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Abstract: Jleli and Samet (2018) introduced a new concept, named an F -metric space, as a
generalization of the notion of a metric space. In this paper, we prove certain common fixed point
theorems in F -metric spaces. As consequences of our results, we obtain results of Banach, Jungck,
Reich, and Berinde in these spaces. An application in dynamic programming is also given.
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1. Introduction and Preliminaries

Fixed point theorems are tools in many fields in mathematics, physics, and computer science.
The notion of metric spaces has been generalized by several authors, such as Czerwik [1], Khamsi
and Hussain [2], Mlaiki et al. [3,4], Abdeljawad et al. [5], and so on. Very recently, Jleli and Samet [6]
initiated the notion of F -metric spaces, where a generalization of the Banach contraction principle
was provided.

We begin with a brief recollection of basic notions and the facts of F -metric spaces. First, denote
by F the set of functions f : (0, ∞)→ R such that
(F1) f is non-decreasing; that is, 0 < ξ < η implies f (ξ) ≤ f (η); and
(F2) For each sequence {rn} ⊂ (0,+∞),

lim
n→+∞

rn = 0 if and only if lim
n→+∞

f (rn) = −∞.

Definition 1 ([6]). Let X be a nonempty set and D : X × X → [0,+∞) be a function. If there exists
( f , a) ∈ F × [0,+∞), such that
(D1) D(ξ, η) = 0⇔ ξ = η;
(D2) D(ξ, η) = D(η, ξ); and
(D3) For all (ξ, η) ∈ X2, p ∈ N with p ≥ 2, and for all (vi)

N
i=1 ⊂ X with (v1, vp) = (ξ, η), we have that

D(ξ, η) > 0 implies f (D(ξ, η)) ≤ f

(
p−1

∑
j=1

D(vj, vj+1)

)
+ a,
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then D is called an F -metric on X. The pair (X, D) is called an F -metric space.

Definition 2 ([6]). Let {θn} be a sequence in an F -metric space (X, D). Then:

(i) {θn} is F -convergent to θ ∈ X if {θn} is convergent to θ with respect to the F -metric D; that is,
limn→∞ D(θn, θ) = 0.

(ii) {θn} is F -Cauchy if lim
n,m→+∞

D(θn, θm) = 0.

(iii) (X, D) is F -complete if each F -Cauchy sequence in X is F -convergent to some element in X.

The existence of common fixed points of maps verifying certain contractive conditions has been
investigated extensively by many authors. In 1976, Jungck [7] proved a common fixed point theorem
for commuting maps. Among the generalizations of the Banach contraction principle, a result of
Reich [8] was notable. By combining Reich and Jungck type contractions, we establish a first common
fixed point result of Reich and Jungck type in the class of F -metric spaces.

On the other hand, Berinde [9] initiated the concept of (α, L) weak contractions, and proved that
a lot of the well-known contractive conditions imply (α, L) weak contractions. The concept of (α, L)
weak contractions does not ask (α + L) to be less than 1, as happens in many kinds of fixed point
theorems for contractive conditions that involve one or more of the displacements d(x, y), d(x, Tx),
d(y, Ty), d(x, Ty), and d(y, Tx). For more details on this concept, we refer the reader to [9–16], and the
references therein. In the second part of paper, we will present a Berinde weak contraction type
common fixed point theorem. Moreover, some illustrated consequences and examples are provided.
Also, we notice a mistake in [17]. Finally, an application in dynamic programming is considered.

2. Main Results

The following lemma extends the corresponding result from metric, b-metric, and partial metric
spaces, and it is known in the literature as the Jungck lemma. For the proof, we use the techniques of
F -metric spaces.

Lemma 1. Let {yn} be a sequence in an F -metric space (X, D). If there exists λ ∈ (0, 1), such that

D(yn+1, yn) ≤ λD(yn, yn−1), for all n ∈ N, (1)

then {yn} is an F -Cauchy sequence.

