. mathematics ﬁw\o\w

Article

A Study of Third Hankel Determinant Problem for
Certain Subfamilies of Analytic Functions Involving
Cardioid Domain

Lei Shi 1@, 1zaz Ali 2, Muhammad Arif 2*©, Nak Eun Cho 3*, Shehzad Hussain 2 and Hassan
Khan 2

1 School of Mathematics and Statistics, Anyang Normal University, Anyang 455002, China; shimath@163.com
2 Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
aliizaz719@gmail.com (I.A.); shehzad873822@gmail.com (S5.H.); hassanmath@awkum.edu.pk (H.K.)
Department of Applied Mathematics, Pukyong National University, Busan 48513, Korea

Correspondence: marifmaths@awkum.edu.pk (M.A.); necho@pknu.ac.kr (N.E.C.)

check for
Received: 18 April 2019; Accepted: 6 May 2019; Published: 10 May 2019 updates

Abstract: In the present article, we consider certain subfamilies of analytic functions connected with
the cardioid domain in the region of the unit disk. The purpose of this article is to investigate the
estimates of the third Hankel determinant for these families. Further, the same bounds have been
investigated for two-fold and three-fold symmetric functions.
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1. Introduction and Definitions

Let A be the family of all functions that are holomorphic (or analytic) in the open unit disc
A = {z € C: |z| < 1} and having the following Taylor-Maclaurin series form:

_Z—|—Z{1k2 ZEA (1)

Further, let S represent a subfamily of .4, which contains functions that are univalent in A. The familiar
coefficient conjecture for the function f € S of the form (1) was first presented by Bieberbach [1] in
1916 and proven by de-Branges [2] in 1985. In between the years 1916 and 1985, many researchers tried
to prove or disprove this conjecture. Consequently, they defined several subfamilies of S connected
with different image domains. Among these, the families S*, C, and K of starlike functions, convex
functions, and close-to-convex functions, respectively, are the most fundamental subfamilies of S and
have a nice geometric interpretation. These families are defined as:

5 = {feS 2f'(2) 1“, (zeA)},

f(z)
B ‘(zf’(z)) 14z
cC = {fGS. 72 <17 (ZGA)}/
_ zf’(z) ZTE tor £ (g
K = {feS e 1 fog()eS,(eA)},

where the symbol “<” denotes the familiar subordinations between analytic functions and is defined
as: the function /1 is subordinate to a function /;, symbolically written as 1y < hy or hy (z) < hy (z), if
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we can find a function w, called the Schwarz function, that is holomorphic in A with w (0) = 0 and
|w(z)| < 1such that Iy (z) = hy (w(z)) (z € A). In the case of the univalency of i in A, then the
following relation holds:

h(z) <Ia(z) (z€A) <= h(0)=hy(0) and hy(A) C n(A).

In [3], Padmanabhan and Parvatham in 1985 defined a unified family of starlike and convex functions
using familiar convolution with the function z/ (1 —z)?, for 4 € R. Later on, Shanmugam [4]
generalized this idea by introducing the family:

. EIIRT
Sh<¢>—{feA. Femy 9@, ( eA)},

where “x” stands for the familiar convolution, ¢ is a convex, and % is a fixed function in .A. Furthermore,
if we replace 1 in S;; (¢) by z/ (1 —-z) and z/ (1 — z)?, we obtain the families S* (¢) and C ()
respectively. In 1992, Ma and Minda [5] reduced the restriction to a weaker supposition that ¢
is a function, with Re ¢(z) > 0 in A, whose image domain is symmetric about the real axis and
starlike with respect to ¢(0) = 1 with ¢/(0) > 0 and discussed some properties including distortion,
growth, and covering theorems. The family S* (¢) generalizes various subfamilies of the family A,
for example;

1+Bz 1+Bz
starlike functions; see [6]. Further, if A =1 —2x and B = —1 with 0 < & < 1, then we get the

family S*(«) of starlike functions of order a.

