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Abstract: Geometric programming problems are well-known in mathematical modeling. They are
broadly used in diverse practical fields that are contemplated through an appropriate methodology.
In this paper, a multi-parametric vector α is proposed for approaching the highest decision maker
satisfaction. Hitherto, the simple parameter α, which has a scalar role, has been considered in the
problem. The parameter α is a vector whose range is within the region of the satisfaction area.
Conventionally, it is assumed that the decision maker is sure about the parameters, but, in reality, it is
mostly hesitant about them, so the parameters are presented in fuzzy numbers. In this method, the
decision maker can attain different satisfaction levels in each constraint, and even full satisfaction
can be reached in some constraints. The goal is to find the highest satisfaction degree to maintain an
optimal solution. Moreover, the objective function is turned into a constraint, i.e., one more dimension
is added to n-dimensional multi-parametric α. Thus, the fuzzy geometric programming problem
under this multi-parametric vector α ∈ (0, 1]n+1 gives a maximum satisfaction level to the decision
maker. A numerical example is presented to illustrate the proposed method and the superiority of
this multi-parametric α over the simple one.

Keywords: fuzzy geometric programming; decision making; ranking function; trapezoidal fuzzy
number; α-efficiency; multi-parameter confidence level

1. Introduction

Nowadays, mathematical modeling is the most considered tool in simulation and has inevitable
applications in many fields, especially in financial management, economics, wireless networking,
and engineering in general [1–3]. In this respect, several techniques have been recommended to
minimize the cost and maximize the profits. Mathematical models are classified into two general
categories: (I) linear programming (LP) problems and (II) geometric programming (GP) problems
that can be defined on crisp and fuzzy numbers. Usually, we use crisp numbers in academic cases,
in order to learn the concept of LP and GP problems as well as obtain the optimal solution to them
in different forms [4,5]. Realistically, most things are not crisp. Non-crisp things have different
definitions in various cases, thus fuzzy sets were introduced into mathematical modeling to obtain
more accurate results.

At first, Zadeh [6] presented fuzzy sets theory and the concept of fuzzy numbers. Subsequently,
the first formulation of fuzzy mathematical programming was proposed by Tanaka et al. [7] in 1974.
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Afterward, Zimmermann [8] introduced the fundamental mathematical formulation of fuzzy linear
programming problems. Additionally, the authors in [9] introduced an approach for consensus
modeling in collaborative and distributed design, in which the design cluster was defined as a fuzzy
evaluation relationship between a group of functional requirements and a group of conjecture regions.
In [10], a new algorithm was proposed for solving the fully fuzzy linear programming problem.
This was based on a new lexicographic ordering on fuzzy triangular numbers, by converting it to its
equivalent multi-objective linear programming problem. This was explored by several researchers in
diverse fields [11,12].

In order to solve decision-making problems, Garg [13] developed a nonlinear programming
model based on the technique of order preference by similarity to an ideal solution and in which
the criterion values and their importance are given in the form of interval neutrosophic numbers.
The comprehension of decision making on fuzzy sets was proposed by Bellman and Zadeh [14].
However, the meaning of decision making does not necessarily imply finding the optimum solution
for the programming problem. On the contrary, the decision maker wants to get to its desired level of
satisfaction, which might not precisely maximize or minimize the objective function. Therefore, the
effect of the constraint is not the same as the classical form [15,16]. Initial efforts in multilevel decision
making are mainly aimed on determining the optimal conditions and solution algorithms to solve linear,
nonlinear, and discrete fundamental problems, wherein for each decision level there is only one decision
that is assigned for optimizing the unique objective. Faísca et al. [17] studied a multi-parametric
programming approach for solving trilevel hierarchical problems. Ranking function on fuzzy numbers
was taken into great consideration due to the fact that fuzzy numbers are not comparable to each
other. So, many researchers are utilizing the ranking function to compare fuzzy numbers, especially in
network systems, decision making, and measuring the fuzzy paths [18,19]. In [20], multi-parametric
programming is suggested to find an optimal solution in a linear programming problem.

However, mathematical modeling in the case of linear programming was not adequate in a
realistic application to formulate the situation and reach the expected goal. Geometric programming,
which is an extension type of linear programming, was created to make an accurate formulation
of the problem. In 1987, the author in [21] developed the geometric programming problem for
the fuzzy mathematical problem, which consists of more information compared to the classical
models. After that, many authors worked on fuzzy non-linear programming and fuzzy GP problems
to obtain an optimal solution with fewer errors and shortages, in line with the different types of
fuzzy numbers [22–24]. Jafarian et al. [25] proposed a novel method to support the process of
solving multi-objective nonlinear programming problems, which are subjected to strict or flexible
constraints. The concept of intuitionistic fuzzy sets is integrated into the solving procedure and
continuously interacts with the decision maker. Ruan et al. [26] discussed the optimal conditions
and related geometric properties of a linear trilevel decision problem with dominated objective
functions. Lai [27] proposed a fuzzy approach for finding a satisfactory solution for the linear
multilevel decision problem and used the concepts of membership functions as well as the satisfaction
degree of individual decision power. Shih et al. [28] extended Lai’s concepts and adopted tolerance
membership functions and multiple objective optimizations in order to find a better solution for the
above problem. Sakawa et al. [29] presented an interactive fuzzy programming approach for linear
multilevel decision problems. This is accomplished by updating the satisfaction degrees of the decision
maker by considering the overall satisfaction balance at all levels. Their interactive fuzzy programming
approach is dominated with inconsistency between the fuzzy goals of objectives and decision variables
that existed in the research developed by Lai [27] and Shih et al. [28].

