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Abstract: The intrinsic instability of the financial system itself results in chaos and unpredictable
economic behavior. To gain the globally asymptotic stability of the equilibrium point with a positive
interest rate of the chaotic financial system, pulse control is sometimes very necessary and is employed
in this paper to derive the globally exponential stability of financial system. It should be pointed out
that the delayed feedback model brings an essential difficulty so that the regional control method
has to be adopted. In this paper, the author firstly employs impulsive control, regional control,
the Lyapunov function technique, and variational methods to derive the stochastically globally
asymptotic stability criterion of the economic balance point with a positive interest rate for a delayed
feedback financial system with Markovian jumping and partially unknown transition rates. Besides,
the mathematical induction method and the proof by contradiction are applied synthetically to
deduce the globally exponential stability of the equilibrium point with a positive interest rate for the
impulsive financial system without time-delays. Moreover, numerical examples illustrate that under
suitable data conditions on the two main criteria mentioned above, the interest rates are positive
decimals when the financial system reaches stability, which means better economic significance.

Keywords: positive interest rate; chaotic financial system; reduction to absurdity; mathematical
induction method; impulse control

1. Introduction and Preparation

In recent decades, the following financial mathematical model has received wide attention
(see [1–7] and the references therein), which is composed of the production sub-block, currency
sub-block, securities sub-block, and labor sub-block:

ẋ =z + (y− a)x

ẏ =1− by− x2

ż =− x− cz,

(1)

where x represents the interest rate, y represents the investment demand, z represents the price index,
a represents savings, b represents the unit investment cost, and c represents the elasticity of commodity
demand. Although the financial system (1) is a definite system, a dynamic test shows that chaos is the
intrinsic stochasticity in this definite system, and the intrinsic stochasticity is the irregular dynamical
behavior of the system, which is difficult to predict [3–7]. Chaos is a process similar to stochastic
phenomena in deterministic systems and a seemingly irregular movement. The financial system is a
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complex non-linear system composed of many factors. In this non-linear system, with the change of
system parameters, its motion state may appear as chaotic phenomena, leading to the emergence of
financial crisis. Therefore, in this paper, the control of the chaotic financial system is considered.

On the other hand, there is much literature related to dynamical analysis. For example, In [3,4],
the dynamic properties of the system (1), such as equilibrium point and bifurcation, were analyzed.
One can see from [3,4] that if c − b − abc is no greater than zero, there is the unique equilibrium
point Q0(0, 1

b , 0) in the financial system (1); if c − b − abc is not less than zero, there exist three

equilibrium points Q0(0, 1
b , 0), Q1(

√
θ, 1+ac

c , −
√

θ
c ), Q2(−

√
θ, 1+ac

c ,
√

θ
c ) in the financial system (1), where

θ = c−b−abc
c . The following proposition is true:

Proposition 1 ([3,4]). If c− b− abc > 0, Q0 is the stable equilibrium point. However, both Q1 and Q2 are
unstable if bc4 + b2c3 − 2ab2c2 + (2ab− 2− 3b2)c + 3b = 0.

Besides, the delay feedback dynamics and feedback control of the system [1] were discussed in [5]. The H∞

control problem with external disturbances and input delays of the system (1) was considered in [6]. Chaotic
synchronization of the system (1) was studied in [7].

Remark 1. From [8] (Table 1), one can see that chaos appears in the financial system (1) if c− b− abc > 0 and
c + a− 1

b < 0. For example, if a equals 0.9, b is 0.2, and c equals 1.2, chaotic behaviors are characterized in the
financial system (1) (see Figure 1).

Figure 1. Phase diagram of the financial system (1) for t ∈ [0, 10,000].

Let: 

X1 =x−
√

θ

X2 =y− 1 + ac
c

X3 =z +
√

θ

c
;

(2)

the financial system (1) is translated into the following system:
Ẋ1 =

1
c

X1 + θX2 + X3 + X1X2

Ẋ2 =− 2θX1 − bX2 − X2
1

Ẋ3 =− X1 − cX3,

(3)

where the equilibrium point Q1(
√

θ, 1+ac
c , −

√
θ

c ) becomes the null solution of the system (3).
Furthermore, one can rewrite the system (3) in matrix-vector form:{

Ẋ = −AX + f (X), t > t0 = 0,

X(t0) = X0
(4)
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where XT = (X1, X2, X3), X0 = (X01, X02, X03)
T ∈ R3, and:

A =

 − 1
c −θ −1

2θ b 0
1 0 c

 , f (X) =

 X1X2

−X2
1

0

 . (5)