Proof. Consider ( f , a) ∈ F × [0,+∞), such that (D3) holds. If D(y0, y1) = 0, then we conclude that
yn = y0 for all n ∈ N, and so {yn} is F -Cauchy. So, we can assume D(y0, y1) > 0. From (1), we have

D(yn+1, yn) ≤ λnD(y1, y0), for all n ∈ N.

It follows that
m−1

∑
i=n

D(yi+1, yi) ≤
λn

1− λ
D(y1, y0), for all m > n. (2)

Let ε > 0. By (F2), there exists n0 ∈ N, such that

f
(

λn

1− λ
D(y1, y0)

)
≤ f (ε)− a for all n ≥ n0. (3)

Hence, by (2), (3), and (F1), we have

f

(
m−1

∑
i=n

D(yi+1, yi)

)
≤ f (ε)− a for all m > n ≥ n0. (4)
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Using (D3), we obtain that D(yn, ym) > 0 implies

f (D(yn, ym)) ≤ f

(
m−1

∑
i=n

D(yi+1, yi)

)
+ a. (5)

From (4), we obtain
f (D(yn, ym)) ≤ f (ε) for all m > n ≥ n0.

By (F1), we have that
D(yn, ym) ≤ ε for all m > n ≥ n0.

Therefore, {yn} is F -Cauchy.

2.1. A Generalization of the Results of Reich and Jungck

As an application of above lemma, we establish the following generalization of the results of
Reich and Jungck in the class of F -metric spaces.

Theorem 1. Let T and I be two commuting self-maps of an F -complete F -metric space (X, D), such that

D(Tx, Ty) ≤ αD(Ix, Iy) + βD(Ix, Tx) + γD(Iy, Ty) (6)

for all x, y ∈ X, where α ∈ (0, 1) and β, γ ∈ [0, 1), such that α + β + γ < 1. If T(X) ⊆ I(X), and I, T are
continuous, then there is a unique common fixed point of I and T.

Proof. Let θ0 ∈ X be arbitrary. As Tθ0 ∈ I(X), there exists some θ1 ∈ X so that Iθ1 = Tθ0. Generally,
the sequence {θn} is defined by Iθn+1 = Tθn. We show that {Iθn} is an F -Cauchy sequence. By (6),
we have

D(Iθn+1, Iθn) = D(Tθn, Tθn−1)

≤ αD(Iθn, Iθn−1) + βD(Iθn, Tθn) + γD(Iθn−1, Tθn−1)

= αD(Iθn, Iθn−1) + βD(Iθn, Iθn+1) + γD(Iθn−1, Iθn).

So,
D(Iθn+1, Iθn) ≤ λD(Iθn, Iθn−1) for all n ∈ N, (7)

where λ = α+γ
1−β ∈ (0, 1).

Now, we distinguish the following two cases:
Case 1. If Iθn = Iθn+1 for some n ≥ 0, then Tθn = Iθn = ω. We claim that ω is the unique common
fixed point of T and I. We have

Tω = TIθn = ITθn = Iω.

Let D (ω, Tω) > 0. Here, we get

D (ω, Tω) = D (Tθn, Tω)

≤ αD (Iθn, Iω) + βD(Iθn, Tθn) + γD(Iω, Tω)

= αD (ω, Tω) + βD (ω, ω) + γD(Tω, Tω)

= αD (ω, Tω)

< D (ω, Tω) ,

which is a contradiction. Then, Equation (6) yields that Tθn = Iθn = ω is the unique common fixed
point of T and I.
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Case 2. If Iθn 6= Iθn+1 for all n ≥ 0, from Lemma 1 and (7), we find that {Iθn} is an F -Cauchy sequence
in X, which is complete; hence, there exists z ∈ X such that

lim
n→∞

Iθn = lim
n→∞

Tθn−1 = z.