In this paper, in order to improve the satisfaction degree in the solution of a fuzzy geometric
programming problem that has various applications in the real world, a novel multi-parametric vector
α is proposed. In addition, the ranking function is also applied to the fuzzy numbers to make a
correlation between coefficients and the exponents and find the maximum satisfaction degree under
the optimal value. The main properties of this method are: (i) giving more flexibility to decision maker,
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(ii) designing a new satisfaction degree in a fuzzy geometric programming problem, (iii) turning
the objective function into a constraint, which makes one more restriction on a feasible solution,
(iv) creating a precise fuzzy geometric programming problem under a decision making tolerance value,
(v) satisfying the maximum of the decision maker’s desire, (vi) increasing the decision-making power
of the decision maker, (vii) the suggested approach in this study is applicable and utilized.

As a whole society and industry are collectively seeking newly optimized methods for staying
competitive, complex problems in this direction can be solved through GP. Therefore, in mathematical
programming, fuzzy GP is mainly more applicable in modern industries for carrying out the decision
making. The moderator and decision makers tend to provide results through GP that was not easy in
beforehand. Decision maker adds a limitation on the region of the feasible solution, which has the
role of a condition. In this way, we need to formulate the programming problem toward the decision
maker’s desire.

The rest of this paper is organized as follows: Section 2 reviews some definitions and theorems
that are concerned with the geometric programming problem, fuzzy sets, and some related remarks.
In Section 3, we introduce the concept of confidence level and satisfaction degree. For the sake of this
definition, we propose a multi-parametric vector α ∈ (0, 1]n+1 to compute the optimal solution and
optimal value for the fuzzy geometric programming problem, and suggest its membership function and
survey the theorem. In Section 4, the two-phase method is proposed for solving the fuzzy GP problem
under the proposed α. In Section 5, previous works are investigated and compared with the proposed
method and the advantages of the proposed method are considered. In Section 6, with the help of a
numerical example, a technical method is illustrated and compared with the non-multi-parametric
vector α ∈ (0, 1] while being scrutinized. Finally, we draw our conclusions in Section 7.

2. Preliminaries, Fuzzy Mathematical GP Problem

In this section, some definitions and theorems pertaining to the fuzzy geometric programming
problem are reviewed, the concept of fuzzy sets and convex fuzzy sets are considered, and following
this, some theorems that can be helpful for the proposed method are discussed. Finally, useful remarks
on GP and fuzzy sets are provided.

2.1. Fuzzy Set

Here are some definitions and theorems relating to fuzzy sets, convex fuzzy sets, and
fuzzy numbers.

Definition 1. Define Ã = {(µÃ(χ), χ)|χ ∈ X} ⊂ X, where µÃ(χ) denotes a real number in the close
interval [0, 1]. The value µÃ(χ) is the degree of membership of χ in Ã and is defined as follows:

µÃ : X → [0, 1],

where χ→ µÃ(χ) is a membership function in fuzzy set Ã.

Definition 2. Let Ã be a fuzzy set. If there exists at least one χ ∈ X with µA(χ) = 1, then Ã is called a
normal fuzzy set.

Theorem 1. [30] Let φ 6= L ⊂ Rn be a convex set. A function $ : L→ R defined on L is a convex function
iff ∀χ, υ ∈ L. We have

$(λχ + (1− λ)υ) 6 λ$(χ) + (1− λ)$(υ), 0 6 λ 6 1.

Definition 3 ([31]). A fuzzy set Ã on X is a convex fuzzy set if there exist s, t ∈ X and η ∈ [0, 1] such that
µÃ(ηs + (1− η)t) > min{µÃ(s), µÃ(t)}.
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Definition 4. A fuzzy number Ã is a fuzzy set in R, which is (i) a convex fuzzy set, (ii) a normal fuzzy set,
(iii) has a piecewise continuous membership function, and (iv) is defined in the real number.

Definition 5 ([32]). The two fuzzy numbers are equivalent iff their membership functions are the same.

Definition 6. Suppose that Ã is a fuzzy number. Then, Ã is called a positive number in X if for all χ < 0,
its membership function equals zero and displays as Ã > 0̃.

Definition 7. 0̃ is a fuzzy number in the meaning of a zero crisp number where all components are 0 ∈ R.

2.2. Fuzzy Geometric Programming

Definition 8 ([31]). The problem

max
τ0

∑
k=1

v0k

m

∏
j=1

χ
β0kj
j , (1)

s.t.
τi

∑
k=1

vik

m

∏
j=1

χ
βikj
j 6 ti, (1 6 i 6 n),

χ > 0,

is called a posynomial geometric programming (PGP) problem of χ, where χ = (χ1, ..., χm)T and vik > 0 are an
m-dimensional variable vector and coefficient real number, respectively, T is represented as a transpose symbol,
and βikj > 0 is an arbitrary real number.

