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Abstract

:

The number of subtrees, or simply the subtree number, is one of the most studied counting-based graph invariants that has applications in many interdisciplinary fields such as phylogenetic reconstruction. Motivated from the study of graph surgeries on evolutionary dynamics, we consider the subtree problems of fan graphs, wheel graphs, and the class of graphs obtained from “partitioning” wheel graphs under dynamic evolution. The enumeration of these subtree numbers is done through the so-called subtree generation functions of graphs. With the enumerative result, we briefly explore the extremal problems in the corresponding class of graphs. Some interesting observations on the behavior of the subtree number are also presented.
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1. Introduction


The study of graph invariants or topological indices has been proven to be of crucial importance in various interdisciplinary topics. Generally, the existing known topological indices could be divided into distance-based, degree-based, or structure-based ones; some of the studies on these three categories are referred to in [1,2,3,4] and the references therein. The number of subtrees, or simply the subtree number, is one of the counting-based graph invariants.



Finding and/or enumerating special topological structures or graph patterns has become an important problem due to their applications including, to name a few, frequent subgraphs mining [5], network optimization design [6,7], and local network reliability [8,9]. In particular, the subtree number has also been shown to be correlated to phylogenetic reconstruction [10] and various chemical indices such as the Wiener index (closely correlated with the boiling point of paraffin [3]), the Merrifield–Simmons index, and the Hosoya index [11]. Research results also show that there exists an amazing “negative correlation” between the number of subtrees and the Wiener index [12,13,14,15,16,17]. Therefore, the subtree number index can indirectly characterize the physical–chemical characteristics of molecules.



Various topics related to the subtree number have been explored over the past years, such as extremal problems [12,18,19], the subtree density problem [20,21,22], generic chemical structures storage problems [23,24], fault tolerant computing and parallel scheduling [25,26], recognition of substructure [27], simplification of the flow networks [28], Markovian queuing systems decomposition [29], and matching problems [30,31].



By using “generating functions”, Yan and Yeh [4] presented a linear-time algorithm to evaluate the subtree weight sum of a tree, leading to an algorithmic approach to compute the subtree number of a tree. Following this approach and more recently, Yang et al. [32,33] proposed enumerating algorithms for BC-subtrees of trees, unicyclic, and edge-disjoint bicyclic graphs and computed the subtree number on spiro and polyphenyl hexagonal chains [17]. With structure mapping and weights transferring of cycles, Yang et al. [34] also presented enumerating algorithms for subtrees of hexagonal and phenylene chains. More recently, Chin  et al. [35] presented the subtree number of complete graphs, complete bipartite graphs, and theta graphs, as well as the ratio of spanning trees to all subtrees of the above graphs.



Let K1,n=(V(K1,n),E(K1,n);f,g) be a weighted star on n+1 vertices with center c0, vertex weight function f(v)=y for all v∈V(K1,n), and edge weight function g(e)=z for all e∈E(K1,n). Suppose the n leaves are labeled, in  counterclockwise order, c1,c2,…,cn, then the wheel graph Wn is obtained from K1,n by adding the edges (ci,ci+1) for i=1,…,n (here we let cn+1=c1).



As is well known, star K1,n and wheel graphs Wn are very typical network topologies used in designing and implementing communication networks. The wheel graph Wn is the planar graph with a chromatic number not greater than 4. Specifically, the chromatic number of Wn is 3 for odd n and 4 for even n. Some researchers have tried to apply this property of Wn to prove the famous Four Color Theorem [36]. Moreover, Wn can also be used in wireless ad hoc networks [37]. Therefore, it is worth studying the new structural characteristics of these two graphs, especially from new perspectives.



Inspired by the significant effect of graph surgeries on evolutionary dynamics in [38], we are motivated to study the subtree number in graphs resulting from graph surgeries. In particular, we will consider a class of graphs that “lie in between” the fan and wheel graphs, called the “partitions” (explanation will be given later) of wheel graphs.



Definition 1.

Given the star K1,n on n+1 vertices defined above with center vertex c0 and 0≤j≤n, the graph K1,nj is obtained from K1,n by adding the edges (cs,cs+1) for all 1≤s≤n−1 except for s=j,2j,3j,… (see Figure 1a). If n=j>0, we call K1,jj the fan graph on j+1 vertices. It is also easy to see that K1,00 is the single vertex c0, and K1,n1 is the star K1,n.





From the definitions of the graph K1,nj and the wheel graph Wn, we see that the graph K1,nj can be vividly described in terms of Wn through “partitions” (and deletion of edges {(cs,cs+1)|s=j,2j,3j,…}) perspective.



The reason that we consider our graphs as vertex and edge weighted is to use the so-called subtree generating functions. We assume a graph G=(V(G),E(G);f,g) to be a weighted graph and define the vertex-weight function f:V(G)→ℜ and edge-weight function g:E(G)→ℜ, where ℜ is the real number. Unless otherwise noted, for a graph G, we initialize its vertex weight function f(v)=y for each v∈V(G) and its edge weight function g(e)=z for each e∈E(G) throughout this paper.



The following notations need to be listed before introducing the main tool:




	
G−X denotes the graph obtained from G by removing all elements of X;



	
S(G) (resp. S(G;v)) denotes the set of subtrees of G (resp. containing v);



	
S(G;(a,b)) denotes the set of subtrees of G containing the edge (a,b);



	
ω(T1) denotes the weight of subtree T1∈S(G);



	
F(·) is the sum of weights of subtrees in S(·);



	
η(·) is the cardinality (namely the number) of the corresponding S(·) set of subtrees.








We define the weight of a subtree Ts of G, denoted by ω(Ts), as the product of the weights of the vertices and edges in Ts. The generating function of subtrees of G, denoted by F(G;f,g), is the sum of weights of subtrees of G. Namely, F(G;f,g)=∑T1∈S(G)ω(T1). Similarly, we define F(G;f,g;vi)=∑T1∈S(G;vi)ω(T1),F(G;f,g;(u,v))=∑T1∈S(G;(u,v))ω(T1).



By substituting each vertex weight y=1 and edge weight z=1 in these generating functions, we have the corresponding numbers of subtrees under various constraints, i.e., η(T)=F(T;1,1),η(T;vi)=F(T;1,1;vi), and η(T;(u,v))=F(T;1,1;(u,v)).



We introduce the following lemma, which will frequently be used in our work.



Lemma 1.

