalent.

(TP1) For every i ∈ I, Fi
q−→ x =⇒ ⋂

i∈I
Fi

q−→ x.

(TP2) For every x ∈ X, Uq(x) =
⋂{F ∈ F>L (X)|F q−→ x} converges to x. Usually, Uq =

{Uq(x)}x∈X is called the >-neighborhood system associated with q.

(TP3) For every x ∈ X, F
q−→ x ⇔ F ⊇ Uq(x).

Definition 6. A >-convergence space (X, q) is called pretopological if it fulfills any of (TP1)–(TP3).

Second, we consider the topological condition for >-convergence space both by extending
Fischer diagonal condition and extending Kowalsky diagonal condition.

We define a lattice-valued extension of Fischer diagonal condition as below:

(TFD) Let T be any set, ψ : T −→ X and φ : T −→ F>L (X) satisfying φ(t)
q−→ ψ(t) for every

t ∈ T. Then, for any F ∈ F>L (X), ψ⇒(F)
q−→ x =⇒ kφF

q−→ x.

Taking T = X and ψ = idX in (TFD), then we get the Lattice-valued Kowalsky diagonal
condition (TKD).

Moreover, a lattice-valued version of neighborhood condition (U) is given as follows:

(TU) For any x ∈ X, kUqUq(x) ⊇ Uq(x).

The theorem below presents the relationships between lattice-valued versions of Fischer
diagonal condition, Kowalsky diagonal condition and pretopological condition.

Theorem 1. A >-convergence space (X, q) satisfies (TFD) iff it is pretopological and satisfies (TKD) iff
it is pretopological and satisfies (TU).

Proof. (TFD)⇒(TP1). Let {Ft|t ∈ T} be all >-filters on X converge to x. Then, define

ψ : T −→ X, φ : T −→ F>L (X) as ψ(t) ≡ x, φ(t) = Ft for each t ∈ T.

Take F⊥ := {{>T}} as the least member of F>L (T). Then, we observe easily that ψ⇒(F⊥) =

[x]> and kφF⊥ =
⋂

t∈T
φ(t) =

⋂
t∈T

Ft. By [x]>
q−→ x and (TFD), we have that kφF⊥ =

⋂
t∈T

Ft
q−→ x,

i.e., (TP1) holds.
(TFD)⇒(TKD). It is obvious.
(TP3)+(TKD)⇒(TU). By (TP3), we have that Uq(y)

q−→ y for any y ∈ X. Then, by Uq(x)
q−→

x and (TKD), we get that kUqUq(x)
q−→ x, i.e., kUqUq(x) ⊇ Uq(x).

(TP3)+(TU)⇒(TFD). Let T be any set, ψ : T −→ X and φ : T −→ F>L (X) with φ(t)
q−→ ψ(t)

for every t ∈ T. It follows by (TP3) that φ(t) ⊇ Uq(ψ(t)) for any t ∈ T.

Let F ∈ F>L (X) and ψ⇒(F)
q−→ x, then it holds by (TP3) that ψ⇒(F) ⊇ Uq(x).
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Next, we prove that kUqψ⇒(F) ⊆ k(Uq ◦ ψ)F. Indeed, let A ∈ kUqψ⇒(F); then, there exists
an A ∈ η(ψ⇒(F)) such that A ∈ Uq(y) for any y ∈ A. By Lemma 1(5), it holds that A ∈ ψ⇒(η(F)),
i.e., ψ←(A) ∈ η(F). Then, we get that, for every z ∈ ψ←(A), A ∈ Uq(ψ(z)) = (Uq ◦ ψ)(z). Thus,
A ∈ k(Uq ◦ ψ)F.

Combinaing the above statements, it follows by Lemma 2 (4) and (TU) that

kφF ⊇ k(Uq ◦ ψ)F ⊇ kUqψ⇒(F) ⊇ kUqUq(x) ⊇ Uq(x).

That means kφF
q−→ x, as desired.

For a convergence space (X, c), it is easy to verify that the pair π(X, c) = (X, π(c)) defined by

∀F ∈ F>L (X), ∀x ∈ X, F
π(c)−→ x ⇔ η(F) c−→ x,

is a >-convergence space.

Definition 7. A >-convergence space (X, q) is called topological generated if (X, q) = π(X, c) for some
topological convergence space (X, c).

The next theorem shows that>-convergence spaces generated by convergence spaces connect
diagonal condition (FD) and lattice-valued diagonal condition (TFD) well.