The mathematical programming problem

m̃ax G0(χ) (2)

s.t. Gi(χ) - 1, (1 6 i 6 n),

χ > 0

is called a general fuzzy PGP (FPGP) problem, where Gi(χ), (0 6 i 6 n) is a posynomial function

that is defined as Gi(χ) =
τi
∑

k=1
Vik(χ), (0 6 i 6 n) on χ, where Vik is a monomial function of χ defined

as [31]

Vik =


vik

m
∏
j=1

χ
βikj
j , (1 6 k 6 τi; 1 6 i 6 n′)

vik
m
∏
j=1

χ
−βikj
j , (1 6 k 6 τi; n′ + 1 6 i 6 n),

and z0 - G0(χ) −→ m̃ax G0(χ), i.e., the objective function G0(χ) might be presented as a maximum
goal for the sake of considering z0 as a lower bound. z0 is an expectation value of the objective function
G0(χ), and “- ” denotes the fuzzified version of the “6 ” as having a linguistic interpretation, which is
essentially less than or equal. So the model (2) is able to change to the following fuzzy reversed
PGP problem:

m̃ax G̃0(χ) % z0 (3)

s.t. G̃i(χ) - 1, (1 6 i 6 n′),

G̃i(χ) % 1, (n′ + 1 6 i 6 n),

χ > 0.
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Theorem 2 ([33]). Suppose that Gi(ω) for any i is a convex function, then the following geometric programming
problem is a fuzzy convex one.

G0(ω) - G0, (4)

Gi(ω) - 1, (1 6 i 6 n).

Definition 9. A monomial PGP (MP problem in fully fuzzy form can be defined as follows [31]:

max ṽ0

m

∏
j=1

χ̃
β̃0j
j , (5)

s.t. ṽi

m

∏
j=1

χ̃
β̃ij
j 6 t̃i, (1 6 i 6 n),

χ̃ > 0̃,

where all variables, coefficients, and exponents are fuzzy numbers, and χ̃ = (χ̃1, ..., χ̃m)T is an m-dimensional
fuzzy variable. ṽi > 0̃, (1 6 i 6 n) and t̃i > 0̃ are coefficients and real fuzzy numbers, respectively, and β̃ij is
an arbitrary fuzzy number.

Remark 1. It is easy to see that the reversed PGP problem can be expanded to a fuzzy reversed PGP problem
where χ is an m-dimensional decision vector and the exponents and coefficients could be fuzzified. Fuzzy
exponents β̃0kj % 0̃ are arbitrarily fixed in the close interval [β−0kj, β+

0kj]. In addition, the fuzzy coefficients
ṽ0k % 0̃ are arbitrarily fixed in the close interval [v−0k, v+0k], where β−0kj, β+

0kj, v−0k and v+0k are real numbers.

Definition 10 ([34]). Assume that $ : Rn → R and χ ∈ T ⊂ Rn is a feasible solution to the problem
max{$(x) : x ∈ T}. If χ∗ ∈ T and $(χ) > $(χ∗) , for all χ ∈ T, then χ∗ is called an optimal solution.

Theorem 3. Any fuzzy PGP problem, as defined in (2), can be turned to a fuzzy convex programming problem.

Proof. Let χj = eωj for 1 6 j 6 m. Then

τi

∑
k=1

vik

m

∏
j=1

χ
βikj
j =

τi

∑
k=1

vike∑m
j=1 ωj βikj = Gi(ω) , 0 6 i 6 n. (6)

So, problem (2) can be turned into (4). Now, utilizing Theorem 2, the proof is at hand.

Theorem 4. Any fuzzy monomial PGP problem (5) can be turned into a fuzzy LP problem as follows:

max lnṽ0 +
m

∑
j=1

β0jω̃j, (7)

s.t. lnṽi +
m

∑
j=1

βijω̃j 6 lnt̃i, (1 6 i 6 n),

χ̃j > 0̃, (1 6 j 6 m).

Proof. By applying the “ln” function on problem (5), we conclude that

max lnṽ0 +
m

∑
j=1

β0jlnχ̃j, (8)
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s.t. lnṽi +
m

∑
j=1

βijlnχ̃j 6 lnt̃i, (1 6 i 6 n),

χ̃j > 0̃, (1 6 j 6 m).

Now set lnχ̃j = ω̃j in the above mathematical programming problem. We obtain a convex
program as follows:

max lnṽ0 +
m

∑
j=1

β0jω̃j,

s.t. lnṽi +
m

∑
j=1

βijω̃j 6 lnt̃i, (1 6 i 6 n),

χ̃j > 0̃, (1 6 j 6 m).

Therefore, from Theorem 3, this problem is a convex programming problem and has the same
fuzzy optimal solution as problem (5).

Definition 11. A trapezoidal fuzzy number can be noted as Ã = (a1, a2, a3, a4), and the set of all trapezoidal
fuzzy numbers is displayed by F(R).

Definition 12 ([31]). The membership function of the trapezoidal fuzzy number Ã = (a1, a2, a3, a4) is defined
as follows:

µÃ(x) =


0 ; x < a1, x > a4

x−a1
a2−a1

; a1 6 x < a2

1 ; a2 6 x 6 a3
a4−x
a4−a3

; a3 < x 6 a4.