In 2017, impulse control on the financial system (1) was discussed in [9]. However, the numerical
example of [9] only verified the asymptotical stability of the equilibrium point Q0(0, 1

b , 0) with zero
interest rate when the system reaches stable. In fact, the globally asymptotical stability of Q1 with the
positive interest rate

√
θ > 0 needs to involve the more complex impulse control technique. In this

paper, the author will employ the proof by contradiction, the mathematical induction method, and
the Lyapunov function method to guarantee the globally asymptotical stability of the equilibrium
point Q1 of the financial system (1) under the suitable impulse control, i.e., guaranteeing the globally
asymptotical stability of the null solution for the following system:

Ẋ = −AX + f (X), t > t0 = 0, t 6= tk, k ∈ Z+

X(t+k ) = X(tk) = BkX(t−k ), k ∈ Z+ , {1, 2, · · · }
X(t0) = X0,

(6)

where f and A are defined in (5) and each Bk represents the impulsive parameter matrix. The impulsive
time tk(k ∈ Z+) satisfies 0 < t1 < t2 < · · · < tk < · · · with lim

k→∞
tk = ∞.

Remark 2. The equilibrium point Q1 with the positive interest rate
√

θ > 0 is not stable in the financial
system (1) under any data of a, b, c. Therefore, in this paper, the author has to consider employing the suitable
impulse control to secure global stability of Q1.

Remark 3. According to the principles of macroeconomics, the interest rate is usually a positive decimal
whenever the product market and the money market are in common equilibrium. Therefore, in this paper, the
author considers gaining the globally asymptotical stability of the equilibrium point Q1 with the positive interest
rate, which is more applicable for the real needs of complex financial market realities.

A fact should be pointed out that there is a time lag in dynamic economic variables, for there is a
time lag between making economic decisions and the effectiveness of decisions. Usually, economic
agents are considered rational [5,10,11]. For example, in [5], the following time delayed feedback
financial system was introduced:

ẋ =z + (y− a)x + k1(x− x(t− τ1))

ẏ =1− by− x2 + k2(y− y(t− τ2))

ż =− x− cz + k3(z− z(t− τ3)),

(7)

The chaos behavior of dynamic economic system usually implies that there exists intrinsic
instability in macroeconomic movement itself, which is further aggravated by the delayed feedback of
the financial system in reality (see, e.g., Figure 2).

Remark 4. Time delays bring essential difficulties in deriving the globally asymptotical stability of the
equilibrium point Q1 with the interest rate. Actually, the methods employed for the system (6) without
time delays may be no longer applicable to the delayed system (7).

Remark 5. Although the authors of [12] utilized the impulsive delayed differential inequality to gain the global
exponential stability criterion of the equilibrium point Q0(0, 1/b, 0) for a delayed financial system, the methods
are no longer applicable to that of Q1 with the positive interest rate.
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Remark 6. In order to overcome the double difficulties caused by time delay and positive interest rate, the author
has to adopt double control methods: impulse control and regional control.

Figure 2. Trajectories for the system (7) where ki = 0.1(i = 1, 2, 3) and τ = 9.

Recall that impulsive effects of complex dynamic systems have been investigated [13–20].
The impulses may lead to the instability or stability of the system depending on the magnitude
of the impulses. impulsive effects may perturb or destabilize the phase trajectories of the systems
provided that the magnitude of impulsive strength is greater than one. If the magnitude of impulsive
strength is less than one, impulsive effects may stabilize the unstable neural networks. In this paper,
the author will consider this class of impulsive control for the delayed feedback model of the financial
system (1). On the other hand, time delays bring great difficulties to stability analysis of the equilibrium
point Q1 with the positive interest rate for the delayed feedback financial system (7). Based on this
consideration, the author introduces the regional control method. Recall that the diffusion phenomenon
appears really in the neural networks whenever electrons go through asymmetric electromagnetic
fields [21–25]. If the financial indicators are related to the region by macro-control, adjusting the
diffusion coefficient contributes to the global asymptotic stability of the equilibrium point Q1 with the
positive interest rate for the delayed feedback financial system. Therefore, in this paper, the author
considers the reaction-diffusion model when investigating the delayed feedback financial system.

Besides, recall that the Markov model simulates well some stochastic problems in real
engineering [26–31]. In Model (7), ki(i = 1, 2, 3) represents the feedback profit coefficient, which
is also stochastic in a dynamic economic market. Unfortunately, there is very little literature related to
the randomness of feedback profit coefficients. In fact, the randomness has the Markov property, for the
feedback coefficient for the next moment is only related to that of the current moment. Therefore,
in this paper, the author considers a Markovian jumping delayed impulsive reaction-diffusion financial
system, which may be completed in three steps.
Step 1. Construct Markovian jumping delayed feedback financial system:

ẋ =z + (y− a)x + k1(r(t))(x− x(t− τ1(t)))

ẏ =1− by− x2 + k2(r(t))(y− y(t− τ2(t)))

ż =− x− cz + k3(r(t))(z− z(t− τ3(t))),

(8)
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where (Ω∗, F , P) is the complete probability space defined in [32]. To avoid repetition in the narrative
of the article, the author will not repeat it, and denotes pδ

ij = P(r(t + δ) = j | r(t) = i).