As the maps I and T are commuting, we obtain

Iz = I( lim
n→∞

Tθn) = lim
n→∞

ITθn = lim
n→∞

TIθn = T( lim
n→∞

Iθn) = Tz. (8)

Let v = Iz = Tz. We get Tv = TIz = ITz = Iv. If Tz 6= Tv, by (6), we get

D(Tz, Tv) ≤ αD(Iz, Iv) + βD(Iz, Tz) + γD(Iv, Tv)

= αD(Tz, Tv) + βD(Tz, Tz) + γD(Tv, Tv)

= αD(Tz, Tv)

< D(Tz, Tv),

a contradiction. Hence, Tz = Tv and, finally, Tv = Iv = v. That is, I and T have a common fixed point.
Further, (6) yields its uniqueness.

We present the following consequences of Theorem 1.

Theorem 2 ([6], Theorem 5.1). Let T be a self-map of an F -complete F -metric space (X, D), such that

D(Tx, Ty) ≤ αD(x, y) (9)

for all x, y ∈ X, where α ∈ (0, 1). Then, T has a unique fixed point.

Proof. Note that condition (9) implies that T is a continuous map. It suffices to take β = γ = 0 and
I = Identity = (Id) in Theorem 1.

Theorem 3 (Theorem of Reich in F -metric spaces, see [8]). Let T be a self-map of an F -complete F -metric
space (X, D), such that

D(Tx, Ty) ≤ αD(x, y) + βD(x, Tx) + γD(y, Ty), (10)

for all x, y ∈ X, where α ∈ (0, 1) and β, γ ∈ [0, 1) such that α + β + γ < 1. If T continuous, then T has a
unique fixed point.

Proof. Putting I = Identity = (Id) in Theorem 1, we get the result.

Theorem 4 (Theorem of Jungck in F -metric spaces, see [18]). Let I and T be two commuting self-maps of
an F -complete F -metric space (X, D), such that

D(Tx, Ty) ≤ αD(Ix, Iy), (11)

for all x, y ∈ X, where α ∈ (0, 1). If T(X) ⊆ I(X) and I is continuous, then there is a unique common fixed
point of I and T.

Proof. We note that the condition (11) implies the continuity of the map T. Now, the proof follows
directly from Theorem 1.

Remark 1. We may state the following open question: Is the continuity condition of the map T in
Theorem 3 necessary?
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2.2. A Weak Contraction Type Common Fixed Point Theorem in F -Metric Spaces

The aim of this section is to prove a Berinde weak contraction type common fixed point theorem,
in the setting of F -metric spaces.

Theorem 5. Let (X, D) be an F -complete F -metric space. Suppose that T and S are two self-maps of
X satisfying

D(Tx, Sy) ≤ α max{D(x, y), D(x, Tx), D(y, Sy)}+ L min{D(Tx, y), D(x, Sy)}, (12)

for all x, y ∈ X, where α ∈ (0, 1) and L ≥ 0. Then, T and S have a common fixed point in X if at least one of
the following conditions is satisfied:

(i) T or S is continuous; and
(ii) The function f ∈ F verifying (D3) is assumed to be continuous. Additionally, α is chosen in order that

f (u) > f (αu) + a for all u ∈ (0, ∞), where a is also given by (D3).

Moreover, if α + L < 1, then the common fixed point is unique.

Proof. First, note that if v is a fixed point of T (it will be the same when we consider the map S),
then, from (12), we have

D(v, Sv) = D(Tv, Sv) ≤ α max{D(v, v), D(v, Tv), D(v, Sv)}
+ L min{D(Tv, v), D(v, Sv)}
= αD(v, Sv),

which holds unless D(v, Sv) = 0; that is, Sv = v, so v is a fixed point of S. Hence, v is a common fixed
point of T and S.

Let θ0 be an arbitrary element in X. Define {θn} by θ2n+1 = Tθ2n and θ2n+2 = Sθ2n+1,
n = 0, 1, 2, . . .. Now,

D(θ2n+1, θ2n+2) = D(Tθ2n, Sθ2n+1)

≤ α max{D(θ2n, θ2n+1), D(θ2n, Tθ2n), D(θ2n+1, Sθ2n+1)}
+ L min{D(Tθ2n, θ2n+1), D(θ2n, Sθ2n+1)}
≤ α max{D(θ2n, θ2n+1), D(θ2n+1, θ2n+2)}.