Theorem 2. Convergence space (X, c) fulfills (FD) iff (X, π(c)) fulfills (TFD).

Proof. =⇒. Let ψ : T −→ X and φ : T −→ F>L (X) with ∀t ∈ T, φ(t)
π(c)−→ ψ(t). Putting Φ = η ◦ φ,

then, from φ(t)
π(c)−→ ψ(t) we get

Φ(t) = η(φ(t)) c−→ ψ(t), ∀t ∈ T.

Taking any ψ⇒(F)
π(c)−→ x, then from Lemma 1(5) we obtain

ψ⇒(η(F)) = η(ψ⇒(F)) c−→ x.

It follows from (FD) and Lemma 2 (2) that η(kφF) = KΦη(F) c−→ x, that is, kφF
π(c)−→ x. We

verify that (TFD) is fulfilled.
⇐=. Let ψ : T −→ X and Φ : T −→ F(X) with ∀t ∈ T, Φ(t) c−→ ψ(t). Putting φ = v ◦Φ,

then, from Lemma 1(1), we conclude

∀t ∈ T, η ◦ φ(t) = η ◦v ◦Φ(t) = Φ(t) c−→ ψ(t), i.e., φ(t)
π(c)−→ ψ(t).

Taking any ψ⇒(F) c−→ x, then, from Lemma 1(5), we get

ηψ⇒(v(F)) = ψ⇒((η ◦v)(F)) = ψ⇒(F) c−→ x, that is, ψ⇒(v(F))
π(c)−→ x.

It holds from (TFD) that kφv(F)
π(c)−→ x. Further, from Lemma 2 (3), we obtain η(kφv(F)) =

KΦF c−→ x. This shows that the condition (FD) is fulfilled.
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The following theorem shows that the lattice-valued Fischer diagonal condition (TFD)
precisely characterizes topological generated >-convergence spaces.

Theorem 3. A >-convergence space (X, q) is topological generated iff it satisfies (TFD).

Proof. The necessity can be concluded from Theorem 2. We prove the sufficiency below. Assume
that (X, q) satisfies (TFD). Then, define θ(X, q) = (X, θ(q)) as

∀x ∈ X, ∀F ∈ F(X), F
θ(q)−→ x ⇔ F ⊇ η(Uq(x)).

Obviously, (X, θ(q)) is a convergence space. Next, we verify (X, q) = πθ(X, q).

(1) q ⊆ πθ(q). It follows by

F
q−→ x

(TP3)⇒ F ⊇ Uq(x)⇒ η(F) ⊇ η(Uq(x))

⇒ η(F)
θ(q)−→ x ⇒ F

πθ(q)−→ x.

(2) πθ(q) ⊆ q. Letting F
πθ(q)−→ x, we check below that:

(i) F ⊇ kUqF. Take A ∈ kUqF, then ∃B ∈ η(F) such that A ∈ Uq(y) ⊆ [y]> for any
y ∈ B. It follows that A(y) = > for any y ∈ B, and then >B ≤ A, which means that
A ∈ F.

(ii) kUqF ⊇ kUqUq(x). By F
πθ(q)−→ x, we have η(F)

θ(q)−→ x, i.e., η(F) ⊇ η(Uq(x)). Then,

kUqUq(x) =
⋃

B∈η(Uq(x))

⋂
y∈B

Uq(y)

⊆
⋃

B∈η(F)

⋂
y∈B

Uq(y) = kUqF.

(iii) kUqUq(x) ⊇ Uq(x). It follow by (TU).

Combining (i)–(iii), we get that F ⊇ Uq(x), thus it follows by (TP3) that F
q−→ x.

From Theorem 2 and that (X, q) = πθ(X, q) satisfies (TFD), we get that (X, θ(q))
is topological.

In the following, we give two examples of topological generated >-convergence spaces.

Example 1. For a set X, the discrete >-convergence structure qd is defined as F
qd−→ x ⇐⇒ F ⊇ [x]>

for any F ∈ F>L (X) and any x ∈ X; and the indiscrete >-convergence structure qind is defined by F
qind−→ x

for every F ∈ F>L (X) and every x ∈ X, see [14].
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(1) (X, qd) is topological generated. Indeed, for any x ∈ X, note that Uqd(x) = [x]>
qd−→ x and

kUqd Uqd(x) =
⋃

B∈η(Uqd (x))

⋂
y∈B

Uqd(y), by Lemma 1(4)

=
⋃

B∈ẋ

⋂
y∈B

[y]>

= [x]> ⊇ Uqd(x).