[4] Let Pn be a path on n vertices, with vertex weight function f(v)=y for all v∈V(Pn) and edge weight function g(e)=z for all e∈E(Pn), then F(Pn;f,g)=∑t=0n−1(n−t)yt+1zt.





In Section 2, we will present the subtree generating functions of K1,nj(1≤j≤n) and the wheel graph Wn. Through using these generating functions and theoretical analysis, we study the extremal graphs, subtree fitting problems, and subtree density behaviors of these graphs in Section 3. Lastly, in Section 4, we summarize our results and comment on potential topics for future work.




2. Subtree Generating Functions of K1,NJ(1≤J≤N) and Wheel Graph Wn


In this section, we will establish the subtree generating functions of K1,nj(1≤j≤n) and wheel graph Wn and provide the theoretical background for our computational analysis. We start by studying the subtree problem of K1,nj(1≤j≤n).



2.1. Subtree Generating Functions and Subtree Numbers of K1,NJ


Theorem 1.

Let K1,nj be the weighted graph defined as above, and n,j be non-negative integers with 0≤j≤n and n≡i(modj). Then


F(K1,nj;f,g)=F(K1,jj;f,g;c0)n−ij∗y(1+yz)i∗y−n−ij+iy+n−ij∑t=0j−1(j−t)yt+1zt,



(1)




with F(K1,jj;f,g;c0)=F(K1,j−1j−1;f,g;c0)+∑r=1jr(yz)rF(K1,j−rj−r;f,g;c0), and F(K1,00;f,g;c0)=y, F(K1,11;f,g;c0)=y+y2z.





Proof. 

We consider the subtrees of K1,nj by cases




	(i)

	
not containing the center c0,




	(ii)

	
containing the center c0.









From Lemma 1, we have the subtree generating function of case (i) as


n−ij∑t=0j−1(j−t)yt+1zt+iy.



(2)







With the contraction method of [4] and structure analysis, we have the subtree generating function of case (ii) as


F(K1,jj;f,g;c0)n−ij∗y(1+yz)i∗y−n−ij.



(3)







Denote ej=(c0,cj) and ej˜=(cj−1,cj), and divide all subtrees for S(K1,jj;c0) (see Figure 1b) into four cases S(K1,jj;c0)=S1⋃S2⋃S3⋃S4 where




	
S1 is the collection of subtrees that contain neither ej nor ej˜;



	
S2 is the collection of subtrees that contain ej, but not ej˜;



	
S3 is the collection of subtrees that contain ej˜, but not ej;



	
S4 is the collection of subtrees that contain both ej and ej˜.








From the definitions of subtree weight and subtree generating function, we know that:



(a) S1=S(K1,j−1j−1;c0);



(b) S2={T1+ej|T1∈S1}, where T1+ej are the trees obtained from T1 by attaching an edge ej at vertex c0;



(c) We can write S3 as


S3={T+(c0,cj−k)+⋃h=2−kr(cj−k−h+1,cj−k−h+2)|T∈S(K1,j−k−rj−k−r;c0)}



(4)




for k=1,2,…,j−1 and r=1,2,…,j−k;



(d) For each subtree T4∈S4, we know that T4 must not contain the edge (c0,cj−1). Consequently, we can further consider the subtrees that contain edges (c0,cj)⋃r=1k(cj−r,cj−r+1) but not (cj−k−1,cj−k) recursively for k=1,2,…,j−1.



With (a)–(d),we have


∑T1∈S1ω(T1)=F(K1,j−1j−1;f,g;c0),



(5)






∑T2∈S2ω(T2)=∑T1∈S1f(cj)g(ej)ω(T1)=yzF(K1,j−1j−1;f,g;c0),



(6)






∑T3∈S3ω(T3)=∑k=1j−1∑r=1j−k∏h=2−krf(cj−k−h+1)g((cj−k−h+1,cj−k−h+2))f(cj)g(c0,cj−k)F(K1,j−k−rj−k−r;f,g;c0)=∑k=1j−1∑r=1j−k(yz)r+kF(K1,j−k−rj−k−r;f,g;c0),



(7)






∑T4∈S4ω(T4)=f(cj)g(ej)∑k=1j−1∏r=1kf(cj−r)g((cj−r,cj−r+1))F(K1,j−k−1j−k−1;f,g;c0)=∑k=1j−1(yz)k+1F(K1,j−k−1j−k−1;f,g;c0).



(8)







Hence, by Equations (5)–(8), we have


F(K1,jj;f,g;c0)=∑T1∈S1ω(T1)+∑T2∈S2ω(T2)+∑T3∈S3ω(T3)+∑T4∈S4ω(T4)=F(K1,j−1j−1;f,g;c0)+∑r=1jr(yz)rF(K1,j−rj−r;f,g;c0)



(9)




with F(K1,00;f,g;c0)=y, F(K1,11;f,g;c0)=y+y2z.



Combining Equations (2), (3), and (9), we have Equation (1) and the theorem follows. □





Following similar arguments to Theorem 1, we can also obtain the subtree generating functions of the graphs obtained from identifying the centers of different fan graphs K1,jtjt (t=1,2,…,l). We skip the tedious details for the sake of space.



Theorem 2.

Let K1,j1j1,K1,j2j2,…,K1,jljl be different weighted fan graphs, and suppose there are njt copies of K1,jtjt for t=1,2,…,l. Let G=⋃t=1l(K1,jtjt)njt be the graph that is constructed by identifying the centers of these ∑t=1lnjt fan graphs with c0. Then


F(G;f,g)=y1−∑t=1lnjt∏t=1lF(K1,jtjt;f,g;c0)njt+∑t=1lnjt∑r=0jt−1(jt−r)yr+1zr,



(10)




with F(K1,jtjt;f,g;c0)=F(K1,jt−1jt−1;f,g;c0)+∑r=1jtr(yz)rF(K1,jt−rjt−r;f,g;c0) and F(K1,00;f,g;c0)=y, F(K1,11;f,g;c0)=y+y2z.





Actually, a single fan graph is a special case of the above discussion, so we can further obtain the subtree generating function for the subtrees containing a particular vertex. Again, we skip the similar but technical details.



Theorem 3.

Let K1,jj be a weighted fan graph with vertex weigh f and edge weigh g (see Figure 1b), then


F(K1,jj;f,g;c1)=F(K1,jj;f,g;c0)−F(K1,j−1j−1;f,g;c0)+∑t=0j−1yt+1zt,



(11)




with F(K1,jj;f,g;c0)=F(K1,j−1j−1;f,g;c0)+∑r=1jr(yz)rF(K1,j−rj−r;f,g;c0) and F(K1,00;f,g;c0)=y, F(K1,11;f,g;c0)=y+y2z.