Remark 7. In the definition of the transition probability, the quantity 1 + γijδ is always well defined. Here is a
brief explanation. For example, 0 6 pδ

ij 6 1, ∑
j∈S

pδ
ij = 1, lim

δ→0
pδ

ij = 0 when j 6= i, and lim
δ→0

pδ
ij = 1 when j = i.

Step 2. Equilibrium point Q1 of System (8) is translated into the null solution of the following system:
Ẋ1 =

1
c

X1 + θX2 + X3 + X1X2 + k1(r(t))(X1 − X1(t− τ1(t)))

Ẋ2 =− 2θX1 − bX2 − X2
1 + k2(r(t))(X2 − X2(t− τ2(t)))

Ẋ3 =− X1 − cX3 + k3(r(t))(X3 − X3(t− τ3(t))),

(9)

where Xi(i = 1, 2, 3) is defined in (2). Indeed, obviously, Q1 is an equilibrium point of System (8),
which corresponds to the equilibrium point o(0, 0, 0) of System (9).
Step 3. Set up the reaction-diffusion model with impulse:



∂u
∂t

= D∆u− Au(t, x) + f (u(t, x)) + K(r(t))(u− u(t− τ(t), x)), t > t0 = 0, t 6= tk, k ∈ Z+,

u(t+k , x) = u(tk, x) = Bku(t−k , x), t = tk, k ∈ Z+ , {1, 2, · · · }
u(s, x) = ξ(s, x), (s, x) ∈ [−τ, 0]×Ω,

∂ui
∂ν

= 0, x ∈ ∂Ω, t > 0, i = 1, 2, 3,

(10)
where Z+ , {1, 2, · · · } represents Z+ = {1, 2, · · · }. The state variable u(t − τ(t), x)) = (u1(t −
τ1(t), x)), u2(t − τ2(t), x)), u3(t − τ3(t), x)))T , and Ω is a bounded subset of R3. In addition, ∂ui

∂ν =

( ∂ui
∂x1

, ∂ui
∂x2

, ∂ui
∂x3

)T represents the outward normal derivative on ∂Ω, and the diffusion coefficient matrix
D = diag(d1, d2, d3) is a positive definite diagonal matrix in R3×3. Bk and N are matrices in R3×3. A is
defined in (5), and:

f (u) =

 u1u2

−u2
1

0

 , K(r(t)) =

 k1(r(t)) 0 0
0 k2(r(t)) 0
0 0 k3(r(t))

 . (11)

Remark 8. The partially inaccessible transition rates model is more applicable for the real needs of complex
financial market realities. Below, the global stability of the Markovian jumping delayed feedback financial system
with partially unknown transition rates will be investigated.

For convenience, some fixed symbols and simple notations are introduced in this paper.
For example, matrix A > 0, A > 0, A > B, A > B, L2

F0
([−τ, 0] × Ω; R3) can be referred to

the literature [14,33] so that the author can avoid the high repetition rate of the article’s narrative.
In addition, denote by λ1 the lowest positive eigenvalue of the Neumann boundary problem
(see, e.g., [34]). To avoid repetition in the narrative of the article, the author adopts the symbols
S, Sr

kn, Sr
un, similarly to those of [32]. Denote α̃r > max

j∈Sr
un
|γrj|.

In this paper, the author will accomplish the following two main targets:
F Deriving the globally exponential stability criterion for the null solution of the impulsive system (6);
F Deducing the globally exponential stability criterion for the null solution of the impulsive
system (10).
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2. Globally Exponential Stability of Q1 with the Positive Interest Rate for the
Reaction-Diffusion Model

Theorem 1. Suppose that τ̇(t) 6 τ0 < 1, and matrices Pr = diag(pr1, pr2, pr3) > 0(r ∈ S) with
pr1 = pr2, satisfying:

BT
k PrBk 6 Pi, ∀ r, i ∈ S, (12)

and for all r ∈ S,

2λ1PrD + Pr A + AT Pr − αPr − ∑
j∈Sr

kn

|γrj|Pj − α̃r ∑
j∈Sr

un

Pj − 2PrKr − (λmaxPrKr)I −
max
r∈S

(λmaxPrKr)eατ

1− τ0
I > 0, (13)

then the following two conclusions hold simultaneously:
(a) The null solution of System (10) is stochastically globally exponential stable in the mean square;
(b) The equilibrium point Q1(