If, for some n, max{D(θ2n, θ2n+1), D(θ2n+1, θ2n+2)} = D(θ2n+1, θ2n+2), then

D(θ2n+1, θ2n+2) ≤ α max{D(θ2n+1, θ2n+2),

which is a contradiction, as α < 1. So,

D(θ2n+1, θ2n+2) ≤ αD(θ2n, θ2n+1).

Similarly, it can be shown that

D(θ2n+3, θ2n+2) ≤ αD(θ2n+1, θ2n+2).

Now, from Lemma 1, we obtain that the sequence {θn} is F -Cauchy. As (X, D) is F -complete,
the sequence {θn} F -converges to some point x∗ ∈ X.

(i) Suppose that T or S is a continuous map.
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If T is continuous, we have that

x∗ = lim
n→∞

θ2n+1 = lim
n→∞

Tθ2n = T( lim
n→∞

θ2n) = Tx∗.

From the beginning of the proof, we would have x∗ = Sx∗.

(ii) Suppose that the function f ∈ F verifying (D3) is assumed to be continuous. Additionally, α is
chosen in order that f (u) > f (αu) + a for all u ∈ (0, ∞), where a is also given by (D3).

If D(Tx∗, x∗) > 0, we have

f (D(Tx∗, x∗)) ≤ f (D(Tx∗, Sθ2n+1) + D(Sθ2n+1, x∗)) + a

≤ f (α max{D(x∗, θ2n+1), D(x∗, Tx∗), D(θ2n+1, Sθ2n+1)}
+ D(θ2n+2, x∗))

+ L min{D(x∗, Sθ2n+1), D(θ2n+1, Tx∗)}) + a.

Letting n→ ∞ and using the continuity of f , we get

f (D(Tx∗, x∗)) ≤ f (αD(x∗, Tx∗)) + a,

which is a contradiction with respect condition (ii). Hence, we obtain D(Tx∗, x∗) = 0, so x∗ = Tx∗.
Therefore, x∗ is a common fixed point of T and S.

For uniqueness, let y∗ be another common fixed point of T and S. Then,

d(x∗, y∗) = d(Tx∗, Sy∗)

≤ α max{D(x∗, y∗), D(x∗, Tx∗), D(y∗, Sy∗)}
+ L min{D(x∗, Sy∗), D(y∗, Tx∗)}
= (α + L)D(x∗, y∗).

If α + L < 1, it is clear that T and S have exactly one common fixed point.

Remark 2. 1. In ([6], Example 2.1) , Jleli and Samet considered D : X× X → [0, ∞), defined as

D(ξ, η) =

{
(ξ − η)2 if (ξ, η) ∈ [0, 3]× [0, 3]

|ξ − η| if (ξ, η) /∈ [0, 3]× [0, 3],

where X = {1, 2, · · · }. This D is an F -metric with f (t) = ln(t), t > 0, and a = ln(3). Note that
f is continuous on (0,+∞) and the condition on α, which is f (u) > f (αu) + a for all u > 0, becomes
ln(α) + a < 0, that is,

0 < α <
1
3

.

This means that hypothesis (ii) in Theorem 5 is not superfluous.
2. If S = T in Theorem 5, we obtain the main results of Berinde [9,12] in the new setting of F -metric spaces.
3. If S = T and L = 0 in Theorem 5, we obtain a Ćirić type fixed point theorem in F -metric spaces; see [17].
4. Note that there is a gap in the proof of Theorem 2.1 in [17]. To be more clear, when proving that the map T has
a fixed point x∗, Hussain and Kanwai [17] considered the limit as n→ ∞ in the three given cases, which is only
true for some n. Our main result, corresponding to Theorem 5, is a correction of the above gap.

The following example illustrates Theorem 5.
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Example 1. Let X = [0, ∞) be endowed with the F -complete F -metric D given by

D(x, y) =

{
exp(|x− y|), if x 6= y

0, if x = y.

Here, f (t) = −1
t and a = 1. Define T, S : X → X by

Tx =

{
1
2 x + 1, if 0 ≤ x ≤ 2

2, otherwise
and Sx = 2 for all x ∈ X.