Hence, (X, qd) satisfies (TP2) and (TU). It follows by Theorems 1 and 3 that (X, qd) is topological
generated.

(2) (X, qind) is topological generated. Since any >-filter converge to any point, then it follows
immediately that (X, qind) satisfies (TFD). Hence, (X, qd) is topological generated.

Finally, we consider the categoric properties of topological generated >-convergence spaces.
A mapping f : (X, q) −→ (X′, q′) between >-convergence spaces is called continuous if

f⇒(F)
q′−→ f (x) for any F

q−→ x.
We denote the category consisting of >-convergence spaces and continuous mappings as

>-CON. >-CON is a topological category in the sense that each source (X
fi−→ (Xi, qi))i∈I has

initial structure q on X defined as follows [14,37]:
F

q−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)
qi−→ fi(x).

Let >(X) denote all >-convergence structures on X. For p, q ∈ >(X), we say q is finer than
p, denoted as p ≤ q, if idX : (X, q) −→ (X, p) is continuous. It is known that (>(X),≤) forms a
completed lattice [30].

We denote TTG-CON as the full subcategory of T-CON consisting of topological generated
>-convergence spaces.

Theorem 4. TTG-CON is a topological category.

Proof. We verify that TTG-CON has initial structure. Given a source (X
fi−→ (Xi, qi))i∈I in

TTG-CON, take q as the initial structure in T-CON, i.e.,

F
q−→ x ⇔ ∀i ∈ I, f⇒i (F)

qi−→ fi(x).

Next, we show (X, q) ∈TTG-CON. Let ψ : T −→ X, φ : T −→ F>L (X) such that for every

t ∈ T, φ(t)
q−→ ψ(t). Then, for any i ∈ I, f⇒i (φ(t))

qi−→ fi(ψ(t)). Putting φi = f⇒i ◦ φ and

ψi = fi ◦ ψ, we obtain φi(t)
qi−→ ψi(t).

Take any ψ⇒(F)
q−→ x. We have

ψ⇒i (F) = ( fi ◦ ψ)⇒(F) = f⇒i ψ⇒(F)
qi−→ fi(x).

Since (Xi, qi) satisfies (TFD), we obtain that kφiF
qi−→ x. From Lemma 2(1), we further get

for every i ∈ I,
f⇒i (kφF) = k( f⇒i ◦ φ)F = kφiF

qi−→ fi(x).

It follows that kφF
q−→ x. Hence, (X, q) satisfies (TFD), as desired.
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Remark 1. Let >TG(X) denote all topological generated >-convergence structures on X. Then, from
Theorem 4, we conclude that (>TG(X),≤) forms a complete lattice.

Theorem 5. TTG-CON is a reflective subcategory of T-CON.

Proof. Given (X, q) ∈T-CON, put

rq =
∨
{p′ ≤ q|p′ ∈ >TG(X)}.

Then, rq ≤ q and so idX : (X, q) −→ (X, rq) is continuous. Moreover, from Remark 1, we
get rq ∈ >TG(X).

Let (X, p) ∈ TTG-CON and f : (X, q) −→ (Y, p) be a continuous mapping. Take s as the
initial structure of f : X −→ (Y, p) in TTG-CON. Then, (X, s) ∈ TTG-CON and

s ≤ q =⇒ s ≤ rq =⇒ idX : (X, rq) −→ (X, s) is continuous,

f : (X, s) −→ (Y, p) is continuous.

It follows that f = f ◦ idX : (X, rq) −→ (Y, p) is continuous. This shows that the following
diagram commutes in Figure 1.

(X, q)

(Y, p)

f

��

(X, q) (X, rq)
idX //

(Y, p)

(X, rq)

yy
f

Figure 1. Reflective diagram.

Hence, TTG-CON is reflective in T-CON.

4. Topological Generated >-Convergence Spaces vs. Topological Generated
L-Topological Spaces

In [14], Fang and Yue proposed a lattice-valued Fischer diagonal condition based on Gähler
compression operator and proved that there is a bijection between>-convergence spaces with their
diagonal condition and strong L-topological spaces. In this section, we establish the relationships
between our diagonal condition and Fang and Yue’s diagonal condition. Then, analogizing Fang
and Yue’s result, we further verify that there is a one-to-one correspondence between topological
generated >-convergence spaces and topological generated L-topological spaces. Hence, we
establish the convergence theory associated with the topological generated L-topological spaces.