(ii). The family S} := S*(v/1+2z) was introduced by Sokél and Stankiewicz [7], consisting of
functions f € A such that zf'(z)/f(z) lies in the region bounded by the right-half of the
lemniscate of Bernoulli given by |w? — 1| < 1.

iii). For ¢(z) = 1+ sinz, the family S*(¢) leads to the family S5,

iv). When we take ¢(z) = €%, then we have S; := §* (¢*) [9].

v). The family S; := S§* (¢(z)) with ¢(z) =1+ %%, k = v/2 + 1 was studied in [10].

vi). By setting ¢(z) = 1+ 3z + 322, the family S*(¢) reduces to S, introduced by Sharma and his
coauthors [11], consisting of functions f € A such that zf’(z)/ f(z) lies in the region bounded
by the cardioid given by:

(i). If¢(z) = 42 with -1 < B < A < 1, then S*[A, B] := S* (1+Az) is the family of Janowski

introduced in [8].

(9x% +9y* — 18x +5)% — 16(9x> + 9y> —6x +1) = 0,
and also by the Alexandar-type relation, the authors in [11] defined the family Ce, by:
Car=1{feA:2f () €SE (z€A)}; @
see also [12,13]. For more special cases of the family S*(¢), see [14,15]. We now consider the

following family connected with the cardioid domain:

’Rmr—{feA:f’(z)<1+§z+§zz, (zeA)}. 3)
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For given parameters q,n € N = {1,2,...}, the Hankel determinant H,, (f) was defined by
Pommerenke [16,17] for a function f € S of the form (1) given by:

Ay ﬂn+1 e ﬂn+q_1
A1 P R

Hp) = | e @
An+q-1 An+q -+ Any2g-2

The growth of Hy, (f) has been investigated for different subfamilies of univalent functions.
Specifically, the absolute sharp bounds of the functional Hap (f) = apas — a3 were found in [18,19]
for each of the families C, S* and R, where the family R contains functions of bounded turning.
However, the exact estimate of this determinant for the family of close-to-convex functions is still
undetermined [20]. Recently, Srivastava and his coauthors [21] found the estimate of the second
Hankel determinant for bi-univalent functions involving the symmetric g-derivative operator, while
in [22], the authors studied Hankel and Toeplitz determinants for subfamilies of g-starlike functions
connected with the conic domain. For more literature, see [23-30].

The Hankel determinant of third order is given as:

1 ap as
2 3 2
H3’1 (f) = | ap a4z dag = —dasdy + 2a2a3a4 — 03 + asaz — dy. (5)
az 4ag ds

The estimation of the determinant |Hz1 (f)| is very hard as compared to deriving the bound of
|Ha (f)|- The very first paper on H3 ; (f) was given in 2010 by Babalola [31], in which he obtained the
upper bound of Hz 1 (f) for the families of S*, C, and R. Later on, many authors published their work
regarding |Hs 1 (f)| for different subfamilies of univalent functions; see [32-36]. In 2017, Zaprawa [37]
improved the results of Babalola as under:

1, for feS7,
[H31 (f)] << 4, for feC,
%, for feR.

and claimed that these bounds are still not the best possible. Further, for the sharpness, he examined
the subfamilies of §*, C, and R consisting of functions with m-fold symmetry and obtained the sharp
bounds. Moreover, in 2018, Kwon et al. [38] improved the bound of Zaprawa for f € §* and proved
that |Hz 1 (f)| < 8/9, but it is not yet the best possible. The authors in [39-41] contributed in a similar
direction by generalizing different families of univalent functions with respect to symmetric points. In
2018, Kowalczyk et al. [42] and Lecko et al. [43] obtained the sharp inequalities:

|Hz1 (f)| <4/135 and |Hz;(f)] <1/9,

for the recognizable families K and S* (1/2), respectively, where the symbol S* (1/2) stands for
the family of starlike functions of order 1/2. Furthermore, we would like to cite the work done by
Mahmood et al. [44] in which they studied the third Hankel determinant for a subfamily of starlike
functions in the g-analogue. Additionally, Zhang et al. [45] studied this determinant for the family S,
and obtained the bound |H3 (f)| < 0.565.