Take α = 1
2 and L = e2 > 0. Let x, y ∈ X. We have the following cases:

Case 1: Let x ∈ [0, 2]. If y = x, we have

D(Tx, Sy) = D(
1
2

x + 1, 2).

If x = 2, D(Tx, Sy) = 0. While, if x ∈ [0, 2), we have

D(Tx, Sy) = exp(
∣∣∣∣12 x− 1

∣∣∣∣) = exp(1− 1
2

x)

≤ 1
2

exp(|x− y|) + L min{D(x, Sy), D(y, Tx)}.

If y 6= x, we have D(x, y) = exp(|x− y|) and D(Tx, Sy) = exp(
∣∣∣ 1

2 x− 1
∣∣∣). One writes

exp(
∣∣∣∣12 x− 1

∣∣∣∣) ≤ 1
2

exp(|x− y|) + L min{D(x, Sy), D(y, Tx)},

which again implies that

D(Tx, Sy) ≤ k max{D(x, y), D(x, Tx), D(y, Sy)}+ L min{D(x, Ty), D(y, Sx)}.

Case II: Let x 6∈ [0, 2]. Here, (12) trivially holds. Additionally, condition (i) is satisfied. All the hypotheses of
Theorem 5 are satisfied. Consequently, 2 is a common fixed point of T and S.

As a consequence of Theorem 5, we state the following corollaries:

Corollary 1. Let (X, D) be an F -complete F -metric space. Suppose that the map T is a self-map of X satisfying

D(Tx, Ty) ≤ α max{D(x, y), D(x, Tx), D(y, Ty)}+ L min{D(Tx, y), D(x, Ty)}, (13)

for all x, y ∈ X, where α ∈ (0, 1) and L ≥ 0. Then, T has a fixed point in X if at least one of the following
conditions is satisfied:

(i) T is continuous;
(ii) The function f ∈ F verifying (D3) is assumed to be continuous. Additionally, α is chosen in order that

f (u) > f (αu) + a for all u ∈ (0, ∞), where a is also given by (D3).

Moreover, if α + L < 1, then such a fixed point is unique.

In case that the function f ∈ F verifying (D3) is assumed to be continuous, we may relax the
condition of continuity of T, as follows:
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Corollary 2. Let (X, D) be an F -complete F -metric space. Suppose that T is a self-map of X satisfying

D(Tx, Ty) ≤ αD(x, y) + L min{D(Tx, y), D(x, Ty)}, (14)

for all x, y ∈ X, where α ∈ (0, 1) and L ≥ 0. Then, T has a fixed point in X.

Proof. If D(Tx∗, x∗) > 0, we have

f (D(Tx∗, x∗)) ≤ f (D(Tx∗, Tθ2n+1) + D(Tθ2n+1, x∗)) + a

≤ f (αD(x∗, θ2n+1) + D(θ2n+2, x∗))

+ L min{D(x∗, Tθ2n+1), D(θ2n+1, Tx∗)}) + a.

Letting n→ ∞ and using the continuity of f and (F2), the right-hand side tends to −∞, which is
a contradiction. Hence, we must have D(Tx∗, x∗) = 0, and so x∗ = Tx∗.

Example 2. Let X = [0, 1] be endowed with the F -metric D and f be given as in Example 1. Consider
T : X → X as

Tx =

{
3x, if 0 ≤ x ≤ 1

3
0, otherwise.

Note that all the hypotheses of Corollary 2 are satisfied.

On the other hand, Theorem 5.1 of Jleli and Samet [6] is not applicable. Indeed, for x = 0 and y = 1
3 ,

we have
D(Tx, Ty) = D(0, 1) = exp(1) > k exp(

1
3
) = kD(x, y),

for each k ∈ (0, 1).