√
θ, 1+ac

c , −
√

θ
c ) of the following financial system is stochastically globally

exponential stability in the mean square:



∂u1
∂t

= d1∆u1 +
1
c
(u1 −

√
θ) + θ(u2 −

1 + ac
c

) + (u3 −
−
√

θ

c
)

+ (u1 −
√

θ)(u2 −
1 + ac

c
) + k1(r(t))(u1 − u1(t− τ(t), x)), t > 0, t 6= tk,

∂u2
∂t

= d2∆u2 − 2θ(u1 −
√

θ)− b(u2 −
1 + ac

c
)− (u1 −

√
θ)2

+ k2(r(t))(u2 − u2(t− τ(t), x)), t > 0, t 6= tk,

∂u3
∂t

= d3∆u3 − (u1 −
√

θ)− c(u3 −
−
√

θ

c
) + k3(r(t))(u3 − u3(t− τ(t), x)), , t > 0, t 6= tk,

u(t+k , x)−Q1 = Bk[u(t
−
k , x)−Q1], t = tk, k = 1, 2, · · ·

u(s, x) = ξ(s, x) + Q1, (s, x) ∈ [−τ, 0]×Ω,

∂ui
∂ν

= 0, x ∈ ∂Ω, t > 0, i = 1, 2, 3.

(14)

Proof. Assume that u is a solution of (10). I claim that:∫
Ω

uT PrD∆udx 6 −λ1

∫
Ω

uT PrDudx, (15)

where ui(t, x) ∈ H1
0(Ω) for all i ∈ {1, 2, 3} and t ∈ [0,+∞).

Indeed, one can conclude from the elliptic operators theory on the Laplacian eigenvalue [35]
that −∆ is a self-adjoint compact inverse operator under the Neumann zero boundary value. Next,

similarly to the proof of [34] (Lemma 2.1), one can see, for any ui(x) ∈ H1
0(Ω), ui(x) =

∞
∑

k=0
ckϑ(x) and:

∫
Ω
|∇ui(x)|2dx > λ1

∫
Ω

u2
i (x)dx. (16)

Let u be a solution of the system (10), then one can conclude from (16), the Gauss formula, and
the Neumann zero boundary condition that:∫

Ω
uT PrD∆ udx

=−
3

∑
k=1

3

∑
j=1

∫
Ω

prjdj(
∂uj

∂xk
)2dx

6− λ1

3

∑
j=1

∫
Ω

uj prjdjujdx = −λ1

∫
Ω

uT PrDudx,

(17)
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which proves the claim (15), where D = diag(d1, d2, d3), Pr = (pr1, pr2, pr3).
Consider the Lyapunov–Krasovskii functional: for any mode r ∈ S, Vr(t) = Vr1(t) + Vr2(t) with:

Vr1(t) = eαt
∫

Ω
uT Prudx

and:

Vr2(t) =
c1eατ

1− τ0

∫
Ω

∫ t

t−τ(t)
eαsuT(s, x)u(s, x)dsdx,

where the constant scalar c1 = max
r∈S

(λmaxPrKr).

From the definition of α̃r, it is clear that:

uT ∑
j∈S

γrjPju 6 uT ∑
j∈Sr

kn

|γrj|Pju + uT α̃r ∑
j∈Sr

un

Pju. (18)

Let L be the weak infinitesimal operator (see, e.g., [14]) such that:

LVr1 6eαt
∫

Ω

[
uT(αPr + ∑

j∈S
γrjPj − 2λ1PrD− (Pr A + AT Pr))u

+ 2uT Pr f (u) + 2uT PrKr(u− u(t− τ(t), x))
]

dx

6eαt
∫

Ω

[
uT(αPr + ∑

j∈Sr
kn

|γrj|Pj + α̃r ∑
j∈Sr

un

Pj − 2λ1PrD− (Pr A + AT Pr) + 2PrKr

+ (λmaxPrKr)I)u + max
r∈S

(λmaxPrKr)uT(t− τ(t), x)u(t− τ(t), x))
]

dx,

(19)

and:

LVr2(t) =
c1eατ

1− τ0

∫
Ω

eαtuT(t, x)u(t, x)dx− c1eατ

1− τ0
(1− τ̇(t))

∫
Ω

eα(t−τ(t))uT(t− τ(t), x)u(t− τ(t), x)dx

6
c1eατ

1− τ0

∫
Ω

eαtuT(t, x)u(t, x)dx− c1

∫
Ω

eαtuT(t− τ(t), x)u(t− τ(t), x)dx
(20)