In the present article, our aim is to investigate the estimate of |Hz; (f)| for the subfamilies S,
Cear, and R, of analytic functions connected with the cardioid domain. Moreover, we also study this
problem for families of m-fold symmetric functions connected with the cardioid domain.
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2. A LEMMA

40f15

Let P denote the family of all functions p that are analytic in A with R (p(z)) > 0 and having the

following series representation:

p(z)=1+ ij cnz"  (z€A).

n=1

Lemma 1. If p € P and it has the form (6), then:

lcu] < 2 for n>1,
lemen —crer] < 4 for m4+n=k+1,
Craok — ycnci’ < 2(1+42u); for u R,
2 2
c c
_ 1l <« 2_ Q
2757 = 2’

— <
|Curk — Henck| < 212 — 1|, elsewhere.

{ 2, 0<u<ty;
where the inequalities (7), (10), (11), and (9) are taken from [46].

3. Bound of |Hj (f)| for the Family S,
Theorem 1. If f (z) of the form (1) belongs to Sg,,, then:

lap| <3, las| <Y and oy < .
These bounds are the best possible.

Proof. Let f € Sf,,. Then, in the form of the Schwarz function, we have:

LE 1@+ i eE? @ed).

Furthermore, we easily get:

zf' (2)
f(2)

+ (4115 — 2a§ —4aza4 + 4a%a3 — a%) AP

and from series expansion of w with simple calculations, we can write:

3 3 3 6 3

4 2 2 2 2 1
1+ 3w (2)+Z(w(2)? = 1+Zciz+ (cz - 1) 2+ <C3 — =010

3 24 6 3

4 2
+<2C4+01_Cz_6163>z4+...,

=14+ az+ (2113 - a%) 22+ (3[14 — 3aza3 + a%) z

3

)

©)

@)
)
)

(10)

(11)

(12)

(13)
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By comparing (12) and (13), we get:

a = gC
2 = 31/
a = 1 i624—gc
3 7 2\18"1 T3
N 1 c1C2 2 C%
4 = 3(3*303 54)
12 s 7 7 4 o
a5 = Z <3C4+18+27C1C3+486C1_9 .

Applying (7) in (14) and (15), we have:

4 11
@] < = d las] < =.
|2|73an \3\79

Now, reshuffling (16), we get:

az—1 %c—i—icc—i—c—l c—ﬁ
R A2 VA RN N

If we insert |c1| = x € [0, 2], then we have:

1(4 16 x x?
<2 d2p 0 22
0] < {3+27x+27< 2)}

The above function has its maximum value at x = 2. Therefore:

68
<22
lag| < 81

Equalities are obtained if we take:

4 1
f(z) = exp <3z+1nz+322)
11 5 68, 235

3 9 81 486
O

Theorem 2. If f € S;,, and it has the series form (1), then:

car

|H31 (f)| < 555

Proof. From (5), the third Hankel determinant can be written as:

H; (1) = —a%a5 + 2aya3a4 — Elg + azas — aﬁ.
Inserting (14)—(17), we get:
7, 281 5 o 23 2083
Hap(f) = 7356192+ 1166461+ g T 324192~ 1199041
59 ,, 4,
250212 7 g1

4
2+ 22+ Pt

2162 216

50f15

(14)

(15)

(16)

(17)

(18)
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Now, rearranging, it yields:
2083 3 cy 2 281 , 67 5
H = _—— _— —_ —_— _—— _— —_
31 (f) 2099521 ( 2= 5 |t g (27 2 ) T 233081 (B3 255912 ) + 61 (€23 —c1c4)

_acs (¢ 263 _2\_ 4 _ _ 67 20 7 5
648 (CZ > * 23308°1 (Cm C2) g0 (3 —c102) = emr 016 — ey

Applying the triangle inequality:

2083 3l eyl 3 281 67 5
H < [ O O b B PR § —
H1 ()l = 359055 I 2| T8 |2 2| T amms € ~ 2559°1°2| + 3qg a1l le2s — crcy
1] |es i, 263 ’ 2‘ 4
T 648 2| T 23328 fe1]* feres = c3 g1 °3lles = C1C2|+5832‘ 1 leal + 216 je2f;

besides, (7), (10), (11) and (8) lead us to:

2083 PEANE! 12 281 5 Jei s
< _ M z _ M _
[Hs1 (NI = 5590855 1] (2 > |9 > | T Tiee I i’ taglalt 5|27

oo leal? o+ 51 + g 1l + o
t5ga2 11 1458 11 T o7

If we insert |c1| = x € [0, 2], then we have:

2083 x? X 281 5, 5 x?
< _ _ - _ -
1Hs ()l = 559055% (2 2 > ( 2 ) 662" T54 T 3 (2 2 )
263 5, 16 67

2
togant T 81 T 1a58” + =@ (x), say.

Then, the function ® (x) is increasing. Therefore, we get its maximum value by putting x = 2,

874

[Hs1 ()] < 75g-

Thus, the proof follows. [

From the function given by (18), we conclude the following conjecture.

Conjecture 3.1. Let f € 87, and in the form (1). Then, the sharp bound is:

827
H < —.
|Hz1 (f)] < 13122

4. Bound of |H3 (f)| for the Family Cc,,
Theorem 3. If f € Ccqr and has the series form (1), then:

laz| <3, las| < 35 and |ag| < &.

These bounds are the best possible.

Proof. Let the function f € Ce. Then, by the Alexandar-type relation, we say that zf' € S, and
hence, using the coefficient bounds of the family S};,, which was proven in the last Theorem, we get
the needed bounds. [
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Theorem 4. Let f have the form (1) and belong to Ceqr. Then:

319
< —.
|Hz1 (f)] < 15374

Proof. From (5), the third Hankel determinant can be obtained as:
_ 2 3 2
Hj1 (f) = —azas + 2aza3a4 — a3 + azas — aj.

Utilizing the definition of the family Cc,, we easily have:

. 9, 61 5 1 1 617 ¢ 31 4
31U) = 172060512 1 5832041 + 2702% T 2055192 ~ 31202801 ~ 291602
— 7 CZC — 143 C2C2—LC2
3240 17 116640 12 3243

After reordering, it yields:

97 617 143 97 7 6
H _ 97 4 61750 143 5 _ 97 2y 2(. 61
31 (f) 329920°1(2 ~ g731) ~ T1g620°1%2(C2 — 191) ~ 35991(c4 — 156613)
(05) 31 2 Cc3 324
o700~ 1082) ~ 304(%3 — go512)
Using the triangle inequality, we get:
97 . 617 ,| 143 o 97 L 7 . 61
H < 27 _ 0o, 180 el 1 _ o
Ha1 (O] = 359050 41" 2= 731 | + 11gaa0 111" 2l |2 = 15961| + 3540 111" |es = 155163
|Cz| 31 2 |C3| 324
70 | 1082 T34 | T 205912

The application of (7) and (11) leads us to:

97 143 n 7 n 4 n 4
10935 = 7290 = 405 270 324
319

4374°

|Hs1 (f)] <

Thus, the proof is completed. [

5. Bound of |H3 1 (f)| for the Family R,
Theorem 5. Let f € Reqr and be given in the form (1). Then:

lao] < 3, |as| <3, |ag| <1

These results are the best possible.

Proof. Let f € R¢yr. Then, we can write (3), in the form of the Schwarz function, as:

f(z) :1+§w(z)+§(w(z))2, (z€A).

Since:
f'(2) = 14 2az + 3azz* + 4ayz° + 5asz* + -, (19)
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by comparing (19) and (13), we may get:

a, =
as =
ag =
a5 =

Using (7) in (20), we get:

a

3/

2 C%

9(62_4 ¢

1<c_%)

6\ 2 )

1 4 2

5 2C4+§1—?2—61C3
as] < 2
2_3~

Applying (11) in (21) and (22), we obtain:

1
las] < g and Jos] < 3.