3. Application

Applying our results, we give an application in dynamic programming. First, let W1 and W2 be
two Banach spaces. Let U ⊂W1 be a state space and E ⊂W2 be a decision space. Consider

p(ξ) = sup
η∈E
{ f (ξ, η) + G1(ξ, η, p(δ(ξ, η)))}, x ∈ U, (15)

and
p(ξ) = sup

η∈D
{g(ξ, η) + G2(ξ, η, p(δ(ξ, η)))}, x ∈ U, (16)

where δ : U × E→ U, g : U × E→ R, and G1, G2 : U × E×R→ R. Our aim is to resolve the system
of functional Equations (15) and (16).

Denote, by B(U), the set of all real bounded functions on U. For q ∈ B(U), consider ‖q‖ =

supξ∈U |q(ξ)|. Clearly, (B(U), ‖.‖) is a Banach space.
We endow B(U) with the F -metric (with f (t) = ln t and a = 0) defined by

D(h, k) = sup
t∈U
|h(t)− k(t)| = ‖h− k‖.

We also define T, S : B(U)→ B(U) by

T(h)(ξ) = sup
η∈E
{g(ξ, η) + G1(ξ, η, h(δ(ξ, η)))}, (17)
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and
S(k)(ξ) = sup

η∈E
{g(ξ, η) + G2(ξ, η, k(δ(ξ, η)))}, (18)

for all h, k ∈ B(U) and ξ ∈ U. Note that, if g, G1 and G2 are bounded functions, then T and S are
well-defined. Our result is

Theorem 6. If there exists 0 < r < 1 such that, for all (ξ, η) ∈ U × E,

|G1(ξ, η, h(δ(ξ, η)))− G2(ξ, η, k(δ(ξ, η)))| ≤ r sup
t∈W
|h(t)− k(t)|, (19)

where the functions G1, G2 : U × E×R → R and g : U × E → R are bounded, then the system given by
Equations (15) and (16) has a unique bounded solution.

Proof. Let µ > 0 be an arbitrary real number, ξ ∈ U, h ∈ B(U), and k ∈ B(U). Then, by (17), there exist
η1, η2 ∈ E such that

T(h)(ξ) < g(ξ, η1) + G1(ξ, η1, h(δ(ξ, η1))) + µ, (20)

S(k)(ξ) < g(ξ, η2) + G2(ξ, η2, k(δ(ξ, η2))) + µ, (21)

and

T(h)(ξ) ≥ g(ξ, η2) + G1(ξ, η2, h(δ(ξ, η2))), (22)

S(k)(ξ) ≥ g(ξ, η1) + G2(ξ, η1, k(δ(ξ, η1))). (23)

By (20) and (23), we get

T(h)(ξ)− S(k)(ξ) ≤ G1(ξ, η1, h(δ(ξ, η1)))− G2(ξ, η1, k(δ(ξ, η1))) + µ

≤ |G1(ξ, η1, h(δ(ξ, η1)))− G2(ξ, η1, k(δ(ξ, η1)))|+ µ.

Furthermore, by (21) and (22), we have

S(k)(ξ)− T(h)(ξ) ≤ G2(ξ, η2, k(δ(ξ, η2)))− G1(ξ, η2, h(δ(ξ, η2))) + µ

≤ |G1(ξ, η2, h(δ(ξ, η2)))− G2(ξ, η2, k(δ(ξ, η2)))|+ µ.

Thus, by (19), we have

|T(h)(ξ)− S(k)(ξ)| ≤ r sup
t∈U
|h(t)− k(t)|+ µ.

Therefore, for h, k ∈ B(U),

D(T(h), S(k)) = r sup
ξ∈U
|T(h)(ξ)− T(k)(ξ)|

≤ r sup
t∈U
|h(t)− k(t)|+ µ.

As µ > 0 is arbitrary, we get that

D(T(h), S(k)) ≤ r sup
t∈U
|h(t)− k(t)| = rD(h, k).
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On the other hand, condition (ii) in Theorem 5 holds, as r ∈ (0, 1). Therefore, all conditions of
Theorem 5 are verified. The operators T and S have a unique common fixed point (by taking L = 0,
so r + L < 1). Then, there is a unique solution of the functional Equations (15) and (16).
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