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Abstract: In this paper, we introduce the notion of higher-order weak adjacent epiderivative for
a set-valued map without lower-order approximating directions and obtain existence theorem
and some properties of the epiderivative. Then by virtue of the epiderivative and Benson
proper efficiency, we establish the higher-order Mond-Weir type dual problem for a set-valued
optimization problem and obtain the corresponding weak duality, strong duality and converse
duality theorems, respectively.

Keywords: set-valued optimization problems; higher-order weak adjacent epiderivatives;
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1. Introduction

The theory of duality and optimality conditions for optimization problems has received
considerable attention (see [1–10]). The derivative (epiderivative) plays an important role in
studying duality and optimality conditions for set-valued optimization problems. The contingent
derivatives [1], the contingent epiderivatives [11] and the generalized contingent epiderivatives [12]
for set-valued maps are employed by different authors to investigate necessary or/and sufficient
optimality conditions for set-valued optimization problems. Later, the second-order epiderivatives [13],
higher-order generalized contingent (adjacent) epiderivatives [14] and generalized higher-order
contingent (adjacent) derivatives [15] for set-valued maps are used to study the second (or high) order
necessary or/and sufficient optimality conditions for set-valued optimization problems. Chen et al. [2]
utilized the weak efficiency to introduce higher-order weak adjacent (contingent) epiderivative for a
set-valued map, they then investigate higher-order Mond-Weir (Wolfe) type duality and higher-order
Kuhn-Tucker type optimality conditions for constrained set-valued optimization problems. Li et al. [3]
used the higher-order contingent derivatives to discuss the weak duality, strong duality and converse
duality of a higher-order Mond-Weir type dual for a set-valued optimization problem. Wang et al. [4]
used the higher-order generalized adjacent derivative to extend the main results of [3] from convexity
to non-convexity. Anh [6] used the higher-order radial derivatives [16] to discuss mixed duality of
set-valued optimization problems.

It is well known that the lower-order approximating directions are very important to define the
higher-order derivatives (epiderivatives) in [2–4,6,14,15]. This limits their practical applications when the
lower-order approximating directions are unknown. So, it is necessary to introduce some higher-order
derivatives (epiderivatives) without lower-order approximating directions. As we know, a few paper
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are devoted to this topic. Motivated by [17], Li et al. [7] proposed the higher-order upper and lower
Studniarski derivatives of a set-valued map to establish necessary and sufficient conditions for a strict local
minimizer of a constrained set-valued optimization problem. Anh [8] introduced the higher-order radial
epiderivative to establish mixed type duality in constrained set-valued optimization problems. Anh [18]
proposed the higher-order upper and lower Studniarski derivatives of a set-valued map to establish
Fritz John type and Kuhn-Tucker type conditions, and discussed the higher-order Mond-Weir type dual
for constrained set-valued optimization problems. Anh [19] further defined the notion of higher-order
Studniarski epiderivative and established higher-order optimality conditions for a generalized set-valued
optimization problems. Anh [20] noted that the epiderivatives in [8,19] is singleton, they proposed a
notion of the higher-order generalized Studniarski epiderivative which is set-valued, and discussed its
applications in optimality conditions and duality of set-valued optimization problems.

As we know that the existence conditions of weak efficient point are weaker than ones of efficient
point for a set. Inspired by [2,8,18–20], we introduce the higher-order weak adjacent set without the
lower-order approximating directions for set-valued maps. Furthermore, we use the higher-order
weak adjacent set and weak efficiency to introduce the higher-order weak adjacent epiderivative for a
set-valued map, we use it and Benson proper efficiency to discuss higher-order Mond-Weir type dual
for a constrained set-valued optimization problem, and then obtain the corresponding weak duality,
strong duality and converse duality, respectively.

The rest of the article is as follows. In Section 2, we recall some of definitions and notations
to be needed in the paper, and so define the higher-order adjacent set of a set-valued map without
lower-order approximating directions, which has some nice properties. In Section 3, we use the
higher-order adjacent set of Section 2 to define the higher-order weak adjacent epiderivative for
a set-valued map, and discuss its properties, such as existence and subdifferential. In Section 4,
we introduce a higher-order Mond-Weir type dual for a constrained set-valued optimization problem
and establish the corresponding weak duality, strong duality and converse duality, respectively.

2. Preliminaries

Throughout the paper, let X , Y and Z be three real normed linear spaces. The spaces Y and Z
are partially ordered by nontrivial pointed closed convex cones C ⊆ Y and D ⊆ Z with nonempty
interior, respectively. By 0Y we denote the zero vector of Y. Y∗ stands for the topological dual space of
Y. The dual cone C+ of C is defined as

C+ := { f ∈ Y∗| f (c) ≥ 0, ∀c ∈ C}.

Its quasi-interior C+i is defined as

C+i := { f ∈ Y∗| f (c) > 0, ∀c ∈ C \ {0Y}}.

Let M be a nonempty subset of Y. We denote the closure, the interior and the cone hull of M
by clM, intM and coneM, respectively. We denote by B(c, r) the open ball of radius r centered at c.
A nonempty subset B of C is called a base of C if and only if C = coneB and 0Y /∈ clB.

Let E ⊆ X be a nonempty subset and F : E → 2Y be a set-valued map. The domain, graph and
epigraph of F are, respectively, defined as

domF := {x ∈ E|F(x) 6= ∅}, imF := {y ∈ Y|y ∈ F(x)},

grF := {(x, y) ∈ E×Y|y ∈ F(x), x ∈ E}

and
epiF := {(x, y) ∈ E×Y|y ∈ F(x) + C, x ∈ E}.
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Definition 1. [9] Let M ⊆ Y and y0 ∈ M.
(i) y0 is said to be a Pareto efficient point of M (y0 ∈ MinC M) if

(M− {y0}) ∩ (−C \ {0Y}) = ∅.