Combining (13), (19), and (20) results in:

LVr(t) 6eαt
∫

Ω
uT
(

αPr + ∑
j∈Sr

kn

|γrj|Pj + α̃r ∑
j∈Sr

un

Pj − 2λ1PrD− (Pr A + AT Pr) + 2PrKr

+ (λmaxPrKr)I +
c1eατ

1− τ0
I
)

udx 6 0, ∀ t ∈
∞⋃

k=0

[tk, tk+1),

which means
EV(t, r(t)) 6 EV(tk, r(tk)), ∀ t ∈ [tk, tk+1), k = 0, 1, , 2 · · · . (21)

On the other hand, for any modes r, i ∈ S,

V(tk, r)−V(t−k , i) 6eαt[
∫

Ω
uT(tk, x)Pru(tk, x)dx−

∫
Ω

uT(t−k , x)Piu(t−k , x)dx]

+
c1eατ

1− τ0

∫
Ω
[
∫ tk

tk−τ(tk)
eαsuT(s, x)u(s, x)ds−

∫ t−k

t−k −τ(t−k )
eαsuT(s, x)u(s, x)ds]dx

6eαt[
∫

Ω
uT(t−k , x)(BT

k PrBk − Pi)u(t−k , x)dx] 6 0.

(22)
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Combining (21) and (22) reaches:

EV(t, r(t)) 6 EV(tk, r(tk)) 6 EV(t−k , r(t−k )) 6 EV(tk−1, r(tk−1)) 6 · · · 6 EV(t0, r(t0)), ∀ t > t0 = 0. (23)

Moreover,

min
r∈S

(λminPr)eαtE‖u‖2 6EV(t, r(t)) 6 EV(t0, r(t0))

=E
(

eαt0

∫
Ω

ξT(0, x)P(r(t0))ξ(0, x)dx +
c1eατ

1− τ0

∫
Ω

∫ 0

0−τ(0)
eαsξT(0, x)ξ(0, x)dsdx

)
6
(
(λmaxP(r(0))) +

τc1eατ

1− τ0

)
sup
−τ6s60

E‖ξ(s)‖2, ∀ t > 0,

(24)

which implies:
E‖u‖2 6 c2 sup

−τ6s60
E‖ξ(s)‖2e−αt, ∀ t > 0, (25)

which means the completion of the proof of Theorem 1, where c2 is a suitable positive constant scalar.

3. Impulse Control on the Financial System without Time-Delays

For simplicity, in this section, the author denotes the norm ‖ · ‖ as follows,

‖Y‖2 = YTY, where Y ∈ R3.

Theorem 2. Assume that there exist positive scalars qk, ς, λ > 0 with ς− λ > λmax(−AT − A) such that:

λmaxBT
k Bk 6 qk < e−(ς+λ)(tk+1−tk), k ∈ Z+, (26)

then the following two conclusions hold simultaneously:
(a) the null solution of the system (6) is globally exponential stable with the convergence rate λ

2 ;
(b) the equilibrium point Q1 with positive interest rate

√
θ for the following system is globally exponential

stable with the convergence rate λ
2 :

ẋ = z + (y− a)x, t > 0, t 6∈ {tk, k ∈ Z+},
ẏ = 1− by− x2, t > 0, t 6∈ {tk, k ∈ Z+},
ż = −x− cz, t > 0, t 6∈ {tk, k ∈ Z+},(

x(t+k )−
√

θ, y(t+k )− 1 + ac
c

, z(t+k ) +

√
θ

c

)T

=Bk

(
x(t−k )−

√
θ, y(t−k )− 1 + ac

c
, z(t−k ) +

√
θ

c

)T
, t = tk, k ∈ Z+,(

x(t0)−
√

θ, y(t0)−
1 + ac

c
, z(t0) +

√
θ

c

)T
= X0.

(27)

Proof. Let X be a solution of impulsive system (6); the author considers the following norm:

‖X‖2 = XTX (28)

Firstly, I claim that there exists positive scalar C > e(ς+λ)(tk−tk−1) > 1 such that:

XT(t)X(t) 6 C‖X0‖2e−λ(t−t0), t ∈ [tk−1, tk), k ∈ Z+. (29)

Indeed, from the condition (26), one sees:
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0 < qk−1 6 e−(ς+λ)(tk−tk−1) < 1. (30)

Hence,
0 < qk−1 < e(ς+λ)(tk−tk−1) 6 C, (31)

which implies:

e(ς+λ)(tk−tk−1) 6 C⇒0 < ‖X0‖2 6 ‖X0‖2eς(tk−tk−1) 6 C‖X0‖2e−λ(tk−tk−1)