Thus, the proof is completed.

Equalities in each coefficient |a,|, |a3|, and |a4]| are obtained respectively by taking:

_ 2, 23

fi(z) = z+3z +9z,
45 2

fa(z) = z—|—9z +EZ
1, 2

f3(Z) = Z+§Z —b—ﬁz

O

Theorem 6. Let f € Reqr and be given in the form (1). Then:

754
|Hz1 (f)] < 15

Proof. From (5), the third Hankel determinant can be written as:

Hs (1)
Utilizing (20)-(23), we have:
7 4
H =
a1 ()= a3 g5
Ga 0
45 19440

By rearranging, it yields:

H;1 (f) =

= —a%a5 + 2ayasa4 — ag + azas — aﬁ.

cc+4cc+ 61 71 céfﬂc“q’

19837 13524 ™ 1620129 7 583201 ~ 16202
C2

22 3

12 36

4 ct ey 17 c2c c—ﬁc2 —ﬁ c—gcc
28601\ 27 821) T 1oaap 12\ 2T 1971) T35 (4T 91

8 61 c +ic c—ﬂc2
36 \ 37 351?) T 1352 (4T 1082 )

8 of 15

(20)

(21)

(22)

(23)
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Implementing the triangle inequality, we have:

7 4 71, 107 28 L| el
< _ - _ = _z
Ha1 (O] = gggg 1l |2 = gg1| + 1940 1] leal |e2 = {g7ei| + 75— |ea = Geues
36 |0 45 172 " 135 1721|™ T 10872
(7) and (11) lead us to:
24 1712 8 77 16
H < L2 s s 16
M1 (Al = 4560 T Toaa0 " 25 T 205 " 135
754
- 1215

Thus, the proof of this result is completed. O

6. BOUNDS OF |H3 (f)| FOR TWO-FOLD AND THREE-FOLD FUNCTIONS

Letm € N = {1,2,...}. If a rotation Q about the origin through an angle 27t/m carries ) on
itself, then such a domain € is called m-fold symmetric. An analytic function f is m-fold symmetric in
A, if:

f (ezm/mz> =e2mM/Mf(z) (z€A).

By S("), we define the family of m-fold univalent functions having the following Taylor series form:

F2) =2+ Y a2 (z€A). (24)
k=1

The subfamilies Sc*u(f l), CC(Z;), and REZQ of S(M) are the families of the m-fold symmetric starlike, convex,
and bounded turning functions, respectively, associated with the cardioid functions. More intuitively,

an analytic function f of the form (24) belongs to the families Sja(ﬁ ), CC(;'Z), and REZ”V) if and only if:

Zﬁg) = 143 <Z8:) +3 (m:)z’ peP, (25)

) = 1+§(ggg:)+§(fm)z,pep<m>, -
where the family P(") is defined by:

P(m):{PGPZP(Z)ZlJrkilcmkzmk, (zeD)}. (28)

Now, we prove some theorems concerned with two-fold and three-fold symmetric functions.

Theorem 7. If f € Sc*a(rz ) and it has the form given in (24), then:

|H31 (f)| <

O N
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Proof. Let f € S;(rz ). Then, there exists a function p € P such that:

LE (21, (Ml)z.

EEEAVIOES (o)1

Using the series form (24) and (28), when m = 2 in the above relation, we can get:

3

(%)
= =, 29
as 3 (29)
13 2
a5 = ZL <18 + 3C4> . (30)

Now:
H (f) = azas —a3.
Utilizing (29) and (30), we get:
Hyi () = gt + 2
By reordering, it yields:
Hs1 (f) = % <C4 - 172C%> :

Using the triangle inequality long with (11) and (7), we have:

|H31 (f)| <

O N

Hence, the proof is done. O

Theorem 8. If f € Sfa(r?’ ) and it has the form (24), then:

16
< —.
o ()] < &
The result is sharp for the function:
f(z) =exp <lnz+;1z3+;zé> :z+gz4+gz7+---. (31)

Proof. Let f € S:H(,B ), Then, there exists a function p € PB) such that:

LE)_yd (21 (M-l)

CEAVIOES p(z) 1

Utilizing the series form (24) and (28), when m = 3 in the above relation, we can obtain:

3

O N

ag = —C3.

