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Abstract: In this paper, we apply Caputo-type fractional order calculus to simulate China’s gross
domestic product (GDP) growth based on R software, which is a free software environment for
statistical computing and graphics. Moreover, we compare the results for the fractional model with
the integer order model. In addition, we show the importance of variables according to the BIC
criterion. The study shows that Caputo fractional order calculus can produce a better model and
perform more accurately in predicting the GDP values from 2012–2016.
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1. Introduction

As one of the most important macroeconomic statistics indicators, GDP is an effective tool for
people to understand and grasp the macroeconomic operation of a country; it is also an important basis
for formulating economic policies. However, the calculation of GDP is very complicated, so a good
economic growth model (EGM) can effectively form the economic progress problem, and it can reduce
the loss of human and material resources.

Derivatives and integrals are often used to describe the process of economic development.
However, there are still some shortcomings in using classical calculus to model real data. In recent
years, the existence of solutions to fractional order differential equations have been studied in [1–3].
In addition, fractional calculus is widely used to construct economic models; it incorporates the effects
of memory in evolutionary processes; experimental results show that the fractional order model is
superior to integer order model, such as [4–13].

Recently, Luo et al. [14] improved the fractional EGM model in [5] and adopted different
computational methods to simulate GDP via MATLAB, SPSS, and R software. The simulation
results showed that the newly-established fractional hybrid model had better performance than
the classical model.

In this paper, we adopt the idea in [14] to apply Caputo fractional order EGM and integer order
to study China’s GDP growth, as well as the minimum mean-squared-error (MSE) to estimate the
parameters in the model. In order to compare the fitting effect between the integer order and the
fractional order model, we establish the minimum absolute error coefficient, determination, and the
BIC index. Finally, we use the prediction effect of the absolute relative error evaluation model.

Summarizing, based on fractional calculus, this paper conducts modeling of China’s economic
growth. Through a case study, it shows that fractional calculus has a better effect than integral calculus
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in modeling. It would be possible to use Monte Carlo simulation to generate sample data (see [15,16])
and then conduct modeling comparison. In this paper, real data are used for modeling and then
showing the advantage of fractional calculus. The purpose of the two methods is the same, but the case
analysis is often more complex and difficult than simulation, so a simulation is not used in this paper.

2. Models Description

We select six explanatory variables in this paper, and they are land area (LA) (km2), cultivated
area (CL) (km2), total population (TP) (million), total capital formation (TCF) (billion), exports of goods
and services (EGS) (billion), and general government final consumer spending (GGFCS) (billion), and
the explained variable is GDP (billion). The data used in this paper were all Chinese data from the
world bank from 1961–2016.

In order to simplify the expression, we define the following symbols:

x1 x2 x3 x4 x5 x6 y n k t
LA CL TP TCF EGS GGFCS GDP NVM NPM year

The general expression of the EGM is y = f (x1, x2, · · · ), where f is the given function. Thus,
the integer order model (IOM) and Caputo fractional order model (CFOM) are considered as:

• IOM:

y(t) = ∑
j=1,2,3,5,6

cjxj(t) + c4

∫ t

t0

x4(t)dt + c7
dx7(t)

dt
,

• CFOM:

y(t) =
7

∑
j=1

ck(Dαk
t0,txk)(t),

where t0 and αk represent the starting year and order respectively; in addition, the Caputo
derivative Dαk

t0,txk for a given function xk is defined as (see [1]):

Dαk
t0,txk(t) =

1
Γ(1− αk)

∫ t

t0

dxk(s)
ds

(t− s)αk
ds, t > t0, 0 < αk ≤ 1.

In order to facilitate the comparison of GDP between different years, the GDP, TCF, EGS,
and GGFCE used here were converted into unchangeable local currency. The data from 1961–2011
were selected as the training sample, and data from 2012–2016 were used as the test sample. Moreover,
we used the average absolute deviation (MAD) and the coefficient of determination (R2) to evaluate
the model, and the absolute relative error criterion was used to compare the prediction effect of the
model. Recall the following definitions:

MAD =

n
∑

i=1
|yi − ŷi|

n
,

and:

AREi =

∣∣∣∣yi − ŷi
yi

∣∣∣∣ , i = 1, 2, · · ·, n,

and:

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳ)2

.
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We often used the Akaike information criterion (AIC) and Bayesian information criterion (BIC)
for the selection of variables in the model. Compared with the BIC criterion, the AIC criterion has the
phenomenon of over-fitting. Therefore, we adopted the following BIC criterion:

BIC = log

(
1
n

n

∑
i=1

(yi − ŷi)
2

)
+

p log n
n

,

and:

ωj =
exp

(
− (BICj−BICmin)

2

)
p
∑

j=1
exp

(
− (BICj−BICmin)

2

) .