(ii) Let intC 6= ∅. y0 is said to be a weakly efficient point of M (y0 ∈WMinC M) if

(M− {y0}) ∩ (−intC) = ∅.

Definition 2. [10,21,22] (i) The cone C is called Daniell if any decreasing sequence in Y that has a lower bound
converges to its infimum.

(ii) A subset M of Y is said to be minorized if there is a y ∈ Y such that

M ⊆ {y}+ C.

(iii) The weak domination property is said to hold for a subset M of Y if

M ⊆WMinC M + intC ∪ {0Y}.

Definition 3. Let A ⊆ X×Y, (x0, y0) ∈ clA and m ∈ N \ {0}.
(i) [9] The mth-order adjacent set of A at (x, v1, · · · , vm−1) is defined by

T[(m)
A (x, v1, · · · , vm−1) :={y ∈ A|∀tn → 0+, ∃yn → y, s.t.

x0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n yn ∈ A},

where vi ∈ X(i = 1, · · · , m− 1).
(ii) [19] The mth-order Studniarski set of A at (x0, y0) is defined by

Sm
A(x0, y0) := {(x, y) ∈ X×Y|∃tn → 0+, ∃(xn, yn)→ (x, y),

s.t.(x0 + tnxn, y0 + tm
n yn) ∈ A}.

Definition 4. Let K ⊆ X×Y, (x0, y0) ∈ clK and m ∈ N \ {0}. The mth-order adjacent set of K at (x0, y0)

is defined by
T[(m)

K (x0, y0) := {(x, y) ∈ X×Y|∀tn → 0+, ∃(xn, yn)→ (x, y),

s.t.(x0 + tnxn, y0 + tm
n yn) ∈ K}.

We can obtain the equivalent characterization of T[(m)
K (x0, y0) in terms of sequences:

(x, y) ∈ T[(m)
K (x0, y0) if and only if ∀{tn} → 0+, ∃{(x′n, y′n)} ⊆ K such that

lim
n→∞

(
x′n − x0

tn
,

y′n − y0

tm
n

) = (x, y).

Now, we establish a few properties of T[(m)
K (x0, y0).

Proposition 1. Let K ⊆ X×Y, (x0, y0) ∈ K and (x, y) ∈ T[(m)
K (x0, y0). Then

(λx, λmy) ∈ T[(m)
K (x0, y0), ∀λ ≥ 0.

Proof. We divide λ into two cases to show the proposition.
Case 1: λ = 0. Note that (x0, y0) ∈ K; for any sequence {tn} with tn → 0+, we choose (xn, yn) =

(0X , 0Y) such that (x0 + tnxn, y0 + tm
n yn) ∈ K. This means that (0X , 0Y) ∈ T[(m)

K (x0, y0).
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Case 2:λ > 0. Let (x, y) ∈ T[(m)
K (x0, y0). Then for any sequence {tn} with tn → 0+, there exists a

sequence {(xn, yn)} ⊆ K with (xn, yn)→ (x, y) such that

K 3 (x0 + tnxn, y0 + tm
n yn) = (x0 + (

tn

λ
)λxn, y0 + (

tn

λ
)mλmyn).

Naturally, tn
λ → 0+ and (λxn, λmyn)→ (λx, λmy) ∈ T[(m)

K (x0, y0). It completes the proof. �

Remark 1. Let K ⊆ X×Y and (x0, y0) ∈ clK. The mth-order adjacent set T[(m)
K (x0, y0) of K at (x0, y0) may

not be a cone; see Example 1.

Example 1. Let K = {(x, y) ∈ R2|y ≥ x4, x ∈ R}, (x0, y0) = (0, 0) and m = 4. A simple calculation shows
that

T[(4)
K (0, 0) = {(x, y) ∈ R2|y ≥ x4}.

Take (x, y) = (1, 1) ∈ T[(4)
K (0, 0) and λ = 2. Then λ(x, y) = (2, 2) /∈ T[(4)

K (0, 0), i.e., T[(4)
k (0, 0) is not

a cone here.

Proposition 2. Let F : E→ 2Y be a set-valued map and (x0, y0) ∈ grF. Then,
(i) T[(m)

epiF (x0, y0) = T[(m)
epiF (x0, y0) + {0X} × C;

(ii) {y ∈ Y|(x, y) ∈ T[(m)
epiF (x0, y0)} = {y ∈ Y|(x, y) ∈ T[(m)

epiF (x0, y0)}+ C, ∀x ∈ X.

Proof. Since 0Y ∈ C, it is clearly that T[(m)
epiF (x0, y0) ⊆ Tb(m)

epiF (x0, y0) + {0X} ×C. Therefore we only need

to prove T[(m)
epiF (x0, y0) + {0X} × C ⊆ T[(m)

epiF (x0, y0).

Let (u, v) ∈ T[(m)
epiF (x0, y0) and c ∈ C. Then for any sequence {tn} with tn → 0+, there exists a

sequence {(un, vn)} ⊆ X×Y with (un, vn)→ (u, v) such that

(x0 + tnun, y0 + tm
n vn) ∈ epiF,

namely,
y0 + tm

n vn ∈ F(x0 + tnun) + C.

Since c ∈ C, tn → 0+ and C + C ⊆ C, one has

y0 + tm
n (vn + c) ∈ F(x0 + tnun) + C + {tm

n c} ⊆ F(x0 + tnun) + C.

Thus
(x0 + tnun, y0 + tm

n (vn + c)) ∈ epiF.