Adding an edge between any two fan graphs (to construct a bigger fan) of a graph will also increase the number of subtrees. Let G be the weighted graph as defined in Theorem 2, and suppose K1,jrjr (with non-center vertices labeled counterclockwise as cj11,cj21,…,cjr1) and K1,jsjs (with non-center vertices labelled clockwise as cj12,cj22,…,cjs2) are the two sub-fan graphs of G with jr≥1. Define G′=G+(cjr1,cjs2) to be the graph obtained from G by adding one edge (cjr1,cjs2). Meanwhile, denote G¯ the graph of G−⋃t=1r(c0,cjt1)⋃⋃t=1s(c0,cjt2) that contains c0, and denote S¯ the collection of subtrees in S(K1,jr+jsjr+js;c0) that contain (cjr1,cjs2). By dividing the subtrees of G and G′ into two cases of containing center c0 or not, with Lemma 1, definitions of subtree weight and subtree generating function, and combining structure analysis, we have the following theorem:



Theorem 4.

Let G and G′ be the weighted graphs defined above. Then,


F(G′;f,g)=F(G;f,g)+y−1F(G¯;f,g;c0)∑T∈S¯ω(T)+∑t=0jstyt+1zt+js∑t=js+1jryt+1zt+∑t=jr+1jr+js−1(jr+js−t)yt+1zt.



(12)









By letting y=z=1 in the subtree generating functions from the above theorems, we have the corresponding subtree numbers of the various related graphs above.



Corollary 1.

The subtree number of S(K1,jj,c0) is


η(K1,jj;c0)=η(K1,j−1j−1;c0)+∑r=1jrη(K1,j−rj−r;c0),



(13)




with η(K1,00;c0)=1,η(K1,11;c0)=2.





With Corollary 1, we have the number of subtrees of K1,jj that contain central vertex c0 as illustrated in Figure 2.



Corollary 2.

Let n,j be positive integers with 1≤j≤n, and i≡n(modj), then


η(K1,nj)=(j+1)(n−i)2+i+2ibjn−ij,



(14)




with bj=bj−1+∑r=1jrbj−r and b0=1,b1=2.





With Corollary 2, we have the subtree number of K1,nj, see details in Section 3.1.



Corollary 3.

Let G=⋃t=1l(K1,jtjt)njt, jt, njt and l be defined in Theorem 2, then


η(G)=∏t=1lη(K1,jtjt;c0)njt+12∑t=1lnjt×jt(jt+1),



(15)




with η(K1,jtjt;c0)=η(K1,jt−1jt−1;c0)+∑r=1jtrη(K1,jt−rjt−r;c0) and η(K1,00;c0)=1, η(K1,11;c0)=2.





Let G1 be the graph defined in Theorem 2 with l=4,j1=2,nj1=4; j2=3,nj2=3; j3=4,nj3=2; j4=5,nj4=1, with Corollary 1 and Corollary 3, we have η(G1)=6,048,255,225,665.



Corollary 4.

The number of subtrees of the fan graph K1,jj containing c1 is


η(K1,jj;c1)=η(K1,jj;c0)−η(K1,j−1j−1;c0)+j,



(16)




with η(K1,jj;c0)=η(K1,j−1j−1;c0)+∑r=1jrη(K1,j−rj−r;c0) and η(K1,00;c0)=1, η(K1,11;c0)=2.





Similarly, the number of subtrees of K1,jj that contain central vertex c1 (see Figure 3) can be obtained from Corollary 4.



Corollary 5.

Let G be the graph defined in Theorem 2, and G′ be a merged graph from G with jr≥1 and js≥1 (Theorem 4), then


η(G′)=η(G)+η(G¯;c0)η(K1,jr+jsjr+js;c0,(cjr1,cjs2))+jrjs,



(17)




where η(K1,jr+jsjr+js;c0,(cjr1,cjs2)) is the number of subtrees containing both vertex c0 and edge (cjr1,cjs2).





Let G, G¯, and G′ be the graphs defined in Corollary 5 with l=2,j1=2,nj1=3; j2=3,nj2=2, jr=2 and js=3, with Corollary 1, Corollary 5, and structural analysis, we have η(G) = 77,997, η(G¯;c0)=684η(K1,jr+jsjr+js;c0,(cjr1,cjs2))=75, and η(G′) = 129,303.




2.2. Subtree Generating Function and Subtree Number of Wheel Graph Wn


Next we consider the subtree generating function of the weighted wheel graph Wn.



Theorem 5.

Let Wn(n≥3) be the weighted wheel graph on n+1 vertices with vertex weight function f≡y and edge weight function g≡z. Then


F(Wn;f,g)=y+yzF(Wn−1;f,g)+(1+2yz)F(K1,n−1n−1;f,g;c0)−2yzF(K1,n−2n−2;f,g;c0)+∑t=1n−1(1−yz)(n−t)+2yzytzt−1+2∑k=1n−1(yz)k+1F(K1,n−1−kn−1−k;f,g;c0)+∑l=0n−3∑r=0n−3−l(yz)l+r+3F(K1,n−l−r−3n−l−r−3;f,g;c0),



(18)




with F(W3;f,g)=4y+6y2z+12y3z2+16y4z3, F(K1,jj;f,g;c0)=F(K1,j−1j−1;f,g;c0)+∑r=1jr(yz)rF(K1,j−rj−r;f,g;c0), F(K1,00;f,g;c0)=y, and F(K1,11;f,g;c0)=y+y2z.





Proof. 

For convenience, we let et∗=(c0,ct) for t=1,2,…,n, en=(c1,cn) and en−r=(cn−r,cn−r+1) for r=1,2,…,n−1. We also follow the convention that ⋃r=ij(cr,cr+1)=∅ if j<i, and  ∑t=ijbt=0, if j<i.



We first consider the subtrees of Wn(n≥3) in different cases:



(i) not containing the edge en∗,



(ii) containing the edge en∗.



The subtrees in case (i) can be further partitioned into four categories. As a result, we have


S(Wn−en∗)=S1¯⋃S2¯⋃S3¯⋃S4¯,








where




	
S1¯ is the set of subtrees of S(Wn−en∗) that contain neither en nor en−1;



	
S2¯ is the set of subtrees of S(Wn−en∗) that contain en−1, but not en;



	
S3¯ is the set of subtrees of S(Wn−en∗) that contain en but not en−1;



	
S4¯ is the set of subtrees of S(Wn−en∗) that contain both en and en−1.