3. Main Results

3.1. Economic Data for China

By using the Chinese economic data from 1961–2016 in unchangeable local currency, we apply R
software to get the following figure (see Figure 1).
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Figure 1. Data for China from 1961–2016. EGS, exports of goods and services.
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3.2. Parameter Estimation

In this paper, we used R software and the least squares method to obtain the coefficient estimation
in the integer order and Caputo fractional order models. Moreover, according to the MSE criteria,
we gave the order of the Caputo fractional order model, and the following data were obtained (see
Table 1).Table 2 shows the significance test results of the IOM and CFOM coefficients.

Table 1. The coefficients and orders of the integer order model (IOM) and the Caputo fractional order
model (CFOM).

IOM CFOM IOM CFOM

α1 0 −0.5389 c1 −0.0051 0.0027
α2 0 −1.3704 c2 0.0286 0.0029
α3 0 −0.6873 c3 0.3220 −0.3619
α4 −1 0.0960 c4 0.1147 0.6058
α5 0 −0.7777 c5 0.4229 0.2329
α6 0 0.0331 c6 3.5943 1.3208
α7 1 3.5251 c7 0.7978 0.1087

Table 2. Significance level of the Caputo model.

IOM CFOM

Variable t-Value p-Value t-Value p-Value

x1 −5.066 7.76× 10−6 10.750 6.86× 10−14

x2 2.853 6.58× 10−3 12.048 1.58× 10−15

x3 4.127 1.61× 10−4 −10.697 8.04× 10−14

x4 6.601 4.41× 10−8 16.408 2.00× 10−16

x5 5.498 1.83× 10−6 19.996 2.00× 10−16

x6 10.692 8.14× 10−14 6.645 3.80× 10−8

x7 2.128 3.90× 10−2 2.304 2.60× 10−2

The results in Table 2 show that when the significance level was 0.05, the coefficients of IOM and
CFOM passed the significance test.

3.3. Model Evaluation

In order to compare the performance of limited samples between IOM and CFOM, we present the
values of MAD, R2, and BIC index in the training sample set (see Table 3).

Table 3. Sample performance of IOM and CFOM.

Index MSE MAD R2 BIC

IOM 15,497,849 2,430.793 0.9991 17.0959
CFOM 1,906,429 1070.643 0.9999 15.0004

We adopted the BIC criterion to select variables in the model, and the importance of each variable
was obtained, represented by ω (see Table 4).
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Table 4. The importance of variables based on BIC.

Variable IOM CFOM

BIC without x1 17.47825 15.81924
one variable x2 17.18849 16.06651

x3 17.34602 15.91584
x4 17.70702 15.02607
x5 17.54180 15.73556
x6 18.29923 16.06451
x7 17.11674 15.02607

ω found from the x1 14.40% 12.92%
BIC without x2 16.64% 11.42%
one variable x3 15.38% 12.31%

x4 12.84% 19.22%
x5 13.95% 13.48%
x6 9.55% 11.43%
x7 17.25% 19.22%

3.4. Fitting Results

Now, we give the fitting results of IOM and CFOM based on R software (see Figure 2).
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Figure 2. Data fitting.

3.5. Predicted Results

Finally, we present the forecast results of the IOM and CFOM models for China’s GDP data from
2012–2016, and we calculate ARE index values, as shown in Table 5.

Table 5. Our results.

Year Real Value IOM CFOM

Predict Value AREi Predict Value AREi

2012 557,487.6 554,010.4 0.6237% 558,937.6 0.2601%
2013 600,735.4 611,769.9 1.8368% 601,514.2 0.1296%
2014 644,575.1 665,424.7 3.2346% 638,231.2 0.9842%
2015 689,052.1 741,602.5 7.6265% 675,637.3 1.9468%
2016 735,218.6 810,156.9 10.1927% 714,153.2 2.8652%

4. Conclusions

We selected six economic indicators in this paper and used IOM and CFOM to model China’s
GDP growth from 1961–2011. The fitting results showed that CFOM was significantly better than
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IOM. To further illustrate the forecasting effect of the CFOM model, we presented the GDP forecast
for China from 2012–2016 and compared it with the real value. It was found that the CFOM model
not only had an advantage in fitting China’s GDP growth, but also predicted it better. Finally, since
all data were discrete, we intend to extend our study by applying the Caputo differences to create a
fractional discrete time EGM.
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