⇒1 = e0 < eς(tk−tk−1) 6 Ce−λ(tk−tk−1), k ∈ Z+.
(32)

To prove (29), I firstly prove:

‖X‖2 6 C‖X0‖2e−λ(t−t0), t ∈ [t0, t1). (33)

Due to e−λ(t1−t0) 6 e−λ(t−t0) for all t ∈ [t0, t1), I only need to prove:

‖X(t)‖2 6 C‖X0‖2e(t0−t1)λ, t ∈ [t0, t1). (34)

I consider reduction to absurdity similarly to that of the proof for [36] (Theorem 1). Obviously,
(34) holds at t = t0, as a result of (32) and ‖X(t0)‖ = ‖X0‖. Moreover,

‖X(t0)‖2 = 1 · ‖X0‖2 < C‖X0‖2e−λ(t1−t0).

If (34) does not hold, there is a scalar ι with t0 < ι < t1 such that:

‖X(ι)‖2 > C‖X0‖2e−λ(t1−t0) > ‖X0‖2eς(t1−t0) > ‖X0‖2. (35)

This deduces that there is a positive constant t∗ with t0 < t∗ < ι such that:

‖X(t∗)‖2 = C‖X0‖2e−λ(t1−t0), and ‖X(t)‖2 6 C‖X0‖2e−λ(t1−t0), ∀ t ∈ [t0, t∗], (36)

and there is positive constant t∗∗ with t0 6 t∗∗ < t∗ such that for t ∈ [t∗∗, t∗],

‖X(t∗∗)‖2 = ‖X0‖2, (37)

which implies together with (32) that:

‖X0‖2 6 C‖X0‖2e−λ(t1−t0) 6 C‖X(t)‖2e−λ(t1−t0), t ∈ [t∗∗, t∗]. (38)

Let D+ be the upper right derivative (Dini derivative) such that for t ∈ [t∗∗, t∗] ⊂ [t0, t1),

D+(XTX) 6 λmax(−AT − A)‖X‖2 6 (ς− λ)XTX,

and hence,

XT(t∗)X(t∗) 6XT(t∗∗)X(t∗∗)e(ς−λ)(t∗−t∗∗)

<‖X0‖2e(ς+λ)(t1−t0)e−λ(t1−t0) 6 C‖X0‖2e−λ(t1−t0) = ‖X(t∗)‖2.

This is a contradiction, and then, (29) holds for k = 1.
Assume that (29) is fulfilled for all 1 6 k 6 m with m ∈ Z+. That is,

‖X(t)‖2 6 C‖X0‖2e−λ(t−t0), t ∈ [tk−1, tk), k ∈ {1, 2, · · · , m}. (39)
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By (39), I shall show that (29) is fulfilled for k = m + 1, i.e.,

XT(t)X(t) 6 C‖X0‖2e−λ(t−t0), t ∈ [tm, tm+1). (40)

In fact, to prove (40), I only need to prove:

XT(t)X(t) 6 C‖X0‖2e−λ(tm+1−t0), t ∈ [tm, tm+1). (41)

First, I claim:
XT(tm)X(tm) < C‖X0‖2e−λ(tm+1−t0)

Indeed,

XT(tm)X(tm) 6qmC‖X0‖2e−λ(tm−t0)

<e−λ(tm+1−tm)C‖X0‖2e−λ(tm−t0) = C‖X0‖2e−λ(tm+1−t0).
(42)

If (41) is not fulfilled, there is t∗ ∈ (tm, tm+1) with t∗ = inf
t∈[tm ,tm+1)

{t : XT(t)X(t) >

C‖X0‖2e−λ(tm+1−t0)} such that:

‖X(t∗)‖2 = C‖X0‖2e−λ(tm+1−t0), and XT(t)X(t) 6 C‖X0‖2e−λ(tm+1−t0), t ∈ [tm, t∗). (43)

It follows from (42) that there exists t∗∗ ∈ [tm, t∗) satisfying:

‖X(t∗∗)‖2 = qmC‖X0‖2e−λ(tm−t0). (44)

Due to D+‖X(t)‖2 6 (ς− λ)‖X(t)‖2 on [t∗∗, t∗ ], one can similarly get:

XT(t∗)X(t∗) 6‖X(t∗∗)‖2e(ς−λ)(t∗−t∗∗) < C‖X0‖2e−λ(tm+1−t0) = ‖X(t∗)‖2. (45)

This is a contradiction. Thus, (41) holds, and hence, (40) holds. Mathematical induction yields
that (29) holds for each k ∈ Z+. The condition (26) implies:

XT(tk)X(tk) < ‖X(t−k )‖
2,

which together with (29) deduces:

‖X‖2 6 C‖X0‖2e−λ(t−t0), t ∈ [tk−1, tk], for all k ∈ Z+.