From the definition of subtree weight and with structure analysis, we have


∑T∈S1¯ω(T)=y+F(K1,n−1n−1;f,g),



(19)






∑T∈S2¯ω(T)=∑T∈S3¯ω(T)=yzF(K1,n−1n−1;f,g;c1),



(20)




and


∑T∈S4¯ω(T)=yzF(Wn−1;f,g)−F(K1,n−1n−1;f,g).



(21)







Thus, we have


∑T∈S(Wn−en∗)ω(T)=∑T∈S1¯ω(T)+∑T∈S2¯ω(T)+∑T∈S3¯ω(T)+∑T∈S4¯ω(T)=y+F(K1,n−1n−1;f,g)+yz2F(K1,n−1n−1;f,g;c1)+F(Wn−1;f,g)−F(K1,n−1n−1;f,g).



(22)







Similarly, for case (ii), we have


S(Wn;en∗)=S1⋃S2⋃S3⋃S4,








where




	
S1 is the set of subtrees in S(Wn;en∗) that contain neither en nor en−1;



	
S2 is the set of subtrees in S(Wn;en∗) that contain en, but not en−1;



	
S3 is the set of subtrees in S(Wn;en∗) that contain en−1 but not en;



	
S4 is the set of subtrees in S(Wn;en∗) that contain both en and en−1.








Analyzing each case, we have:



(a) S1={T+(c0,cn)|T∈S(K1,n−1n−1;c0)}, where T+(c0,cn) are the trees obtained from T(∈S(K1,n−1n−1;c0)) by attaching the edge (cn,c0) at vertex c0;



(b) S2={T+en∗+(c1,cn)+⋃r=1k−1(cr,cr+1)|T∈S(K˜1,n−1−kn−1−kc0)}, where K˜1,n−1−kn−1−k(k=1,2,…,n−1) is the graph of Wn−ek⋃en−1⋃en∗⋃r=1ker∗ that contains c0, and obviously, K˜1,n−1−kn−1−k≅K1,n−1−kn−1−k;



(c) S3={T+en∗+⋃r=1k(cn−r,cn−r+1)|T∈S(K1,n−1−kn−1−k;c0)} for k=1,2,…,n−1;



(d) In a similar manner as (b) and (c), use variables l and r to count the number of edges trailing off (cn−1,cn) and (c1,cn), respectively, then the subtrees in S4 are indexed by these two variables, which count extra edges that are on the two sides of the T shape containing the 3 edges required by S4. With (a)–(d), we have


∑T1∈S1ω(T1)=∑T∈S(K1,n−1n−1;c0)f(cn)g(en∗)ω(T)=yzF(K1,n−1n−1;f,g;c0),



(23)






∑T2∈S2ω(T2)=∑T3∈S3ω(T3)=f(cn)g(en∗)∑k=1n−1∏r=1kg(en−r)f(cn−r)F(K1,n−1−kn−1−k;f,g;c0)=yz∑k=1n−1(yz)kF(K1,n−1−kn−1−k;f,g;c0),



(24)






∑T4∈S4ω(T4)=∑l=0n−3∑r=0n−3−l(yz)l+r+3F(K1,n−l−r−3n−l−r−3;f,g;c0).



(25)




Now with Equations (23)–(25), we have


∑T∈S(Wn;(c0,cn))ω(T)=∑T1∈S1ω(T1)+∑T2∈S2ω(T2)+∑T3∈S3ω(T3)+∑T4∈S4ω(T4)=yzF(K1,n−1n−1;f,g;c0)+2∑k=1n−1(yz)k+1F(K1,n−1−kn−1−k;f,g;c0)+∑l=0n−3∑r=0n−3−l(yz)l+r+3F(K1,n−l−r−3n−l−r−3;f,g;c0).



(26)




By Theorem 1, Theorem 3, and Equations (22) and (26), we have


F(Wn;f,g)=y+yzF(Wn−1;f,g)+(1+2yz)F(K1,n−1n−1;f,g;c0)−2yzF(K1,n−2n−2;f,g;c0)+∑t=1n−1(1−yz)(n−t)+2yzytzt−1+2∑k=1n−1(yz)k+1F(K1,n−1−kn−1−k;f,g;c0)+∑l=0n−3∑r=0n−3−l(yz)l+r+3F(K1,n−l−r−3n−l−r−3;f,g;c0).



(27)







Note that W2 is not a wheel graph. With Theorem 1 and Lemma 1, we have


∑T∈S(W2)ω(T)=3y+4y2z+5y3z2.



(28)




Now from Equations (27) and (28), we have


F(W3;f,g)=4y+6y2z+12y3z2+16y4z3.



(29)




The subtree generating function of Wn now follows from Equations (27) and (29). □





Letting y=z=1 in Equation (18), we have the following corollary.



Corollary 6.

The subtree number of Wn(n≥3) is


η(Wn)=η(Wn−1)+3η(K1,n−1n−1;c0)+2n−1+2∑k=2n−1η(K1,n−1−kn−1−k;c0)+∑l=0n−3∑r=0n−3−lη(K1,n−l−r−3n−l−r−3;c0),



(30)




with η(W3)=38, η(K1,jj;c0)=η(K1,j−1j−1;c0)+∑r=1jrη(K1,j−rj−r;c0), η(K1,00;c0)=1 and η(K1,11;c0)=2.





With Corollary 6, the subtree numbers of Wn(n=3,4,…,50) are shown in Table 1.



As a matter of fact, with the generating function and further structural and theoretical analysis, we can also solve the subtree generation computing problems for the following more generalized types of graphs; here we skip the similar but technical details.



(i) Graph G=⋃i=1lFi,niti is constructed by identifying the center c0i of l graphs Fi,niti(i=1,2,…,l) to c0, where Fi,niti¯(ni≥1,2≤ti≤ni) is the graph constructed from a vertex c0i and a path Pc1icnii=c1ic2i…cnii by connecting c0i with c1i, cnii, and any other arbitrary ti−2 vertices on the path Pc1icnii; for the special case ni=1, the graph Fi,niti is a path c0ic1i on vertices c0i and c1i.



(ii) Graph G=Wn−⋃t=1l(c0,cjt)(1≤l,jt≤n), namely the graph obtained from wheel Wn by deleting random l different edges (c0,cjt)(t=1,2,…,l) (each jt is different the others).