This together with (un, vn + c) → (u, v + c) implies (u, v + c) ∈ T[(m)
epiF (x0, y0), and so T[(m)

epiF +

{0X} × C ⊆ T[(m)
epiF .

(ii) Obviously, (ii) follows from (i). The proof is complete. �

Proposition 3. Let K ⊆ X×Y and (x0, y0) ∈ clK. If K is a convex set, then T[(m)
K (x0, y0) is a convex set.

Proof. Let (xi, yi) ∈ T[(m)
K (x0, y0) (i = 1, 2) and λ ∈ [0, 1]. Then for any tn → 0+, there exist

(xi
n, yi

n)→ (xi, yi) (i = 1, 2) such that

(x0 + tnxi
n, y0 + tm

n yi
n) ∈ K (i = 1, 2).
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From the convexity of K, we have

(x0 + tn[(1− λ)x1
n + λx2

n], y0 + tm
n [(1− λ)y1

n + λy2
n]) ∈ K.

It is obvious that

((1− λ)x1
n + λx2

n, (1− λ)y1
n + λy2

n)→ ((1− λ)x1 + λx2, (1− λ)y1 + λy2).

It follows from the definition of T[(m)
K (x0, y0) that

(1− λ)(x1, y1) + λ(x2, y2) = ((1− λ)x1 + λx2, (1− λ)y1 + λy2) ∈ T[(m)
K (x0, y0).

Thus, T[(m)
K (x0, y0) is a convex set and the proof is complete. �

3. Higher-Order Weak Adjacent Epiderivatives

In this section, we introduce the notion of higher-order weak adjacent epiderivative of a set-valued
map without lower-order approximating directions, and obtain some properties of the epiderivative.

Firstly, we recall the notions of mth-order weak adjacent epiderivative with lower-order
approximating directions and generalized Studniarski epiderivative without lower-order
approximating directions.

Definition 5. [2] Let F : X → 2Y, (x0, y0) ∈ grF and (ui, vi) ∈ X × Y(i = 1, · · · , m− 1). The mth-order
weak adjacent epiderivative D[(m)

w F(x0, y0, u1, v1 · · · , um−1, vm−1) of F at (x0, y0) for vectors (u1, v1), · · · ,
(um−1, vm−1) is the set-valued map from X to Y defined by

D[(m)
w F(x0, y0, u1, v1, · · · , um−1, vm−1)(x)

:=WMinC{y ∈ Y | (x, y) ∈ T[(m)
epiF (x0, y0, u1, v1, · · · , um−1, vm−1)}.

Definition 6. [20] Let F : X → 2Y and (x0, y0) ∈ grF. The mth-order generalized Studniarski epiderivative
G-EDm

S F(x0, y0) of F at (x0, y0) is the set-valued map from X to Y defined by

G-EDm
S F(x0, y0)(x) :=MinC{y ∈ Y | (x, y) ∈ Sm

epiF(x0, y0)}.

Motivated by Definitions 5 and 6, we introduce the higher-order epiderivative without lower-order
approximating directions.

Definition 7. Let F : E→ 2Y and (x0, y0) ∈ grF. The mth-order weak adjacent epiderivative of F at (x0, y0)

is a set-valued map ED[(m)
w F(x0, y0) : E→ 2Y defined by

ED[(m)
w F(x0, y0)(x) := WMinC{y ∈ Y | (x, y) ∈ T[(m)

epiF (x0, y0)}.

Remark 2. There are many examples show that ED[(m)
w F(x0, y0) possibly exists even if D[(m)

w F(x0, y0, u1, v1,
· · · , um−1, vm−1) and G-EDm

S F(x0, y0) do not; see Examples 2 and 3. Therefore it is interesting to study this
derivative and employ it to investigate the Mond-Weir duality for set-valued optimization problems.

Example 2. Let E = X = Y = R, C = R+ and F : E → 2Y be defined by F(x) := {y ∈ Y | y ≥ x2}. Take
(x0, y0) = (0, 0) ∈ grF and (u, v) = (1,−1). Then, simple calculations show that

T[(2)
epiF((0, 0), (1,−1)) = ∅
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and
T[(2)

epiF(0, 0) = {(x, y) ∈ R×R | x ∈ R, y ≥ x2}.

So, for any x ∈ E, ED[(2)
w F

(
(0, 0), (1,−1)

)
(x) = ∅, but ED[(2)

w F(0, 0)(x) = {x2}.

Example 3. Let E = X = R, Y = R2, C = R2
+ and F : E→ 2Y be defined by F(x) := {(y1, y2) ∈ Y | y1 ∈

R, y2 ≥ x2}. Take (x0, y0) = (0X , 0Y) ∈ grF. Then

S2
epiF(0X , 0Y) = T[(2)

epiF(0X , 0Y) = {(x, (y1, y2)) ∈ R×R2 | x ∈ R, y1 ∈ R, y2 ≥ x2}.

Therefore, for any x ∈ E, ED[(2)
w F(0X, 0Y)(x) = {(y1, y2) ∈ R2 | y1 ∈ R, y2 = x2}, but

G-ED2
SF(0X , 0Y)(x) = ∅.

Theorem 1. Let F : E → 2Y and (x0, y0) ∈ grF. Let C be a pointed closed convex cone and Daniell.
If P(x) := {y ∈ Y | (x, y) ∈ T[(m)

epiF (x0, y0)} is minorized for all x ∈ domP, then ED[(m)
w F(x0, y0) exists.