Definition 13 ([31]). Suppose that Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) are two trapezoidal fuzzy
numbers. The arithmetic operations on trapezoidal fuzzy numbers are defined as follows:

1)Ã + B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4),

2)m > 0, m ∈ R; mÃ = (ma1, ma2, ma3, ma4),

3)m < 0, m ∈ R; mÃ = (ma4, ma3, ma2, ma1),

4)Ã− B̃ = (a1 − b4, a2 − b3, a3 − b2, a4 − b1).

2.3. Ranking Function

The approach available for comparing the fuzzy numbers is to use the ranking function
(see [18,35]).

Definition 14. The function R : F(R)→ R is called a ranking function, which is applied on the elements of
F(R) by normal ordering property and maps any fuzzy number into the real number in R.

Remark 2. Assume that Ã1,Ã2 ∈ F(R). The orders ith respect to the ranking function R are defined as follows:

Ã1 >R Ã2 ⇔ R(Ã1) > R(Ã2),

Ã1 <R Ã2 ⇔ R(Ã1) < R(Ã2),

Ã1 =R Ã2 ⇔ R(Ã1) = R(Ã2).
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Note. Obviously, the ranking function R is a linear function such that R(mÃ1 + Ã2) = mR(Ã1) +

R(Ã2), where m ∈ R.

Remark 3. Suppose that Ã = (a1, a2, a3, a4) is a trapezoidal fuzzy number. The ranking function for Ã is
given by

R(Ã) =
a1 + a2 + a3 + a4

4
.

3. New Concepts of Feasibility and Efficiency

In this section, a multi-parametric operator α is presented that indicates the confidence level
extracted from the feasibility and efficiency of the optimal solution. The related properties and
theorems are considered and the membership function is presented. There is a discussion about the
tolerance level. This tolerance value is exerted in the programming problem, which is formulated as a
novel membership function. This circumscription is effected as a condition and can play an important
role in achieving the feasible solution. Also, the feasible solution will be closer to the decision maker’s
satisfaction. Assuming problem (2), and supposing that the Ãi denotes all χ of fuzzy constraints that is
related to the fuzzy inequalities constraint G̃i(χ) - 1, (1 6 i 6 n), then the membership function is
defined as follows:

µÃi
(χ) =


1, Gi(χ) 6 1
1− ti

qi
, Gi(χ) = 1− ti (0 6 ti 6 qi)

0, Gi(χ) > 1− qi

where qi ∈ R+ is the maximum tolerance value of the i-th fuzzy function Gi(χ) that is determined
by the decision maker. This tolerance value is the decision maker’s command, which makes the GP
programming more complicated. In this approach, different tolerance values make several categories
of feasible solutions. Thus, selecting one tolerance value, which is decided during the decision making,
trying to satisfy the decision maker, and subsequently increasing his satisfaction degree, also increases
the efficiency level. Actually, the decision maker can attain groups of the optimal solution under the
various tolerance values qi, so with the help of the multi-parametric vector α, the difficulty of obtaining
the satisfactory solution can be controlled towards arriving at an optimal solution in line with the
desire of the decision maker.

By contemplating the problem (3), a confidence level α that is denoted as a multi-parametric
vector α = (α0, α1, ..., αn) ∈ (0, 1]n+1 is applied to the programming problem, where α0 stands for the
satisfaction degree relevant to the objective function, which will be changed into the constraint, and αn

for i = 1, ..., n denotes the satisfaction degree relevant to each constraint. Here, a multi-parametric α is
proposed to increase the satisfaction degree of the decision maker under his tolerance value. The point
is that the confidence value is applied to any constraint, specifically to arrive at an optimal satisfaction
degree. Moreover, the tolerance value is enforced on the objective function that increases the efficiency
of the optimal solution in a fuzzy geometric programming problem. Suppose that µi(.), (0 6 i 6 n) is
a continuous and monotone fuzzy function. Then the fuzzy reversed PGP problem is equivalent to

max µ0(G̃0(χ)), (9)

s.t. µi(G̃i(χ)− 1) > αi, (1 6 i 6 n′),

µi(1− G̃i(χ)) > αi, (n′ + 1 6 i 6 n),

χ > 0, αi ∈ (0, 1], (0 6 i 6 n),

where every αi is defined on its own corresponding constraints and objective function. For the
purpose of managing the membership function in any distinct fuzzy constraints and objective
function, if Gi(χ) - 1, (1 6 i 6 n′) and Gi(χ) % 1, (n′ + 1 6 i 6 n), then the i-th constraint is
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satisfied. But if we choose qi > 0 as the maximum tolerance determined by the decision maker and
Gi(χ) 6 qi, (1 6 i 6 n), then the i-th constraint has been breached. In this case, if we consider PGP as

m̃ax G0(χ) (10)

s.t. Gi(χ) - Bi, (1 6 i 6 n),

χ > 0,

and by turning the objective function into a constraint, a membership function will be defined for it
exclusively. Therefore, the membership function can be defined as follows:

µ(Gi(χ, α)) =


1, Gi(χ, α) 6 Bi

1− Gi(χ,α)−Bi
qi

, Bi 6 Gi(χ, α) 6 Bi + qi (1 6 i 6 n′)
0, Gi(χ, α) > Bi + qi, (n′ + 1 6 i 6 n),

(11)

and

µ(G0(χ, α)) =
z0 − G0(χ, α)

q0
, G0(χ, α) > z0 − q0.