Let T be any set and φ : T −→ F>L (X). Take F ∈ F>L (T) and A ∈ LX , and define φ̂(A) ∈ LT as

∀t ∈ T, φ̂(A)(t) =
∨

B∈φ(t)

SX(B, A).

The Gähler compression operator on φ⇒(F) ∈ F>L (F
>
L (X)) is defined by

gφF := {A ∈ LX |φ̂(A) ∈ F} ∈ F>L (X).

For a >-convergence space (X, q), an extension of diagonal condition (FD) is presented
in [14]:
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(TFDW) Let T be any set, ψ : T −→ X and φ : T −→ F>L (X) with φ(t)
q−→ ψ(t) for every

t ∈ T. For any F ∈ F>L (X), ψ⇒(F)
q−→ x =⇒ gφF

q−→ x.
The next theorem shows that (TFDW) is weaker than (TFD) generally, but they are equivalent

when L = {⊥,>}.

Theorem 6. Let T be any set, φ : T −→ F>L (X) and F ∈ F>L (T). Then,

(1) kφF ⊆ gφF.
(2) kφF = gφF when L = {⊥,>}.

Proof. (1) Taking A ∈ kφF, then ∃B ∈ η(F) such that A ∈ φ(y) for any y ∈ B. It follows that

∀y ∈ B, φ̂(A)(y) =
∨

C∈φ(y)

SX(C, A) ≥ SX(A, A) = >,

i.e., >B ≤ φ̂(A). By >B ∈ F, we have φ̂(A) ∈ F and so A ∈ gφF.
(2) We verify that A ∈ gφF =⇒ A ∈ kφF. In fact, A ∈ gφF means φ̂(A) ∈ F. Taking

B = {y ∈ T|φ̂(A)(y) =
∨

C∈φ(y)

SX(C, A) = >},

it follows that A ∈ φ(y) for any y ∈ B. Note that, when L = {⊥,>}, >B = φ̂(A) ∈ F, i.e.,
B ∈ η(F). We get that A ∈ kφF.

In the following, we further verify that (TFD)⇐⇒(TFDW) for >-convergence spaces
generated by convergence spaces.

Lemma 3. Let φ : T −→ F>L (X) and Φ : T −→ F(X).

(1) Taking Φ1 = η ◦ φ, then for every F ∈ F>L (T), η(gφF) ⊇ KΦ1η(F).
(2) Taking φ1 = v ◦Φ, then for every F ∈ F(T), η(gφ1v(F)) = KΦF.

Proof. (1) It follows by

A ∈ KΦ1η(F) =⇒ ∃B ∈ η(F), s.t. ∀y ∈ B, A ∈ Φ1(y) = (η ◦ φ)(y)

=⇒ ∃>B ∈ F s.t. ∀y ∈ B,>A ∈ φ(y)

=⇒ ∃>B ∈ F s.t. ∀y ∈ B, φ̂(>A)(y) = >
=⇒ ∃>B ∈ F s.t. >B ≤ φ̂(>A)

=⇒ φ̂(>A) ∈ F

=⇒ >A ∈ gφF

=⇒ A ∈ η(gφF).
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(2) Let A ∈ η(gφ1v(F)). Then, >A ∈ gφ1v(F) and so φ̂1(>A) ∈ v(F). Note that, for every
t ∈ T,

φ̂1(>A)(t) =
∨

B∈φ1(t)

SX(B,>A)

=
∨

B∈v(Φ(t))

SX(B,>A) =
∨

C∈Φ(t)

SX(>C,>A)

=

{
>, ∃C ∈ Φ(t), s.t. C ⊆ A, i.e., A ∈ Φ(t);
⊥, otherwise.

Putting C = {t ∈ T|φ̂1(>A)(t) = >}, then >C = φ̂1(>A) ∈ v(F), i.e., C ∈ F and A ∈ Φ(y)
for any y ∈ C; it follows that A ∈ KΦF. Therefore, η(gφ1v(F)) ⊆ KΦF.

Conversely, let A ∈ KΦF. Then, there exists B ∈ F such that A ∈ Φ(y), i.e., >A ∈ v(Φ(y)) =
φ1(y) for any y ∈ B. That means φ̂1(>A)(y) = > for any y ∈ B, and so >B ≤ φ̂1(>A). Then,
we get φ̂1(>A) ∈ v(F), and hence >A ∈ gφ1v(F), i.e., A ∈ η(gφ1v(F)). Therefore, KΦF ⊆
η(gφ1v(F)).