Proof. The proof is similar to that of Theorem 3.1 in [2]. �

Definition 8. [23] Let M ⊆ Rn be a nonempty set and x0 ∈ M. M is called star-shaped at x0, if for any
point x ∈ M with x 6= x0, the segment

[x, x0] := {y ∈ M | y = (1− λ)x0 + λx, 0 ≤ λ ≤ 1} ⊆ M.

Definition 9. [10] Let E be a nonempty convex set. The map F is said to be C-convex on E, if for any x1, x2 ∈ E
and λ ∈ [0, 1],

λF(x1) + (1− λ)F(x2) ⊆ F(λx1 + (1− λ)x2) + C.

Motivated by Definition 9, we introduce the following concept.

Definition 10. Let E be a star-shaped set at x0 ∈ E. The map F is said to be generalized C-convex at x0 on E,
if for any x ∈ E and λ ∈ [0, 1],

(1− λ)F(x0) + λF(x) ⊆ F((1− λ)x0 + λx) + C.

Remark 3. Let E be a convex set and x0 ∈ E. If F is C-convex on E, then F is generalized C-convex at x0 on E.
However, the converse implication is not true.

To understand Remark 3, we give the following example.

Example 4. Let E1 = (−∞,−1] ⊆ R, E2 = (−1, 1] ⊆ R, E = X = E1 ∪ E2 ⊆ R, Y = R, C = R+ and
F : E→ 2Y be defined by

F(x) =

{
{y ∈ Y | y ≥ 1}, x ∈ E1,

{y ∈ Y | y ≥ x2}, x ∈ E2.

Take x0 = −1 ∈ E. Then E is a convex set, and F is generalized C-convex at x0 on E.
Take x1 = −4 ∈ E1 ⊆ E, x2 = 0 ∈ E2 ⊆ E and λ = 1

2 , then

1
2

F(x1) +
1
2

F(x2) = {y|y ≥
1
2
}

and
F(

1
2

x1 +
1
2

x2) = {y|y ≥ 1}.
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Thus
1
2

F(x1) + (1− 1
2
)F(x2) 6⊆ F(

1
2

x1 + (1− 1
2
)x2) + C.

Therefore F is not C-convex on E.

Definition 11. [24] Let U ⊆ X be a star-shaped set at x0 ∈ U. A set-valued map F : U → 2Y is said to be
decreasing-along-rays at x0 if for any x ∈ U and 0 ≤ t1 ≤ t2 with tix + (1− ti)x0 ∈ U(i = 1, 2), one has

F(t1x + (1− t1)x0) ⊆ F(t2x + (1− t2)x0) + C.

Next, we give an important property of the mth-order weak adjacent epiderivative.

Proposition 4. Let E be a star-shaped set at x0 ∈ E. Let F : E→ 2Y be a set-valued map and (x0, y0) ∈ grF.
Suppose that the following conditions are satisfied:

(i) F is decreasing-along-rays at x0 ;
(ii) F is generalized C-convex at x0 on E;
(iii) the set P(x) := {y ∈ Y | (x, y) ∈ T[(m)

epiF (x0, y0)} fulfills the weak domination property for all
x ∈ domP.
Then for all x ∈ E, one has x− x0 ∈ Ω := domED[(m)

w F(x0, y0) and

F(x)− {y0} ⊆ ED[(m)
w F(x0, y0)(x− x0) + C.

Proof. Let x ∈ E and y ∈ F(x). For any λn ∈ (0, 1) with λn → 0+, ( λn
2 )m ≤ λn

2 . Since E is a star-shaped
set at x0,

xn := x0 +
λn

2
(x− x0) = (1− λn

2
)x0 +

λn

2
x ∈ E

and
x0 + (

λn

2
)m(x− x0) = (1− (

λn

2
)m)x0 + (

λn

2
)mx ∈ E.

Together this with conditions (i) and (ii) implies

yn : = y0 + (
λn

2
)m(y− y0) = (1− (

λn

2
)m)y0 + (

λn

2
)my

∈ (1− (
λn

2
)m)F(x0) + (

λn

2
)mF(x) ⊆ F((1− (

λn

2
)m)x0 + (

λn

2
)mx) + C

⊆ F(xn) + C + C ⊆ F(xn) + C.

Hence, (xn, yn) ∈ epiF. It follows from the definition of T[(m)
K (x0, y0) that (x − x0, y − y0) ∈

T[(m)
epiF (x0, y0). Replacing x− x0 ∈ domP with x of condition (iii), from the definition of ED[(m)

w F(x0, y0),
we have

P(x− x0) ⊆ ED[(m)
w F(x0, y0)(x− x0) + intC ∪ {0Y}

⊆ ED[(m)
w F(x0, y0)(x− x0) + C.

Thus x− x0 ∈ Ω and

F(x)− {y0} ⊆ ED[(m)
w F(x0, y0)(x− x0) + C.

This completes the proof. �
We now give an example to explain Proposition 4.
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Example 5. Let E = [0,+∞) ⊆ R, Y = R, C = R+ and F : E→ 2Y be defined as F(x) = {y ∈ Y | y ≥ 0}.
Take (x0, y0) = (0, 0) ∈ grF. Then, simple calculations show that T[(2)

epiF(0, 0) = R2
+ and

ED[(2)
w F(0, 0)(x− x0) = {0}, ∀x ≥ 0.

We can easily see that all conditions of Proposition 4 are satisfied. For any x ∈ E, one has x− 0 ∈ Ω :=
domED[(2)

w F(0, 0) = {x | x ≥ 0} and

F(x)− {y0} ⊆ ED[(2)
w F(0, 0)(x− x0) + C.

Therefore Proposition 4 is applicable here.

The following examples show that every condition of Proposition 4 is necessary.