3. Behaviors of K1,NJ(1≤J≤N) and Wn in Terms of Subtrees


With the subtree generating functions established, we can now analyze the behaviors of the graphs K1,nj(1≤j≤n) and Wn in terms their subtree numbers and other related properties.



3.1. Subtree Numbers and K1,NJ


We start with the subtree numbers of the graphs K1,nj for different n and j. First, we take a quick look at the extremal problems.



Proposition 1.

Among all K1,nj(1≤j≤n):




	
the graph K1,n1 has 2n+n subtrees, fewer than any other K1,nj(j≠1); and



	
the graph K1,nn has n(n+1)2+bn subtrees (where bn=bn−1+∑r=1nrbn−r and b0=1,b1=2), more than any other K1,nj(j≠n).










Proof. 

Note that adding an edge to a graph will strictly increase the subtree number. The extremal structures K1,n1 and K1,nn then follow immediately from the fact that the former is a subgraph of any K1,nj and the latter contains any K1,nj as a subgraph. □





We are also interested in knowing which K1,nj (2≤j≤n−1) has the second- or third-largest subtree number. To examine this, we also explore how the subtree numbers of the graphs K1,nj behave. With Corollary 2 and Matlab computing (see Appendix A for more details), we obtain the subtree number behaviors of K1,nj as shown in Figure 4.



It seems from Figure 4a,b that among all K1,nj(1≤j≤n−1):




	
K1,nn−1 has the second-largest subtree number; and



	
K1,nn−2 has the third-largest subtree number for odd (or sufficiently large) n.



	
the subtree number K1,nj increment trend meets exponential growth when j≥⌈n+12⌉.








In general, it is not difficult to show the following.



Proposition 2.

Suppose n>>k (i.e., n is much larger than k), then among all K1,nj(1≤j≤n), the graph K1,nn−k has the (k+1)-th largest subtree number.





The proof follows from adjusting the “sizes” of the two sub-fan graphs of K1,nj. We skip the details here. The same argument can also show the monotonic behavior for large enough j.



Proposition 3.

If j>n2, then K1,nj+1 has a larger subtree number than K1,nj.





Understanding the specific behavior of K1,nj for general j in terms of the subtree number seems to be an interesting and nontrivial problem.



Similarly, from Corollary 6, we can obtain the subtree numbers of wheel graph Wn(n≥3), as already shown in Table 1. On the other hand, experimental observation shows that the subtree numbers of Wn(n≥3) increase very fast and this growth trend seems to fit the linear regression model after doing the logarithmic transformation. Through implementing the linear regression in the MATLAB software for data of the number of subtrees of Wn from n=3 to 602, the appropriate formula for the subtree number of Wn can be stated as


η(Wn)≈exp(0.0126+1.1466n).



(31)




As exp0.0126≈1, Equation (31) can be rewritten as


η(Wn)≈exp1.1466n.



(32)




With Corollary 6, Equation (32), and logarithmic transformation for each subtree number of Wn and fitted value, we can obtain the subtree number trend of Wn(n≥3), as illustrated in Figure 5 where the original and fitted data are respectively marked in red and blue. We believe Equation (32) can be proved or disproved through traditional analytic combinatorial approaches, but we will not pursue the technical analysis here.



Our work can also be easily applied to more general “partitions” of wheel graphs instead of just the K1,njs. To illustrate the observations, we introduce some simple notations. Given a positive integer n and partition π=(π1,π2,…,πk) of n (with π1≥π2≥…≥πk and n=∑i=1kπi), the graph Kπ is obtained from K1,n by adding edges (cj,cj+1) for all 1≤j≤n−1 except for j=∑i=1sπi, for s=1,2,…,k. It seems that the subtree numbers of Kπs coincide with some sort of ordering of the partitions π of n. In general, larger and fewer parts in π results in more subtrees in Kπ. More precise statements along this line requires further study.




3.2. Subtree Densities of K1,NJ and Wn


The subtree generating function can be used to provide more information than just the number of subtrees. For instance, using the subtree generating function, one can easily obtain the total number of vertices in all subtrees, from which we have the average subtree order in a given graph. The ratio of the average subtree order and the order of the original graph is called the subtree density of the graph. We present the formal subtree density definition as follows:



Definition 2 

([20]). Suppose G is a graph with n vertices, then μ(G)=1k∑i=1kni is the average order of the subtrees of G, where n1,n2,…,nk are the orders of all of G’s k non-empty subtrees, and the subtree density of G is defined as D(G)=μ(G)n.





It is essentially the probability that a vertex chosen at random from G will belong to a randomly chosen subtree of G. Some of the work related to subtree densities can be found in [20,21,39].



With Theorem 1, Theorem 5, and substituting z=1, we could obtain the vertex generating function of subtrees of K1,nj and Wn, respectively, i.e.,  F(K1,nj;y,1) and F(Wn;y,1)). The subtree density of K1,nj and Wn is simply


D(G∗)=∂F(G∗;y,1)∂y|y=1F(G∗;1,1)∗n(G∗),



(33)




where n(G∗) denotes the vertex number of G∗, and G∗ can be K1,nj or Wn.



We will now apply this to find the subtree densities of K1,nj and Wn.



Clearly, the vertex number of K1,nj and Wn is n+1, namely


n(K1,nj)=n(Wn)=n+1.



(34)




With Theorem 1 and letting z=1 in Equation (1), we obtain the vertex generating function of subtrees of K1,nj(1≤j≤n).


F(K1,nj;f,1)=(1+y)iy1−n−ij∗F(K1,jj;f,1;c0)n−ij+iy+n−ij∑t=0j−1(j−t)yt+1,



(35)




with i≡n(modj), F(K1,jj;f,1;c0)=F(K1,j−1j−1;f,1;c0)+∑r=1jryrF(K1,j−rj−r;f,1;c0) and F(K1,00;f,1;c0)=y, F(K1,11;f,1;c0)=y+y2.



Similarly, letting z=1 in Equation (18), we obtain the vertex generating function of subtrees of Wn.


F(Wn;f,1)=y+yF(Wn−1;f,1)+(1+2y)F(K1,n−1n−1;f,1;c0)−2yF(K1,n−2n−2;)f,1;c0)+∑t=1n−1(1−y)(n−t)+2yyt+2∑k=1n−1yk+1F(K1,n−1−kn−1−k;f,1;c0)+∑l=0n−3∑r=0n−3−lyl+r+3F(K1,n−l−r−3n−l−r−3;f,1;c0),



(36)




with F(W3;f,1)=4y+6y2+12y3+16y4, F(K1,jj;f,1;c0)=F(K1,j−1j−1;f,1;c0)+∑r=1jryrF(K1,j−rj−r;f,1;c0) and F(K1,00;f,1;c0)=y, F(K1,11;f,1;c0)=y+y2.