Here, the multi-parameter vector α is applied to a constraint and objective function. The promising
framework of this method is to add the objective function as a constraint, which is capable of being
influenced by the restriction of the feasible solution directly. On the other hand, by employing this
technique, the solution area is going to be limited and the optimal solution will be more accurate.
The parameter αi, (1 6 i 6 n) is relevant to the i-th fuzzy constraint and α0 is the satisfaction degree,
which is defined on the objective function. In order to find the optimal solution with respect to the
decision maker’s satisfaction with the maximum tolerance level under problem (3), the following
model is proposed:

max G0(χ), (12)

s.t. G0(χ) > z0 − α0q0,

Gi(χ) 6 Bi + (1− αi)qi, (1 6 i 6 n′),

Gi(χ) > Bi + (1− αi)qi, (n′ + 1 6 i 6 n),

χ > 0, αi ∈ (0, 1]. (0 6 i 6 n).

Definition 15. If χ∗ = (χ∗1 , ..., χ∗m)T ∈ Rm is an m-dimensional vector and

Xα = {χ ∈ Rm|χ > 0, µi(Gi(χ)) > αi, (0 6 i 6 n)}, (13)

then a vector χ ∈ Xα will be an α-feasible solution for problem (2).

Let α ∈ (0, 1] be an α-feasible solution of the fuzzy geometric programming problem (2),
i.e., the satisfaction degree α is the same for all constraints and objective functions. So that for
problem (9), we have µi(1− Gi(χ)) > α, (1 6 i 6 n), or on the other hand, α = (α, ..., α) ∈ (0, 1]n+1.
Then χ ∈ Xα is an α-feasibility to problem (2). Whereas we can say that for the GP problem (2), if it is
feasible, then Xα is non-empty.
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Theorem 5. Suppose that α = (α0, α1, ..., αn) ∈ (0, 1]n+1, and for χ∗j > 0, (1 6 j 6 m),
χ∗ = (χ∗1 , ..., χ∗m)T ∈ Rm is an α-feasible solution to problem (2). Then χ∗ can be an α-efficient
optimal solution iff χ∗ is an optimal solution of following programming problem:

max G0(χ), (14)

s.t. G0(χ) > z0 − α0q0,

Gi(χ) 6 1 + (1− αi)qi, (1 6 i 6 n′),

Gi(χ) > 1 + (1− αi)qi, (n′ + 1 6 i 6 n),

χ > 0, αi ∈ (0, 1], (0 6 i 6 n),

where qi is the maximum tolerance amount.

Proof. Suppose that α = (α0, α1, ..., αn) ∈ (0, 1]n+1, and for χ∗j > 0, (1 6 j 6 m), χ∗ = (χ∗1 , ..., χ∗m)T ∈
Rm is an α-feasible solution to problem (2). With the help of Definition 15 and programming problem
(11), we have µi(Gi(χ

∗)) > αi, (0 6 i 6 n), so χ∗ is a feasible solution. On the other hand, as χ∗ ∈ Rm

is an α-efficient solution, there will be no other χ∗
′ ∈ Xα that satisfies G0(χ

∗′) > G0(χ
∗). Therefore,

this means that χ∗
′

is an optimal solution.
Again, suppose that χ∗

′
is an optimal solution for problem (14), and obviously, it is an α-feasible

solution. Thus, it implies that χ∗
′

is an α-efficient solution.
Now, assume that (χ∗, z0 = G0(χ

∗)) is an optimal solution to problem (14) in Theorem 5. Just the
following programming problem needs to be solved:

max
n

∑
i=1

αi, (15)

s.t. G0(χ) > z0 − α0q0,

Gi(χ) 6 1 + (1− αi)qi, (1 6 i 6 n′),

Gi(χ) > 1 + (1− αi)qi, (n′ + 1 6 i 6 n),

χ > 0, αi ∈ (0, 1], (0 6 i 6 n),

where qi is the maximum tolerance amount.

Note that the mentioned tolerance, qi, for every constraint and objective function will be
determined by an expert in the real-life problems that are adapted for practical situations.

Remark 4. It is worth mentioning that any real (crisp) number could be written as a fuzzy number with the
right and left zero endpoints of the intervals.
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4. The Main Process of the Two-Phase Method

The process of the method which was proposed will be discussed in this section. In this case,
the method is described in two steps as follows.

The first phase is concerned with making a suitable GP problem that can be solved. In phase
I, Theorems 3 and 4 are applied to the GP problem in order to build a correct linear programming
problem that is able to set the tolerance value on it. Here, the decision maker applies his demand,
so that it is likely to satisfy him. The decision maker can select different levels of tolerance value, which
gives different groups of feasible solutions, therefore, among these feasible solutions, we need to create
a technique to find the optimal solution.