Example 6. Let E = [0,+∞) ⊆ R, Y = R, C = R+ and F : E → 2Y be a set-valued map satisfing
F(x) = {y ∈ Y | y ≥ x}. Take (x0, y0) = (0, 0) ∈ grF. By a simple calculation, we obtain

T[(2)
epiF(0, 0) = {(0, y) ∈ R×R|y ≥ 0}

and

ED[(2)
w F(0, 0)(x) =

{
{0}, x = 0,

∅ , x 6= 0.

Thus x− 0 6∈ Ω := domED[(2)
w F(0, 0) = {0}, for any x ∈ (0,+∞).

Obviously, the conditions (ii) and (iii) of Proposition 4 are satisfied except condition (i), and

F(x)− {y0} 6⊆ ED[(2)
w F(x0, y0)(x− x0) + C, x ∈ (0,+∞).

Thus Proposition 4 does not hold here and the condition (i) of Proposition 4 is essential.

Example 7. Let E1 = [0, 1] ⊆ R, E2 = (1,+∞) ⊆ R, E = X = E1 ∪ E2 ⊆ R, Y = R, C = R+ and
F : E→ 2Y be given by

F(x) =

{
{y ∈ R | y ≥ −x2}, x ∈ E1,

{y ∈ R | y ≥ −x3}, x ∈ E2.

Take (x0, y0) = (0, 0) ∈ grF = epiF. Then,

T[(2)
epiF(0, 0) = {(x, y) ∈ R×R|y ≥ −x2, x ≥ 0}

and
ED[(2)

w F(0, 0)(x− x0) = {y ∈ R | y = −x2}, ∀x ≥ 0.

Clearly, the conditions (i) and (iii) of Proposition 4 are satisfied except condition (ii), and for any x ∈ E2,

F(x)− {y0} 6⊆ ED[(2)
w F(x0, y0)(x− x0) + C.

Therefore Proposition 4 does not hold here and the condition (ii) of Proposition 4 is essential.

Example 8. Let E = X = R, Y = R2, C = R2
+ and F : E→ 2Y be defined by F(x) := {(y1, y2) ∈ Y | y1 ∈

R, y2 ≥ 0}. Take (x0, y0) = (0, (0, 1)) ∈ grF. Then a simple calculation shows that

T[(2)
epiF(0, (0, 1)) = R×R2.
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This means that: (i) domP = R and P(x) = R2, ∀x ∈ domP; (ii) ED[(2)
w F(0, (0, 1)) = ∅ for each

x ∈ R. Obviously, P(x) := {y ∈ Y | (x, y) ∈ R×R2} does not fulfill the weak domination property for each
x ∈ R and Ω = ∅. Thus Proposition 4 does not hold here and the condition (iii) of Proposition 4 is essential.

4. Higher-Order Mond-Weir Type Duality

In this section, by virtue of the higher-order weak adjacent epiderivative of a set-valued map,
we establish Mond-Weir duality theorems for a constrained optimization problem under Benson
proper efficiency.

Let E ⊆ X, F : E → 2Y and G : E → 2Z be two set-valued maps. We consider the following
constrained set-valued optimization problem:

(SOP)

{
MinC F(x),

s.t. x ∈ E, G(x) ∩ (−D) 6= ∅.

Let M := {x ∈ E | G(x) ∩ (−D) 6= ∅} and F(M) := ∪x∈MF(x). We denote F(x) × G(x) by
(F, G)(x). The point (x0, y0) ∈ E×Y is said to be a feasible solution of (SOP) if x0 ∈ M and y0 ∈ F(x0).

Definition 12. [25] The feasible solution (x0, y0) is called a Benson proper efficient solution of (SOP) if

clcone(F(M) + C− {y0}) ∩ (−C) = {0Y}.

Let (x̃, ỹ, z̃) ∈ gr(F, G), ν ∈ Y∗, ω ∈ Z∗ and x ∈ Θ := domED[(m)
w (F, G)(x̃, ỹ, z̃). Inspired by [2],

We establish a new higher-order Mond-Weir type dual problem (DSOP) of (SOP) as follows:

max ỹ

s.t. ν(y) + ω(z) ≥ 0, ∀(y, z) ∈ ED[(m)
w (F, G)(x̃, ỹ, z̃)(x), x ∈ Θ, (1)

ω(z̃) > 0, (2)

ν ∈ C+i, (3)

ω ∈ D+. (4)

The point (x̃, ỹ, z̃, ν, ω) is called a feasible solution of (DSOP) if (x̃, ỹ, z̃, ν, ω) satisfies conditions (1),
(2), (3) and (4) of (DSOP). A feasible solution (x0, y0, z0, ν0, ω0) is called a maximal solution of (DSOP)
if for all ỹ ∈ MD, ({ỹ} − {y0}) ∩ (C \ {0Y}) = ∅, where MD := {ỹ ∈ F(x̃) | (x̃, ỹ, z̃) ∈ gr(F, G), ν ∈
C+i, ω ∈ D+, and (x̃, ỹ, z̃, ν, ω) is the feasible solution of (DSOP)}.

Definition 13. [26] Let K ⊆ X, the interior tangent cone of K at x0 is defined by

ITK(x0) := {µ ∈ X | ∃λ > 0, ∀t ∈ (0, λ), ∀µ′ ∈ BX(µ, λ), x0 + tµ′ ∈ K},

where BX(µ, λ) stands for the closed ball centered at µ ∈ X and of radius λ.