From Equations (33)–(35), we can obtain the subtree densities of K1,nj(1≤j≤n) (plotted in Figure 6); related data can be found in Table 2. Similarly, from Equations (33), (34), and (36), we have subtree densities Wn plotted in Figure 7; related data are listed in Table 3.



From Table 2 and Figure 6, it appears that K1,221 and K1,2212 have the smallest and second-smallest subtree densities, respectively. K1,22j(12≤j≤22) grows linearly with the increase of j. Moreover, from Table 3 and Figure 7, we see that Wn(3≤n≤24) increases first in the interval [3,8] and reaches the maximum value when n=8, and then decreases gradually in the interval [9,24] and approximates the limit value of 0.8135.



Similarly, as studied in paper [35], we can also discuss the ratio of spanning trees to all subtrees and spanning tree densities of K1,nj and Wn. We skip the details here.





4. Concluding Remarks


In this paper we established the subtree generating functions of the wheel graph Wn and “partitions” K1,nj(1≤j≤n), along with other related structures such as the fan graphs. With the subtree generating functions, we are able to study the subtree number and subtree densities of these graphs. From our computational analysis, several theoretical conclusions are drawn, especially on the extremal problems with respect to the subtree number. These results provide a fundamental basis for studying subtree problems of multi-cyclic graphs, chemical compounds, and complex graphs.



As one can see, the computational results in Section 3.2 show interesting observations on the characteristics of these structures. Attempting to verify some of them, especially on those related to the subtree densities, and exploring the BC-subtree number index, Wiener index, Harary index, atom-bond connectivity trends of wheel graph Wn, “partitions” K1,nj(1≤j≤n), and their generalizations would make very interesting projects for future work. Exploring the novel structural properties from the evolutionary perspective of graphs with more complicated cycle structures, particularly some important nanomaterials such as the pentagonal carbon nanocone, is also a very attractive future topic.
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Appendix A. Matlab Code, Python Code, And Data


In what follows, we provide the source codes related to Figure 4. Python code Pythoncode1 (derived from Corollary 2) can output the data files “n=33.txt”, “n=58.txt”, “n=75.txt”, and “n=80.txt” by inputting the integer 33, 58, 75, 80, respectively. MATLAB codes MCF1a, MCF1b can draw the Figure 4a,b, respectively.





	
Pythoncode1. The Python code for computing the subtree number of K1,nj(1≤j≤n).




	
1

	
n=int (input())




	
2

	
b=[−1 for i in range (n+1)]




	
3

	
b[0]=1




	
4

	
b[1]=2




	
5

	
for j in range (1,n+1):




	
6

	
     sum1=0




	
7

	
     for r in range (1,j+1):




	
8

	
  sum1=sum1+r∗b[j−r]




	
9

	
     b[j]=b[j−1]+sum1




	
10

	
file_name="n="+str(n)+".txt"




	
11

	
file = open (file_name,’w’)




	
12

	
for j in range (1,n+1):




	
13

	
     i = n%j




	
14

	
     s=(j+1)∗(n−i)/2+i+2∗∗(i)∗b[j]∗∗((n−i)/j)




	
15

	
     file.write (str(s))




	
16

	
     file.write (’\n’)




	
17

	
     print (s)









	
MCF1a. MATLAB source code for Figure 1a.




	
1

	
clear;




	
2

	
clc;




	
3

	
s1 = load(’n=33.txt’);




	
4

	
s2 = load(’n=58.txt’);




	
5

	
s3 = load(’n=75.txt’);




	
6

	
s4 = load(’n=80.txt’);




	
7

	
format long;




	
8

	
A =cell(1,10);




	
9

	
A{1,1}=’−bo’;




	
10

	
A{1,2}=’−go’;




	
11

	
A{1,3}=’−mo’;




	
12

	
A{1,4}=’−ro’;




	
13

	
subplot(2,2,1);




	
14

	
plot(s1,A{1,1});




	
15

	
axis normal;




	
16

	
set(legend(’n=33’),’fontsize’,8);




	
17

	
xlabel(’number of non-central vertices’);




	
18

	
ylabel(’subtree number’);




	
19

	
subplot(2,2,2);




	
20

	
plot(s2,A{1,2});




	
21

	
set(legend(’n=58’),’fontsize’,8);




	
22

	
xlabel(’number of non-central vertices’);




	
23

	
ylabel(’subtree number’);




	
24

	
subplot(2,2,3);




	
25

	
plot(s3,A{1,3});




	
26

	
axis normal;




	
27

	
set(legend(’n=75’),’fontsize’,8);




	
28

	
xlabel(’number of non-central vertices’);




	
29

	
ylabel(’subtree number’);




	
30

	
subplot(2,2,4);




	
31

	
plot(s4,A{1,4});




	
32

	
set(legend(’n=80’),’fontsize’,8);




	
33

	
xlabel(’number of non-central vertices’);




	
34

	
ylabel(’subtree number’);









	
MCF1b: The MATLAB source code for Figure 1b.




	
1

	
clear;




	
2

	
clc;




	
3

	
s1 = load(’n=33.txt’);




	
4

	
s2 = load(’n=58.txt’);




	
5

	
s3 = load(’n=75.txt’);




	
6

	
s4 = load(’n=80.txt’);




	
7

	
format long;




	
8

	
A =cell(1,10);




	
9

	
A{1,1}=’−bo’;




	
10

	
A{1,2}=’−go’;




	
11

	
A{1,3}=’−mo’;




	
12

	
A{1,4}=’−ro’;




	
13

	
subplot(2,2,1);




	
14

	
semilogy(s1,A{1,1});




	
15

	
axis normal;




	
16

	
set(legend(’n=33’,’location’,’southeast’),’fontsize’,8);




	
17

	
xlabel(’number of non-central vertices’);




	
18

	
ylabel(’subtree number’);




	
19

	
subplot(2,2,2);




	
20

	
semilogy(s2,A{1,2});




	
21

	
set(legend(’n=58’,’location’,’southeast’),’fontsize’,8);




	
22

	
xlabel(’number of non-central vertices’);




	
23

	
ylabel(’subtree number’);




	
24

	
subplot(2,2,3);