Phase II starts with a given feasible solution from phase I. The target of phase II is to improve
the satisfaction degree with an optimal solution. In the current method, the decision maker adds
the general order that sometimes is not useful or does not coincide for every constraint. Definitely,
finding an optimal solution is preceded over the decision maker’s desire in solving a fuzzy geometric
programming problem. In the cases where the satisfaction level and the tolerance value are the same
for all the contrarians, the decision maker will not be satisfied with the optimal solution because this is
a kind of push for the decision maker to embrace the optimal solution. If one is more adventurous,
the preference is to reduce and restrict the interval of the feasible solution to gain a better optimal
value with the maximum satisfaction degree of the decision maker. The order and limitation can
be chosen and assigned separately for every constraint, and even for the objective function. The
multi-parametric confidence vector α ∈ (0, 1](n+1) is applied to match the satisfaction degree with its
corresponding condition.

In this step, the objective function is turned into a constraint with its corresponding initial solution
z0 and satisfaction degree α0. By the genesis of the tolerance degree, qi, it can be excelled for every
constraint and objective function separately so that the satisfaction degree can be maximized in
each constraint. In the end, the optimal solution is achieved for the original problem with the best
satisfaction degree.

In the first step, suppose that the GP is the fuzzy posynomial geometric programming problem
in (10). By applying Theorems 3 and 4 and setting Ki(z) = lnGi(χ), i = 1, 2, ..., n, where χj = ezj ,
j = 1, 2, ..., m, then we have

m̃ax K0(z) (16)

s.t. Ki(z) - lnBi, (1 6 i 6 n),

χ > 0.

In the next step, we should compose problem (14) according to Theorem 5 so that,
the multi-parametric vector α = (α0, α1, ..., αn) ∈ (0, 1]n+1 is used in the objective function and
constraints. In addition, we need to predict the decision maker’s satisfaction. As for these two criteria,
the mentioned geometric programming problem can be turned into

max K0(z), (17)

s.t. K0(z) > z0 − α0q0,

Ki(z) 6 lnBi + (1− αi)qi, (1 6 i 6 n),

χ > 0, αi ∈ (0, 1]. (0 6 i 6 n),

Now it is easy to find the optimal solution with the current software (MATLAB).
The method is depicted as a flowchart in Figure 1.
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5. Comprehensive Analysis

Here, the proposed method and previous works are investigated, and the advantages of the
proposed method is considered.

5.1. Shortcomings of the Existing Methods

There have been so many works on the topic of decision making in geometric programming
problems. Several authors have introduced certain methods to find the optimal solution. In a like
manner, we considered the methods that have been developed and proposed a new method for
removing the shortcomings of the existing methods.

Up to now, the simple vector α was proposed, which was the same for all the constraints, and the
expert person was forced to give the same satisfaction level to the decision maker for all constraints [31].
This creates a dilemma for the expert person, who is seeking the optimal solution and to satisfy the
decision maker. Thus, for the sake of the importance of the optimal solution, the satisfaction level of
the decision maker will rest on the second step. In our work, while we keep the optimal solution for
fuzzy geometric programming, the satisfaction level of the decision maker is also provided.

In [20], multi-parametric programming is suggested to reach the optimal solution for a linear
programming problem. The author proposed a vector to find a better satisfactory degree for the
decision maker in a linear programming problem. In this method, an n-dimensional vector is
introduced that does not actually approach the maximum satisfaction level for the decision maker
and is not on fuzzy numbers. As we can see, most of the mathematical models in the real world
are geometric programming models, and consequently, the demand for the decision maker has been
applied to the geometric programming form, so we need to proposed a multi-parametric vector that
can reach an optimal solution on geometric programming under the maximum satisfaction level of the
decision maker.

5.2. The Advantages of the Proposed Method

It is shown that by using the proposed method, all of the shortcomings in existing methods can
be avoided. Moreover, it is better to use this method for solving such problems, which occur in real
life situations, as compared to the existing methods. By using the proposed algorithm to find the
maximum satisfaction degree of the decision maker with the optimal solution of the fuzzy geometric
programming problem, we have the following advantages:

(1) Our work is on a geometric programming problem.
(2) This method is proposed on fuzzy numbers.
(3) The objective function is changed into the constraint. Thus, the solution starts with the initial
optimal value.
(4) One constraint is added to the constraints of the fuzzy geometric programming problem, which
creates one more dimension and one more restriction on the feasible solution region. Thus, the
proposed multi-parametric vector has (n + 1) dimensions.
(5) This method gives more flexibility to the decision maker to put his desire on each constraint
distinctively.
(6) The decision maker’s order can also be put on the objective function when we deal with this as a
constraint.
(7) Creating a precise fuzzy geometric programming problem under a decision making tolerance value.
(8) Satisfying the decision maker’s maximum desire.
(9) The suggested approach in this study is applied and utilized.



Mathematics 2019, 7, 464 13 of 18

6. Illustration of the Superiority of the Proposed Method

In this section, an instance of the fuzzy geometric programming problem to illustrate the proposed
method is given. First, we solve the example with the multi-parametric vector α and then express the
superiority of the multi-parametric vector α over the one-dimensional vector α.

Example 1. A septic productive factory produces concrete pipes for its projects. This factory needs to produce
utmost e19, e46, and e64 (kg) of three types of concrete pipes A1, A2, and A3, respectively. The pipes have to
be produced by using four different kinds of concrete B1, B2, B3, and B4. The percentage of each type of raw
concrete needed in each pipe (kg) and its unit price ($/kg) are listed in Table 1. Find the maximum raw concrete
needed under the owner’s tolerance level.