Theorem 7. Convergence space (X, c) fulfills (FD) iff (X, π(c)) fulfills (TFDW).

Proof. =⇒. Let ψ : T −→ X, φ : T −→ F>L (X) with φ(t)
π(c)−→ ψ(t) for every t ∈ T. Put Φ = η ◦ φ;

from φ(t)
π(c)−→ ψ(t), we conclude

Φ(t) = η(φ(t)) c−→ ψ(t).

Take any ψ⇒(F)
π(c)−→ x; from Lemma 1(5), we obtain

ψ⇒(η(F)) = η(ψ⇒(F)) c−→ x.

It follows by (FD) and Lemma 3(1) that η(gφF) ⊇ KΦη(F) c−→ x, i.e., gφF
π(c)−→ x. Thus, the

condition (TFDW) is satisfied.
⇐=. Let ψ : T −→ X, Φ : T −→ F(X) with Φ(t) c−→ ψ(t) for every t ∈ T. Putting φ = v ◦Φ,

then, from Lemma 1(1), we have

η ◦ φ(t) = η ◦v ◦Φ(t) = Φ(t) c−→ ψ(t), i.e., φ(t)
π(c)−→ ψ(t).

Taking any ψ⇒(F) c−→ x, from Lemma 1(5), we conclude

ηψ⇒(v(F)) = ψ⇒((η ◦v)(F)) = ψ⇒(F) c−→ x, i.e., ψ⇒(v(F))
π(c)−→ x.

Thus, gφv(F)
π(c)−→ x by (TFDW). From Lemma 3(2), we further get η(gφv(F)) = KΦF c−→ x.

Hence, the condition (FD) is satisfied.

From Theorems 2 and 7, we get that for >-convergence spaces generated by convergence
spaces, conditions (TFD) and (TFDW) are equivalent.

The following example shows that there is no (TFD)⇔(TFDW) for general
>-convergence space.
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Example 2. Let X = {x, y} and L = ([0, 1],∧). Define Ax, Ay ∈ LX as

Ax(z) =

{
1, z = x;
1
2 , z = y.

; Ay(z) =

{
1
2 , z = x;
1, z = y.

,

and take
Fx = {A ∈ LX |A ≥ Ax}; Fy = {A ∈ LX |A ≥ Ay}.

Then, it is easily seen that Fx, Fy ∈ F>L (X). We define

∀F ∈ F>L (X), ∀z ∈ X, F
q−→ z⇔ F ⊇ Fz,

then (X, q) is a >-convergence space with > = 1 and Uq(z) = Fz.
(1) (X, q) satisfies (TFDW). First, it is easily seen that (X, q) satisfies (TP3).
Second, let ψ : T −→ X and φ : T −→ F>L (X) with φ(t)

q−→ ψ(t) for every t ∈ T. From (TP3),
we get that φ(t) ⊇ Fψ(t) for any t ∈ T.

Take any ψ⇒(F)
q−→ x; then, by (TP3), we have Fx ⊆ ψ⇒(F), and so Ax ∈ ψ⇒(F), i.e.,

ψ←(Ax) ∈ F. Hence,

φ̂(Ax)(t) =
∨

B∈φ(t)

SX(B, Ax)

≥
∨

B∈Fψ(t)

SX(B, Ax)

= SX(Aψ(t), Ax)

= Aψ(t)(y)→
1
2

=

{
1, ψ(t) = x;
1
2 , ψ(t) = y.

= ψ←(Ax)(t),

which means that φ̂(Ax) ≥ ψ←(Ax) ∈ F, i.e., Ax ∈ gφF and so Fx ⊆ gφF. Thus, gφF
q−→ x.

(2) (X, q) does not satisfy (TU), and thus does not satisfy (TFD). Indeed, it is easily observed
that η(Uq(z)) = {{X}} for any z ∈ X and so

kUqUq(z) =
⋃

A∈η(Uq(z))

⋂
z∈A

Uq(z)

=
⋂

z∈X
Uq(z) = {{>X}}.

Obviously, Uq(z) 6⊆ kUqUq(z). Thus, (TU) is not satisfied.

In ([14], Remark 3.3), Fang and Yue proved that a strong L-topological space (X, τ)

corresponds uniquely to a >-convergence space (X, q) with the condition (TFDW) by taking
that for each x ∈ X,

Uq(x) = Uτ(x) := {A ∈ LX |
∨

B∈τ,B(x)=>
SX(B, A) = >}.
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Then, they constructed a bijection between strong L-topological spaces and >-convergence
spaces with (TFDW).