	
25

	
semilogy(s3,A{1,3});




	
26

	
axis normal;




	
27

	
set(legend(’n=75’,’location’,’southeast’),’fontsize’,8);




	
28

	
xlabel(’number of non-central vertices’);




	
29

	
ylabel(’subtree number’);




	
30

	
subplot(2,2,4);




	
31

	
semilogy(s4,A{1,4});




	
32

	
set(legend(’n=80’,’location’,’southeast’),’fontsize’,8);




	
33

	
xlabel(’number of non-central vertices’);




	
34

	
ylabel(’subtree number’);









References


	



Das, K.C. Atom-bond connectivity index of graphs. Discret. Appl. Math. 2010, 158, 1181–1188. [Google Scholar] [CrossRef]

	



Dobrynin, A.A.; Entringer, R.; Gutman, I. Wiener index of trees: Theory and applications. Acta Appl. Math. 2001, 66, 211–249. [Google Scholar] [CrossRef]

	



Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 1, 17–20. [Google Scholar] [CrossRef]

	



Yan, W.; Yeh, Y. Enumeration of subtrees of trees. Theor. Comput. Sci. 2006, 369, 256–268. [Google Scholar] [CrossRef]

	



Ingalalli, V.; Ienco, D.; Poncelet, P. Mining frequent subgraphs in multigraphs. Inf. Sci. 2018, 451, 50–66. [Google Scholar] [CrossRef]

	



Tilk, C.; Irnich, S. Combined column-and-row-generation for the optimal communication spanning tree problem. Comput. Oper. Res. 2018, 93, 113–122. [Google Scholar] [CrossRef]

	



Zetina, C.A.; Contreras, I.; Fernández, E.; Luna-Mota, C. Solving the optimum communication spanning tree problem. Eur. J. Oper. Res. 2019, 273, 108–117. [Google Scholar] [CrossRef]

	



Chechik, S.; Emek, Y.; Patt-Shamir, B.; Peleg, D. Sparse reliable graph backbones. Inf. Comput. 2012, 210, 31–39. [Google Scholar] [CrossRef]

	



Xiao, Y.; Zhao, H.; Liu, Z.; Mao, Y. Trees with large numbers of subtrees. Int. J. Comput. Math. 2017, 94, 372–385. [Google Scholar] [CrossRef]

	



Knudsen, B. Optimal multiple parsimony alignment with affine gap cost using a phylogenetic tree. Algorithms Bioinform. Lect. Notes Comput. Sci. 2003, 2812, 433–446. [Google Scholar]

	



Wagner, S.G. Correlation of graph-theoretical indices. SIAM J. Discret. Math. 2007, 21, 33–46. [Google Scholar] [CrossRef]

	



Székely, L.; Wang, H. On subtrees of trees. Adv. Appl. Math. 2005, 34, 138–155. [Google Scholar]

	



Székely, L.; Wang, H. Binary trees with the largest number of subtrees. Discret. Appl. Math. 2007, 155, 374–385. [Google Scholar]

	



Zhang, X.; Zhang, X.; Gray, D.; Wang, H. The number of subtrees of trees with given degree sequence. J. Graph Theory 2013, 73, 280–295. [Google Scholar] [CrossRef]

	



Wang, H. The extremal values of the Wiener index of a tree with given degree sequence. Discret. Appl. Math. 2008, 156, 2647–2654. [Google Scholar] [CrossRef]

	



Deng, H. Wiener indices of spiro and polyphenyl hexagonal chains. Math. Comput. Model. 2012, 55, 634–644. [Google Scholar] [CrossRef]

	



Yang, Y.; Liu, H.; Wang, H.; Fu, H. Subtrees of spiro and polyphenyl hexagonal chains. Appl. Math. Comput. 2015, 268, 547–560. [Google Scholar] [CrossRef]

	



Czabarka, É.; Székely, L.A.; Wagner, S. On the number of nonisomorphic subtrees of a tree. J. Graph Theory 2018, 87, 89–95. [Google Scholar] [CrossRef]

	



Zhang, X.; Zhang, X. The Minimal Number of Subtrees with a Given Degree Sequence. Graphs Comb. 2015, 31, 309–318. [Google Scholar] [CrossRef]

	



Jamison, R.E. On the average number of nodes in a subtree of a tree. J. Comb. Theory Ser. B 1983, 35, 207–223. [Google Scholar] [CrossRef]

	



Vince, A.; Wang, H. The average order of a subtree of a tree. J. Comb. Theory Ser. B 2010, 100, 161–170. [Google Scholar] [CrossRef]

	



Wagner, S.; Wang, H. On the Local and Global Means of Subtree Orders. J. Graph Theory 2016, 81, 154–166. [Google Scholar] [CrossRef]

	



Nakayama, T.; Fujiwara, Y. BCT Representation of Chemical Structures. J. Chem. Inf. Comput. Sci. 1980, 20, 23–28. [Google Scholar] [CrossRef]

	



Nakayama, T.; Fujiwara, Y. Computer representation of generic chemical structures by an extended block-cutpoint tree. J. Chem. Inf. Comput. Sci. 1983, 23, 80–87. [Google Scholar] [CrossRef]

	



Frederickson, G.N.; Hambrusch, S.E. Planar linear arrangements of outerplanar graphs. IEEE Trans. Circuits Syst. 1988, 35, 323–333. [Google Scholar] [CrossRef]

	



Wada, K.; Luo, Y.; Kawaguchi, K. Optimal fault-tolerant routings for connected graphs. Inf. Process. Lett. 1992, 41, 169–174. [Google Scholar] [CrossRef]

	



Heath, L.; Pemmaraju, S. Stack and queue layouts of directed acyclic graphs: Part II. SIAM J. Comput. 1999, 28, 1588–1626. [Google Scholar] [CrossRef]

	



Misiolek, E.; Chen, D.Z. Two flow network simplification algorithms. Inf. Process. Lett. 2006, 97, 197–202. [Google Scholar] [CrossRef]

	



Fox, D. Block cutpoint decomposition for markovian queueing systems. Appl. Stoch. Model. Data Anal. 1988, 4, 101–114. [Google Scholar] [CrossRef]

	



Barefoot, C. Block-cutvertex trees and block-cutvertex partitions. Discret. Math. 2002, 256, 35–54. [Google Scholar] [CrossRef]

	



Mkrtchyan, V. On trees with a maximum proper partial 0-1 coloring containing a maximum matching. Discret. Math. 2006, 306, 456–459. [Google Scholar] [CrossRef]