Theorem 2. (Weak Duality) Let E be a star-shaped set at x̃ ∈ E and (x̃, ỹ, z̃) ∈ gr(F, G). Let (x0, y0) and
(x̃, ỹ, z̃, ν, ω) be the feasible solution of (SOP) and (DSOP), respectively. Then the weak duality: ν(y0) ≥ ν(ỹ)
holds if the following conditions are satisfied:

(i) (F, G) is decreasing-along-rays at x̃;
(ii) (F, G) is generalized C× D-convex at x̃ on E;
(iii) the set P(F,G)(x0 − x̃) := {y ∈ Y|(x0 − x̃, y, z) ∈ T[(m)

epi(F,G)
(x̃, ỹ, z̃)} fulfills the weak

domination property.
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Proof. Since (x0, y0) is a feasible solution of (SOP), G(x0) ∩ (−D) 6= ∅. Take z0 ∈ G(x0) ∩ (−D).
It follows from (2) and (4) that

ω(z0 − z̃) 6 0. (5)

From Proposition 4 it follows that x0 − x̃ ∈ S := domED[(m)
w (F, G)(x̃, ỹ, z̃) and

(y0, z0)− (ỹ, z̃) ∈ ED[(m)
w (F, G)(x̃, ỹ, z̃)(x0 − x̃) + C× D. (6)

Noting that ν ∈ C+i and ω ∈ D+, we have by (1) and (6) that ν(y0 − ỹ) + ω(z0 − z̃) > 0.
Combining this with (5), one has

ν(y0 − ỹ) > 0.

Thus ν(y0) ≥ ν(ỹ) and the proof is complete. �
Theorem 2 is an extension of [2], Theorem 4.1 from cone convexity to generalized cone convexity.

Now, we give an example to illustrate that Theorem 2 can apply but [2], Theorem 4.1 dose not.

Example 9. Let X = Y = Z = R, C = D = R+, F : E → 2Y be given as F(x) = {y ∈ Y | y ≥ 0} and
G : E→ 2Z be defined by

G(x) =

{
{z ∈ Z | z ≥ 0}, x ≤ 0,

R, x > 0.

Then sets of the feasible solutions for (DSOP) and (SOP) are {(x̃, ỹ, z̃, ν, ω) | x̃ = 0, ỹ = 0, z̃ ≥ 0, ν ∈
C+i, ω = 0} and {(x0, y0) | x0 ∈ R, y0 ≥ 0}, respectively. Thus ν(y0) ≥ ν(ỹ) = ν(0) and Theorem 2 holds
here. However, [2], Theorem 4.1 is not applicable here because G is not C-convex on E.

Lemma 1. [27] Let x0 ∈ K ⊆ X and intK 6= ∅. If K is convex, then

ITintK(x0) = intcone(K− {x0}).

The inclusion relation between the generalized second-order adjacent epiderivative and convex
cone C and D is established by Wang and Yu in [28], Theorem 5.2. Inspired by [28] , Theorem 5.2,
we next introduce the equality of the higher-order weak adjacent epiderivative and convex cone C and
D to the proof of the strong duality theory.

Lemma 2. Let (x0, y0, z0) ∈ gr(F, G) and z0 ∈ −D. If (x0, y0) is a Benson proper efficient solution of (SOP),
then for all x ∈ Θ := domED[(m)

w (F, G)(x0, y0, z0),

[ED[(m)
w (F, G)(x0, y0, z0)(x) + C× D + {(0Y, z0)}] ∩ (−((C \ {0Y})× intD)) = ∅. (7)

Proof. We can easily see that (7) is equivalent to

[ED[(m)
w (F, G)(x0, y0, z0)(x) + C× D] ∩ (−((C \ {0Y})× (intD + {z0}))) = ∅. (8)

Thus we only need to prove that (8) holds. Suppose on the contrary that there exist x ∈ Θ,
(y, z) ∈ ED[(m)

w (F, G) (x0, y0, z0)(x) and (c0, d0) ∈ C× D such that

z + d0 ∈ −(intD + {z0}) (9)

and
y + c0 ∈ −(C \ {0Y}). (10)
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It follows from (y, z) ∈ ED[(m)
w (F, G)(x0, y0, z0)(x) that (x, y, z) ∈ T[(m)

epi(F,G)
(x0, y0, z0). Then for

any sequence {tn} with tn → 0+, there exists {(xn, yn, zn)} ⊆ epi(F, G) such that

(
xn − x0

tn
,
(yn, zn)− (y0, z0)

tm
n

)→ (x, y, z). (11)

From (9) and (11), there exists a sufficiently large natural number N1 such that

z̄n :=
zn − z0 + tm

n d0

tm
n

∈ −(intD + {z0}) ⊆ −intcone(D + {z0})

⊆ −ITintD(−z0), ∀n > N1,
(12)

where the last inclusion follows from Lemma 1. According to Definition 13, there exists λ > 0 such that

− z0 + tnµ′ ∈ intD, ∀tn ∈ (0, λ), µ′ ∈ BY(−z̄n, λ), n > N1. (13)

Since tn → 0+, there exists a sufficiently large natural number N2 with N2 ≥ N1 such that
tm
n ∈ (0, λ). Combining this with (13), one has

− z0 + tm
n (−z̄n) ∈ intD, ∀n > N2. (14)

From (12) and (14), we have

−z0 − (zn − z0 + tm
n d0) = −zn − tm

n d0 ∈ intD, ∀n > N2.