Let L be a continuous lattice and (X, δ) be a topological space. We prove below that, for any
x ∈ X,

Uπ(δ)(x) = U$(δ)(x).

That is, the >-neighborhood system {Uπ(δ)(x)}x∈X associated with topological generated
>-convergence space (X, π(δ)) is equal to the >-neighborhood system {U$(δ)(x)}x∈X associated
with topological generated L-topological space (X, $(δ)).

Lemma 4. Let L be a continuous lattice. Then, for a topological space (X, δ),

A ∈ $(δ)⇐⇒ ∀x ∈ X, A(x) ≤
∨

x∈B∈δ

SX(>B, A).

Proof. Let A ∈ $(δ) and x ∈ X. Taking any α ∈ L with α� A(x), then x ∈ Aα ∈ δ. It follows that

α ≤
∧

y∈Aα

A(y) = SX(>Aα
, A) ≤

∨
x∈B∈δ

SX(>B, A).

By the continuity of L and the arbitrariness of α, we obtain

A(x) ≤
∨

x∈B∈δ

SX(>B, A).

Conversely, let A(x) ≤ ∨
x∈B∈δ

SX(>B, A) for each x ∈ X. For each α ∈ L, we prove below that

Aα ∈ δ. Indeed, if Aα 6= ∅, then taking any x ∈ Aα we have

α� A(x) ≤
∨

x∈B∈δ

SX(>B, A) =
∨

x∈B∈δ

∧
y∈B

A(y).

Hence, there exists B ∈ δ such that x ∈ B and α � A(y) for all y ∈ B, i.e., B ⊆ Aα. Then, it
follows that Aα ∈ δ for any α ∈ L. Therefore, A ∈ $(δ).

Theorem 8. Let L be a continuous lattice. Then, for a topological space (X, δ), Uπ(δ)(x) = U$(δ)(x) for
any x ∈ X.

Proof. By the definition of π(δ), it is easily seen that F
π(δ)−→ x ⇔ F ⊇ v(Uδ(x)), and so

Uπ(δ)(x) = v(Uδ(x))

= {A ∈ LX |
∨

B∈Uδ(x)

SX(>B, A) = >}

= {A ∈ LX |
∨

x∈B∈δ

SX(>B, A) = >}.

U$(δ)(x) = {A ∈ LX |
∨

B∈$(δ),B(x)=>
SX(B, A) = >}.
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Let A ∈ Uπ(δ)(x). Then,

> =
∨

x∈B∈δ

SX(>B, A), by >B ∈ $(δ),>B(x) = >

≤
∨

C∈$(δ),C(x)=>
SX(C, A),

i.e., A ∈ U$(δ)(x). Conversely, let A ∈ U$(δ)(x). Note that, by Lemma 4, we get that, for each
B ∈ $(δ), B(x) = >,

> = B(x) =
∨

x∈C∈δ

SX(>C, B).

Hence, from A ∈ U$(δ)(x) it follows that

> =
∨

B∈$(δ),B(x)=>
SX(B, A)

=
∨

B∈$(δ),B(x)=>
(> ∗ SX(B, A))

=
∨

B∈$(δ),B(x)=>
(

∨
x∈C∈δ

SX(>C, B) ∗ SX(B, A))

≤
∨

x∈C∈δ

SX(>C, A),

i.e., A ∈ Uπ(δ)(x).

Remark 2. Similar to ([14], Remark 3.3), we get from Theorem 8 that there is a bijection between topological
generated >-convergence spaces and topological generated L-topological spaces. Thus, >-convergence
spaces with our Fischer diagonal condition precisely characterizes topological generated L-topological spaces.
Therefore, we establish the convergence theory associated with topological generated L-topological spaces.

5. Conclusions

In this paper, we present a lattice-valued Fischer diagonal condition (TFD) through extending
Kowalsky compression operator, and verify that there is a one-to-one correspondence between
>-convergence spaces with (TFD) and topological generated L-topological spaces. This shows that
(TFD) can characterize topological generated L-topological spaces. That is to say, we establish the
convergence theory associated with topological generated L-topological spaces. It is well-known
that Fischer diagonal condition also plays an important role in uniform convergence spaces [1].
In the further work, we shall consider the fuzzy version of Fischer diagonal condition in>-uniform
convergence spaces defined in [39].
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