Table 1. The percentage of concrete and its unit price.

B1 B2 B3 B4 Required (kg)

A1 (0,1,1,2) (0,1,3,4) (1,1,1,1) (1,2,2,3) e19

A2 (5,6,6,7) (3,4,6,7) (2,3,3,4) (0,2,2,4) e46

A3 (1,2,4,5) (2,3,5,6) (1,1,3,3) (10,11,13,14) e64

unit price ($/kg) 5 6 3 5

Solution. This problem can be induced in the fuzzy form of a PGP problem as follows:

m̃ax x1
5x2

6x3
3x4

5 (18)

s.t. x1
(0,1,1,2)x2

(0,1,3,4)x3
(1,1,1,1)x4

(1,2,2,3),6 e19

x1
(5,6,6,7)x2

(3,4,6,7)x3
(2,3,3,4)x4

(0,2,2,4),6 e46,

x1
(1,2,4,5)x2

(2,3,5,6)x3
(1,1,3,3)x4

(10,11,13,14),6 e64,

x1, x2, x3, x4 > 0.

Here, we perform the steps of the method as expressed above.
Due to the definition of the membership function, for constraints and the objective function,

we have the following membership functions, respectively:

µi(Aix, Bi) =


1, Gi(z, αi) 6 Bi,
Bi+qi−Gi(z,αi)

qi
, Bi 6 Gi(z, αi) 6 Bi + qi, i = 1, 2, 3,

0, Gi(z, αi) > Bi + qi,

(19)

µ0(G0(z, α0)) =
z0 − G0(z, α0)

q0
, z0 − q0 6 G0(z, α0) 6 z0. (20)

Utilize xj = ezj , (1 6 j 6 4). Problem (18) is changed into the following fuzzy problem under
Theorems 3 and 4:

m̃ax 5z1 + 6z2 + 3z3 + 5z4 (21)

s.t. (0, 1, 1, 2)z1 + (0, 1, 3, 4)z2 + (1, 1, 1, 1)z3 + (1, 2, 2, 3)z4 6 19

(5, 6, 6, 7)z1 + (3, 4, 6, 7)z2 + (2, 3, 3, 4)z3 + (0, 2, 2, 4)z4 6 46,

(1, 2, 4, 5)z1 + (2, 3, 5, 6)z2 + (1, 1, 3, 3)z3 + (10, 11, 13, 14)z4 6 64,
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The first step is to apply the ranking function on trapezoidal fuzzy numbers under the Remark 3.

m̃ax 5z1 + 6z2 + 3z3 + 5z4 (22)

s.t. z1 + 2z2 + z3 + 2z4 6 19,

6z1 + 5z2 + 3z3 + 2z4 6 46,

3z1 + 4z2 + 2x3 + 12z4 6 64.

The initial optimal solution is taken from the basic variables as x1 = e2.12, x2 = e5.45, x3 = 1,
x4 = e2.98, and the optimal value equals e58.27.

From the first step, by applying x0 = ez0 , we find z0 = 58.27.
According to the two-phase method, we can change problem (22) into the following programming

problem:
m̃ax 5z1 + 6z2 + 3z3 + 5z4 (23)

s.t. K0(z, α0) = 5z1 + 6z2 + 3z3 + 5z4 > z0 − α0q0,

z1 + 2z2 + z3 + 2z4 6 19 + (1− α1)q1,

6z1 + 5z2 + 3z3 + 2z4 6 46 + (1− α2)q2,

3z1 + 4z2 + 2x3 + 12z4 6 64 + (1− α3)q3,

αi ∈ (0, 1], i = 0, 1, 2, 3.

Suppose that q0 = 5, q1 = 1, q2 = 4, and q3 = 6 are the maximum toleration values for
qi, (i = 0, 1, 2, 3), which is given by decision maker, then substitute z0, q0, q1, q2 and q3 into problem (23).
We have:

m̃ax 5z1 + 6z2 + 3z3 + 5z4 (24)

s.t. 5z1 + 6z2 + 3z3 + 5z4 + 5α0 > 58.27,

z1 + 2z2 + z3 + 2z4 + α1 6 20,

6z1 + 5z2 + 3z3 + 2z4 + 4α2 6 50,

3z1 + 4z2 + 2x3 + 12z4 + 6α3 6 70,

αi ∈ (0, 1], i = 0, 1, 2, 3.

Table 2 shows the decision maker’s satisfaction at different α-efficiency confidence levels.
If α = (α0, α1, α2, α3) and G0(z∗, α) denote the optimal value of the objective function at each step
under different αs, we can have the table as follows, which is procured by the MATLAB software:

Table 2. Finding the maximum satisfaction degree with a multi-parametric α.