It follows from d0 ∈ D, tm
n → 0+ and intD + D ⊆ intD that

zn ∈ −intD, ∀n > N2. (15)

Noting that {(xn, yn, zn)} ⊆ epi(F, G), there exist xn ∈ E, ẑn ∈ G(xn), ŷn ∈ F(xn) and (cn, dn) ∈
C×D such that yn = ŷn + cn and zn = ẑn + dn. By (15), ẑn ∈ −intD− {dn} ⊆ −intD ⊆ −D, ∀n > N2.
Therefore

xn ∈ M, ∀n > N2. (16)

Clearly, we have

yn − y0

tm
n

+ c0 =
yn + tm

n c0 − y0

tm
n

∈ F(xn) + C− {y0}
tm
n

⊆ F(M) + C− {y0}
tm
n

⊆ clcone(F(M) + C− {y0}).

It follows from (11) and (16) that y + c0 ∈ clcone(F(M) + C− {y0}). Combining this with (10),
one has

y + c0 ∈ clcone(F(M) + C− {y0}) ∩ (−(C \ {0Y})),

which contradicts that (x0, y0) is a Benson proper efficient solution of (SOP). Thus (7) holds and the
proof is complete. �

According to Theorem 2.3 of [29], we have the following lemma.

Lemma 3. [29] Let W be a locally convex space, H and Q be cones in W. If H is closed, Q have a compact base
and H ∩Q = {0W}, then there is a pointed convex cone Ã such that Q \ {0W} ⊆ intÃ and Ã ∩ H = {0W}.
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Theorem 3. (Strong Duality) Let E be a convex subset of X, (x0, y0, z0) ∈ gr(F, G) and z0 ∈ −D. Suppose
that the following conditions are satisfied:

(i) (F, G) is C× D-convex on E;
(ii) P(x) := {(y, z) ∈ Y× Z | (x, y, z) ∈ T[(m)

epi(F,G)
(x0, y0, z0)} fulfills the weak domination property for

all x ∈ domP;
(iii) C has a compact base;
(iv) (x0, y0) be a Benson proper efficient solution of (SOP);
(v) for any x ∈ E, G(x) ∩ (−D) 6= ∅.
Then there exist ν ∈ C+i and ω ∈ D+ such that (x0, y0, z0, ν, ω) is a maximal solution of (DSOP).

Proof. Define
Ψ := ED[(m)

w (F, G)(x0, y0, z0)(Θ) + C× D + {(0Y, z0)},

where Θ := domED[(m)
w (F, G)(x0, y0, z0).

Step 1. We firstly prove that Ψ is a convex set. Indeed, it is sufficient to show the convexity of
Ψ0 := Ψ− {(0Y, z0)}.

Let (yi, zi) ∈ Ψ0 (i = 1, 2). Then there exist xi ∈ Θ, (y′i, z′i) ∈ ED[(m)
w (F, G)(x0, y0, z0)(xi) and

(ci, di) ∈ C× D (i = 1, 2) such that

(yi, zi) = (y′i, z′i) + (ci, di) (i = 1, 2). (17)

According to the definition of ED[(m)
w (F, G)(x0, y0, z0), one has (xi, y′i, z′i) ∈

T[(m)
epi(F,G)

(x0, y0, z0) (i = 1, 2).

Since (F, G) is C×D-convex on E, epi(F, G) is a convex set. From Proposition 3, T[(m)
epi(F,G)

(x0, y0, z0)

is a convex set. So for any t ∈ [0, 1],

t(x1, y′1, z′1) + (1− t)(x2, y′2, z′2) ∈ T[(m)
epi(F,G)

(x0, y0, z0).

By (ii), we have

t(y′1, z′1) + (1− t)(y′2, z′2) ∈ ED[(m)
w (F, G)(x0, y0, z0)(tx1 + (1− t)x2) + int(C× D) ∪ {(0Y, 0Z)}

⊆ ED[(m)
w (F, G)(x0, y0, z0)(tx1 + (1− t)x2) + C× D.

Combining this with (17), one has

t(y1, z1) + (1− t)(y2, z2) ∈ Ψ0 + C× D = Ψ0.

Therefore Ψ0 is a convex set and so Ψ = Ψ0 + {(0Y, z0)} is a convex set.
Step 2. We prove that there exist ν ∈ C+i and ω ∈ D+ such that (x0, y0, z0, ν, ω) is a feasible

solution of (DSOP).
Define

Φ := clconeΨ.

Since Ψ is a convex set, Φ is a convex cone. According to Lemma 2, we have

Φ ∩ (−((C \ {0Y})× intD)) = ∅. (18)

Hence, we can conclude
Φ ∩ (−(C× {0Z})) = {(0Y, 0Z)}. (19)
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In fact, assume that (19) does not hold. Since Φ is a cone, there exists b ∈ −C \ {0Y} such that

(b, 0Z) ∈ Φ ∩ (−((C \ {0Y})× {0Z})).

Then there exist xn ∈ Θ, (yn, zn) ∈ ED[(m)
w (F, G)(x0, y0, z0)(xn), (cn, dn) ∈ C × D and λn ≥ 0

such that
b = lim

n→∞
λn(yn + cn). (20)

According to the definition of ED[(m)
w (F, G)(x0, y0, z0), for any tk → 0+, there exists (xn

k , yn
k , zn

k ) ∈
epi(F, G) such that

lim
k→∞

(
xn

k − x0

tk
,

yn
k − y0 + tm

k cn

tm
k

,
zn

k − z0 + tm
k dn

tm
k

) = (xn, yn + cn, zn + dn). (21)

This together with condition (v) implies

λn
yn

k − y0 + tm
k cn

tm
k

∈ λn
F(xn

k ) + C− {y0}+ tm
k cn

tm
k

⊆ clcone[F(E) + C− {y0}]
⊆ clcone[F(M) + C− {y0}].