	



Yang, Y.; Liu, H.; Wang, H.; Feng, S. On algorithms for enumerating BC-subtrees of unicyclic and edge-disjoint bicyclic graphs. Discret. Appl. Math. 2016, 203, 184–203. [Google Scholar] [CrossRef]

	



Yang, Y.; Liu, H.; Wang, H.; Makeig, S. Enumeration of BC-subtrees of trees. Theor. Comput. Sci. 2015, 580, 59–74. [Google Scholar] [CrossRef]

	



Yang, Y.; Liu, H.; Wang, H.; Deng, A.; Magnant, C. On Algorithms for Enumerating Subtrees of Hexagonal and Phenylene Chains. Comput. J. 2017, 60, 690–710. [Google Scholar] [CrossRef]

	



Chin, A.J.; Gordon, G.; MacPhee, K.J.; Vincent, C. Subtrees of graphs. J. Graph Theory 2018, 89, 413–438. [Google Scholar] [CrossRef]

	



Cahit, I. Spiral chains: A new proof of the four color theorem. arXiv 2004, arXiv:0408247. [Google Scholar]

	



Yang, Z.; Liu, Y.; Li, X.Y. Beyond trilateration: On the localizability of wireless ad hoc networks. IEEE/ACM Trans. Netw. (ToN) 2010, 18, 1806–1814. [Google Scholar] [CrossRef]

	



Allen, B.; Lippner, G.; Chen, Y.T.; Fotouhi, B.; Momeni, N.; Yau, S.T.; Nowak, M.A. Evolutionary dynamics on any population structure. Nature 2017, 544, 227. [Google Scholar] [CrossRef]

	



Haslegrave, J. Extremal results on average subtree density of series-reduced trees. J. Comb. Theory Ser. B 2014, 107, 26–41. [Google Scholar] [CrossRef]








[image: Mathematics 07 00472 g001 550]





Figure 1. The graph K1,nj and the fan graph K1,jj. 
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Figure 2. Number of subtrees of K1,jj that contain central vertex c0, in semi-log(Log-Y) coordinates. 
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Figure 3. Number of subtrees of K1,jj that contain the vertex c1, in semi-log(Log-Y) coordinates. 
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Figure 4. Subtree numbers of K1,nj with n=33,58,75,80, j from 1 to n, in semi-log(Log-Y) coordinates. 
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Figure 5. Subtree number trend of wheel graph Wn(n=3,4,…,602), in semi-log(Log-Y) coordinates. 
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Figure 6. Subtree densities of the graphs K1,22j(1≤j≤22). 
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Figure 7. Subtree densities of wheel graph Wn(3≤n≤24). 
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Table 1. The subtree numbers of wheel graph Wn (n=3,4,…,50).






Table 1. The subtree numbers of wheel graph Wn (n=3,4,…,50).





	n
	η(Wn)
	n
	η(Wn)
	n
	η(Wn)





	3
	38
	19
	2,899,980,984
	35
	269,604,917,347,967,886



	4
	112
	20
	9,128,846,611
	36
	848,689,059,340,934,448



	5
	332
	21
	28,736,686,630
	37
	2,671,587,471,512,527,895



	6
	1007
	22
	90,460,187,232
	38
	8,409,887,625,375,274,755



	7
	3110
	23
	284,759,535,167
	39
	26,473,477,146,304,448,341



	8
	9704
	24
	896,394,265,075
	40
	83,335,833,180,604,495,475



	9
	30,431
	25
	2,821,758,641,457
	41
	262,332,788,908,879,910,034



	10
	95,643
	26
	8,882,611,305,147
	42
	825,797,133,240,010,600,373



	11
	300,885
	27
	27,961,563,560,618
	43
	2,599,525,999,414,007,165,103



	12
	946,923
	28
	88,020,178,967,761
	44
	8,183,045,386,844,876,767,480



	13
	2,980,538
	29
	277,078,636,493,555
	45
	25,759,400,682,377,496,173,050



	14
	9,382,101
	30
	872,215,572,630,716
	46
	81,087,992,568,389,361,552,840



	15
	29,533,519
	31
	2,745,646,560,009,062
	47
	255,256,813,613,269,834,457,576



	16
	92,968,088
	32
	8,643,018,158,636,696
	48
	803,522,677,430,288,749,342,627



	17
	292,653,642
	33
	27,207,348,527,149,292
	49
	2,529,408,261,449,734,855,548,318



	18
	921,243,536
	34
	85,645,986,192,695,055
	50
	7,962,321,827,121,343,008,620,568
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Table 2. Related data for K1,nj, with n=22 and j=1,2,…,22.






Table 2. Related data for K1,nj, with n=22 and j=1,2,…,22.





	j
	Py(K1,nj)
	η(K1,nj)
	D(K1,nj)



	1
	50,331,670
	4,194,326
	0.521736621869847



	2
	5,683,820,588
	362,797,089
	0.681159363604678



	3
	29,685,950,982
	1,787,743,521
	0.721967947748206



	4
	52,358,400,102
	3,110,400,052
	0.731884047161090



	5
	87,226,395,622
	5,103,959,426
	0.743041170007376



	6
	56,400,430,972
	3,370,318,067
	0.727584934777173



	7
	231,968,014,120
	13,141,451,319
	0.767462100378713



	8
	36,440,865,014
	2,224,820,302
	0.712140856484914



	9
	93,645,742,414
	5,511,577,694
	0.738727501280144



	10
	240,339,417,442
	13,653,922,612
	0.765314128820302



	11
	616,080,713,876
	33,825,095188
	0.791900742502907



	12
	9,137,267,062
	592,843,864
	0.670113169892776



	13
	14,666,890,448
	933,106,276
	0.683406494463958



	14
	23,533,982,520
	1,468,662,129
	0.696699813456106



	15
	37,748,062,639
	2,311,599,999
	0.709993128330647



	16
	60,525,953,078
	3,638,341,646
	0.723286440182849



	17
	97,015,668,926
	5,726,566,014
	0.736579749833999



	18
	155,453,553,144
	9,013,325,743
	0.749873057893726



	19
	249,013,516,065
	14,186,519,625
	0.763166364810336



	20
	398,761,664,190
	22,328,865,632
	0.776459670910826



	21
	638,376,020,719
	35,144,507,194
	0.789752976431952



	22
	1,021,684,176,864
	55,315,680,041
	0.803046281543951







* Py(G) stands for ∂F(G;y,1)∂y|y=1.
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