This has actually completed the proof of Theorem 2.

Remark 9. Theorem 2 presents a simple and feasible stability criterion on the equilibrium point Q1 with the
positive interest rate for the complex financial system (27), whose feasibility can be verified in the numerical
example below.

4. Numerical Example

Example 1. In System (10) or (14), let a = 0.9, b = 0.2, c = 0.2463, and then:

A =

 −4.0601 −0.0893 −1.0000
0.1787 0.2000 0
1.0000 0 0.2463

 .
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Let S = {1, 2, 3} and the transition rates matrix Π, feedback gain coefficient matrices, diffusion coefficient
matrix, and impulse coefficient matrices be given as follows:

Π =

 −0.026 ? ?
? −0.023 ?

0.016 0.013 −0.029

 , K1 =

 0.011 0 0
0 0.015 0
0 0 0.012

 ,

K2 =

 0.012 0 0
0 0.016 0
0 0 0.013

 , K3 =

 0.01101 0 0
0 0.0151 0
0 0 0.011

 .

D =

 1.9165 0 0
0 1.9161 0
0 0 1.9163

 , Bk =

 1
18k3 0 0
0 1

16k5 0
0 0 0.0010

 , k = 1, 2, · · ·

Take α̃1 = 0.026, α̃2 = 0.023, and let Ω be a unit ball in R3, then λ1 = 2.1762. Let τ = 0.5,
τ0 = 0.3, α = 0.0012, I can employ MATLAB software to solve the inequalities (3.2), obtaining the following
feasible solutions:

P1 =

 1.0101 0 0
0 1.0101 0
0 0 1.0780

 , P2 =

 1.0021 0 0
0 1.0021 0
0 0 1.0130

 ,

P3 =

 1.0132 0 0
0 1.0132 0
0 0 1.0011

 ,

which guarantee that the conditions (12) and (13) hold. Thus, Theorem 1 yields that Q1 of (14) is stochastically
globally exponential stable in the mean square.

Remark 10. In Example 1, a = 0.9, b = 0.2, c = 0.2463 derive that c− b− abc = 0.0020 > 0 and c + a−
1
b = −3.8537 < 0. Remark 1 demonstrates that chaos appears in the financial system (1) if c− b− abc > 0 and
c + a− 1

b < 0. However, with the help of impulsive control and regional control, one sees that the equilibrium
point Q1 for the delayed feedback financial system (14) is stochastically globally exponential stable. Particularly,
the interest rate is 0.0893 > 0 when the financial system reaches stability, which means better economic
significance (see Table 1).

Table 1. Comparisons of System (1) and System (14) under the same data a = 0.9, b = 0.2, c = 0.25.

System (1) System (10) Positive or Negative

c− b− abc 0.0050 0.0050 > 0
c + a− 1

b −3.8500 −3.8500 < 0
system state chaos global stability

interest rate of Q1 8.93% 8.93% > 0

Remark 11. Table 1 illustrates that impulsive control and regional control stabilize the chaotic financial system.
When the financial system reaches stability, the interest rate is the positive number 8.93%.

Example 2. In the system (6) or (27), let a = 0.9, b = 0.2, c = 0.2463, and one gets”:

A =

 −4.0601 −0.0893 −1.0000
0.1787 0.2000 0
1.0000 0 0.2463

 .



Mathematics 2019, 7, 579 12 of 15

In addition, let qk ≡ 0.6, ς = 9.3, λ = 0.7, tk+1 − tk ≡ 0.05,

Bk =

 1
18k3 0 0
0 1

16k5 0
0 0 0.0010

 , k = 1, 2, · · · .

Now, one can compute and obtain:

λmaxBT
k Bk 6 λmaxBT

1 B1 < 0.6 = qk,

ς− λ = 8.6 > 8.1211 = λmax(−AT − A),

qk = 0.6 < 0.6065 = e−(ς+λ)(tk+1−tk),

which implies that the condition (26) is satisfied. Hence, Theorem 2 yields that the equilibrium point Q1 with
positive interest rate 8.93% for the financial system (27) is globally exponential stable with convergence rate 0.35.

Remark 12. Example 2 illustrates that the condition (26) is easily satisfied, which verifies the feasibility of
Theorem 2. In fact, Theorem 2 is easier to verify than those of existing results ([9] (Theorems 1–2)).

Remark 13. The same data are proposed for Examples 1 and 2. This indicates that time delay really brings the
essential difficulty in stability analysis of complex financial systems, for the regional control has to be adopted
to deal with stability analysis of the delayed feedback financial system while the financial system without time
delays can be stabilized directly by impulse control.