1 2 3 4 5

α (0.5,0.5,0.5,0.5) (0.5,0.8,0.5,0.5) (0.8,0.5,0.8,0.5) (0.9,0.5,0.5,0.7) (0.9,0.8,0.8,0.7)

z1 2.51 2.76 2.2 2.4 2.34
z2 5.3 4.98 5.42 5.5 5.29
z3 0 0 0 0 0
z4 3.18 3.22 3.22 3.05 3.13

K0(z, αi) 60.34 59.9 59.68 60.25 59.15
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The values observed in Table 2 demonstrates that α1 and α2 are the most inefficient components.
From columns 2, 3, and 5 in Table 2, it can be deduced that by increasing α1 and α2, the optimal
solution will be strayed away. Reducing α1 and α2 achieves a better result. Again from columns 1 and
4 in Table 2, one can get closer to the optimal solution by increasing α0 and α3. Now from here, we
will try to minimize α1 and α3 by choosing the (0.5, 0.5, 0.5, 0.5)-efficient solution with optimal value
G0(z∗, α) = 60.34 as an initial solution.

Figure out the LP problem below affected by G0(z∗, α) = 60.34:

max α0 + α1 + α2 + α3 (25)

s.t. 5z1 + 6z2 + 3z3 + 5z4 + 5α0 > 60.34,

z1 + 2z2 + z3 + 2z4 + α1 6 20,

6z1 + 5z2 + 3z3 + 2z4 + 4α2 6 50,

3z1 + 4z2 + 2x3 + 12z4 + 6α3 6 70,

0.5 6 α0 6 1,

0.5 6 α1 6 1,

0.5 6 α2 6 1,

0.5 6 α3 6 1.

By maximizing the satisfaction degree, the optimal solution of problem (25) will be obtained
as z∗∗ = (2.51, 5.3, 0, 3.18) under the confidence level α∗ = (1, 0.5, 0.5, 0.5) and the optimal value
computed with respect to α∗ as G∗0 (z

∗∗, α∗) = (2.51, 5.3, 0, 3.18, 1, 0.5, 0.5, 0.5) = 60.34. Subsequently,
the optimal solution for GP programming problem (18) will be x1 = e2.51, x2 = e5.3, x3 = 1, x4 = e3.18,
and the optimal value will be equal to e60.34.

To compare this GP problem when the vector α is not multi-parametric, see Table 3.

Table 3. Finding the maximum satisfaction degree with α.

1 2 3 4 5

α 0.5 0.6 0.8 0.9 1

z1 2.51 2.43 2.28 2.2 2.12
z2 5.3 5.33 5.39 5.42 5.45
z3 0 0 0 0 0
z4 3.18 3.14 3.06 3.02 2.98

K0(z, αi) 60.34 59.93 59.1 58.68 58.27

A comparison of Tables 2 and 3 reveals that in Table 3, by increasing the confidence level α,
the optimal solution is minimized, whereas we expect to maximize the optimal solution when the
confidence level rises. Indeed, the satisfaction degree for each constraint should be increased or
decreased by the same amount, while in the proposed method, there is a chance to decrease or increase
the satisfaction level for each constraint separately. In addition, an opportunity lies in dedicating a
satisfaction level to the objective function. In Table 3, it is obvious that by increasing the confidence level,
we get opposite results for the optimization, and the optimal value goes to its normal optimal solution,
while in Table 2 the optimal value is kept optimal, as long as the satisfaction degree components
are changing. The reason is that the vector α is not appropriate for all constraints, and particularly
with turning the objective function to the constraint. In Table 3, α = 0.5 ∈ (0, 1] can be noted as
α = (0.5, 0.5, 0.5, 0.5) ∈ (0, 1]4 for α = (α0, α1, α2, α3), whereas in Table 2, the satisfaction degree is
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α = (1, 0.5, 0.5, 0.5). This implies that the one-dimensional satisfaction degree is meaningless in this
case. It is clear that the flexibility of the (n + 1)−dimensional confidence level αi can help to reach a
better optimal solution that implements decision maker’s goal.

7. Conclusions

In this paper, a new insight to the satisfaction degree is introduced. The multi-parametric vector
α is gained under the tolerance value of the decision maker’s order and increases the likelihood of
obtaining the highest satisfaction level. This method helps us solve the fuzzy geometric programming
problem by coming up with an optimal solution that satisfies the decision maker. This method
does not force the decision maker to choose the same tolerance value for all constraints. The expert
person can satisfy the decision maker in each constraint distinctively under the optimal value of the
fuzzy geometric programming problem. Moreover, by converting the objective function in the initial
programming problem to the constraint in the reversed geometric programming problem, we can
obtain the best optimal solution under the decision maker’s maximum desire. By comparing Table 2
and Table 3, it can be deduced that in Table 3, using a one-dimensional α to determine the satisfaction
degree for all constraints and the objective function led to an inverse result. But in Table 2, utilizing
a multi-parametric α that is assigned to every constraint distinctively assists us in obtaining a better
satisfaction degree. It is evident from Table 2 that the full satisfaction degree is achieved for the first
component of α under the decision maker’s tolerance level; however, in the current method, getting
full satisfaction for one of the constraints is impossible. In addition, applying the satisfaction degree
on the objective function is an efficient approach to obtain the best optimal value. In future work,
fuzzy numbers with negative elements will be considered, which has applications in cost and benefit
problems. A subsequent paper will focus on multi-criteria decision making, which includes both costs
and benefits. Thus, the proposed method can be used in economics and industrial problems.
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