Then,
4

Hs; (f) = —a3 = —QC%-

Utilizing (7) along with triangle inequality, we have:

16
H < 2.
|Hz1 (f)] < 81
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Thus, the proof is completed. [

Theorem 9. Let f € c§§2 , and it has the form (24), then:

|Hz1 (f)] < 135"

Proof. Let f € CC(Z}) Then, there exists a function p € P(?) such that:

1+ZJ{,”(iZ)) :1+§ <p(z)—l) L2 <P(Z)—1)2'

Utilizing the series form (24) and (28), when m = 2 in the above relation, we can obtain:

p(z)+1

3

p(z)+1

%)
— = 2
a3 9 (32)
1 (3 2
a5 = % (18 + 3C4> . (33)

Ha1 (f) = azas — a3,

Using (32) and (33), we have:
31

31 (f) = = 35160
Now, reordering the above equation, we obtain:

(85) 31
Hs (f) = 370 <C4_1OSC%)'

Application of (7), (11), and the triangle inequality leads us to:

c2c
270"

c§+

2
< —.
[Ha1 ()] < 755
Thus, the required result is completed. [
Theorem 10. If f € c§§2 and it has the form given in (24), then:

|Hz1 (f)| < 8l1

The result is sharp for the function:

2 exp <lnx+%x3+%x6> 1, 17,
f(z):/O » dx:z+§z —i-@z +e

Proof. Let f € 6522 Then, there exists a function p € PG such that:

2f(z) A (p) -1\ 2 (p(x) -1\
1%ﬂ&)_1+3<ﬂﬂ+1)+3<ﬂﬂ+1)‘

Utilizing the series form (24) and (28), when m = 3 in the above relation, we obtain:

c
a4:%.
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Then:
Hy (f) = —af = =727

Implementing (7) and the triangle inequality, we have:

Hence, the proof is done. O

Theorem 11. Let f € Rﬁﬁl be of the form (24). Then:

|Hs31 (f)| < T35

Proof. Since f € Rgiﬁ, therefore there exists a function p € P2 such that:

ro=15 (5E) < ()

For f € 7232, using the series form (24) and (28), when m = 2 in the above relation, we can write:

2
a = ng, (34)
12 3

It is clear that for f € Rﬁﬁi,
H3,1 (f) = aszds — ng.

Applying (34) and (35), we have:

4 67
H3,1 (f) = ﬁczCzl — %C%

By rearrangement, we have:

4 67
H1(f) = ﬁcz(&x - @C@-

Using Lemma (7), (10), and triangle inequality, we get:

16
< —.
[Hs1 ()] = 132
Hence, the proof is completed. O
Theorem 12. If f € RE‘Z; and it is of the form (24), then:
1
[Hs1 ()] < 5-

This result is sharp for the function:
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Proof. Since f € RSiZ, there exists a function p € PB) such that:

f’(z>—1+§(m)+§<m>z'

For f € Rﬁiﬁ, using the series form (24) and (28), when m = 2 in the above relation, we can write:

a, = Cj
tT6
Then:
2 &
H. =y = — =
31 (f) g 36
Implementing (7), we have:
1
[Hs1 ()l < 5-

Hence, the proof is completed. O

7. Conclusions

In this article, we studied the Hankel determinant Hz 1 (f) for the subfamilies S, Ccar, and Rear
of the analytic function using a very simple technique. Further, these bounds were also discussed for
two-fold symmetric and three-fold symmetric functions.
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