5. Conclusions and Further Considerations

In this paper, the author firstly employed impulsive control, regional control, the Lyapunov
function, and variational methods to derive the stochastically globally exponential stability of the
economic balance point with the positive interest rate for the Markovian jumping delayed feedback
financial system with partially unknown transition rates. Besides, the mathematical induction method
and the proof by contradiction were applied synthetically to derive the globally exponential stability
of the equilibrium point with the positive interest rate for the impulsive financial system without time
delays. The same data were proposed for Examples 1 and 2. This illustrates that time delay really
brings the essential difficulty in stability analysis of a complex financial system, for the regional control
has to be adopted to deal with the stability analysis of the delayed feedback financial system while
the financial system without time delays can be stabilized directly by impulse control. In summary,
if time delay is not considered, impulse control can make the financial system stable by adjusting the
impulse quantity and impulse interval; if the time delay feedback factor is considered, the regional
control method and impulse control method can stabilize the chaotic financial system by adjusting the
diffusion coefficient and impulse.

In addition, it should be pointed out that the equilibrium point Q1 with the positive interest rate
brings more difficulties than the equilibrium point Q0(0, 1/b, 0) with zero interest rate, for the stability
of Q0(0, 1/b, 0) can be obtained under some suitable data without impulse control, even in the delayed
feedback financial system. However, the stability of Q1 with the positive interest rate cannot be derived
under any suitable data if impulse control is not applied. Theorem 2 presents a globally exponential
stability criterion for the equilibrium point Q1 with the positive interest rate under impulse control.
The global stability of the equilibrium point Q1 with the positive interest rate of the delayed feedback
financial system may not be derived only under impulse control. Of course, I do not know whether the
global stability of Q1 for the delayed feedback financial system can be deduced only under impulse
control. It is an interesting problem.

Under Lipschitz conditions ensuring the unique existence of the solution of the reaction-diffusion
system for any given initial value, Ruofeng Rao, Shouming Zhong, and Zhilin Pu deduced the
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boundedness conclusion [25] (Theorem 3.3) and the stability criterion [25] (Theorem 3.4), in which the
following formula was derived:

λ1(B(0, R0)) =



β2
0(

πm

m! )
2

2m

[mes(B(0, R0))]
2

2m
=

β2
0(

π
n
2

( n
2 )!

)
2
n

[mes(B(0, R0))]
2
n

, n = 2m,

β2
0
[2(2π)m ]

2
2m+1

(2m+1)!!

[mes(B(0, R0))]
2

2m+1
=

β2
0
[2(2π)

n−1
2 ]

2
n

n!!

[mes(B(0, R0))]
2
n

, n = 2m + 1.

(46)

This has actually proven the following conclusion:

Theorem 3. If fi, f̃i, σij, σ̂ij are Lipschitz continuous with fi(0) = f̃i(0) = σij(0) = σ̂ij(0) = 0, then there
must exist a series of spherical regions B(0, R0) ⊂ Rn with R0 moderately small such that the following fuzzy
system (47) is globally stochastically exponential stable in the pth moment.



dui(t, x) =qidiv∇ui(t, x)dt−
r∗
∑
r=1

$r(ω̂(t))
[

airui(t, x)−
n

∑
j=1

bijr f j(vj(t, x))−
n

∑
j=1

cijr f j(vj(t− τ(t), x))

−
n

∑
j=1

hijr

∫ t

t−ρ(t)
f j(vj(s, x))ds

]
dt +

n

∑
j=1

σij(t, u(t, x), v(t− τ(t), x))dwj(t), t > 0, x ∈ Υ,

dvi(t, x) =q̃idiv∇vi(t, x)dt−
r∗
∑
r=1

$r(ω̂(t))
[

ãirvi(t, x)−
n

∑
j=1

b̃ijr f̃ j(uj(t, x))−
n

∑
j=1

c̃ijr f̃ j(uj(t− τ̂(t), x))

−
n

∑
j=1

h̃ijr

∫ t

t−ρ̃(t)
f̃ j(uj(s, x))ds

]
dt +

n

∑
j=1

σ̂ij(t, v(t, x), u(t− τ̂(t), x), )dw̃j(t), t > 0, x ∈ Υ,

ui(t, x) =ζi(t, x), vi(t, x) = vi(t, x), ∀ (s, x) ∈ [−τ, 0]× Υ

∂νu(t, x) =0 = ∂νv(t, x), ∀ (t, x) ∈ [0,+∞]× ∂Υ.

(47)

How to derive the concise criterion for the financial systems (10), similarly to that of Theorem 3 is
an interesting problem.
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