(22)

It follows from (20), (21), (22) and b ∈ −(C \ {0Y}) that

b ∈ clcone(F(M) + C− {y0}) ∩ (−(C \ {0Y})),

which contradicts that (x0, y0) is a Benson proper efficient solution of (SOP). Thus (19) holds.
Since C has a compact base, −(C× {0Z}) also has a compact base. Combining this with (19) and

Lemma 3, replacing H and Q with Φ and −(C× {0Z}), there exists a pointed convex cone Ã such that

− (C× {0Z})\(0Y, 0Z) ⊆ intÃ (23)

and
Φ ∩ Ã = {(0Y, 0Z)}. (24)

Let B̃ := A∪{(0Y, 0Z)}, where A := −((C \ {0Y})× (intD∪{0Z}))+ Ã. Thus B̃ is a convex cone.
Next, we further prove that B̃ is a pointed cone. According to Proposition 1, we get (0X , 0Y, 0Z) ∈

T[(m)
epi(F,G)

(x0, y0, z0). Combining this with the weak domination property of P, we get

(0Y, 0Z) ∈ ED[(m)
w (F, G)(x0, y0, z0)(0X) + C× D. (25)

For z0 ∈ G(x0) ∩ (−D) and (c, d) ∈ C× D, we have

(c, d) = (0Y, 0Z) + (c, d− z0) + (0Y, z0)

∈ ED[(m)
w (F, G)(x0, y0, z0)(0X) + C× D + {(0Y, z0)}

⊆ Φ,

and so
C× D ⊆ Φ. (26)

It follows from (24) and (26) that (C× D) ∩ Ã = {(0Y, 0Z)}. Hence,

((C \ {0Y})× (intD ∪ {0Z})) ∩ Ã = ∅.
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Combining with the definition of A, one has

(0Y, 0Z) /∈ A. (27)

Thus
A ∩ (−A) = ∅. (28)

To obtain this result, we suppose on the contrary that there exists (c, d) ∈ A ∩ (−A). Then there
exist (ci, di) ∈ (C \ {0Y})× (intD ∪ {0Z}) (i = 1, 2) and (c′i, d′i) ∈ Ã (i = 1, 2) such that

(c, d) = −(c1, d1) + (c′1, d′1)

and
(c, d) = (c2, d2)− (c′2, d′2).

So
(−(c1, d1) + (c′1, d′1))− ((c2, d2)− (c′2, d′2))

=− (c1 + c2, d1 + d2) + (c′1 + c′2, d′1 + d′2)

=(0Y, 0Z) ∈ A,

which contradicts (27). Therefore (28) holds. Then B̃ is a pointed convex cone and (0Y, 0Z) 6∈ intB̃.
Now, we can conclude

Φ ∩ B̃ = {(0Y, 0Z)}. (29)

To see the conclusion, we suppose on the contrary that there exists (y, z) 6= (0Y, 0Z) such that

(y, z) ∈ Φ ∩ B̃, (30)

because B̃ is a pointed convex cone and Φ is a convex cone. From the definition of B̃, there exist
(y1, z1) ∈ −((C \ {0Y})× (intD ∪ {0Z})) and (y2, z2) ∈ Ã such that

(y, z) = (y1, z1) + (y2, z2).

According to the definition of Φ, there exist x′n ∈ Θ, (y′n, z′n) ∈ ED[(m)
w (F, G)(x0, y0, z0)(x′n),

(c′n, d′n) ∈ C× D and λ′n ≥ 0 such that

(y, z) = lim
n→∞

λ′n(y
′
n + c′n, z′n + d′n + z0).

Since (y, z) 6= (0Y, 0Z), without loss of generality, we may assume that λ′n > 0. It follows from the
definition of Φ that

(y, z)− (y1, z1) = lim
n→∞

λ′n(y
′
n + c′n, z′n + d′n + z0)− (y1, z1)

= lim
n→∞

λ′n(y
′
n + c′n −

y1

λ′n
, z′n + d′n −

z1

λ′n
+ z0)

∈ Φ,

and so
(y2, z2) = (y, z)− (y1, z1) ∈ Φ ∩ Ã = {(0Y, 0Z)}.

Thus
(y, z) = (y1, z1) ∈ −((C \ {0Y})× intD). (31)
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By (30) and (31), we have

(y, z) ∈ Φ ∩ (−((C \ {0Y})× intD)),

which contradicts (18).
We claim that

− ((C \ {0Y})× (intD ∪ {0Z})) ⊆ intB̃. (32)

To obtain this conclusion, we replace B and C in [30], Theorem 2.2 with −((C \ {0Y})× (intD ∪
{0Z})) and intÃ, respectively, which together with the fact: (0Y, 0Z) 6∈ intB̃ yields that

intB̃ = −(C \ {0Y})× (intD ∪ {0Z}) + intÃ. (33)

Let c ∈ C \ {0Y} and d ∈ intD ∪ {0Z}. Then by (23) and (33), one has

−(c, d) = −( c
2

, d)− (
c
2

, 0Z) ∈ −((C \ {0Y})× (intD ∪ {0Z})) + intÃ = intB̃,

and so (32) holds.
According to the separation theorem for convex set and (29), there exist ν ∈ Y∗ and ω ∈ Z∗

such that
ν(ȳ) + ω(z̄) < 0, ∀(ȳ, z̄) ∈ intB̃ (34)

and
ν(y̌) + ω(ž) ≥ 0, ∀(y̌, ž) ∈ Φ. (35)

By (32) and (34), we have

ν(ȳ) + ω(z̄) > 0, ∀(ȳ, z̄) ∈ (C \ {0Y})× (intD ∪ {0Z}). (36)

Taking z̄ = 0Z in (36), one has ν(ȳ) > 0, ∀ȳ ∈ C \ {0Y}, thus ν ∈ C+i. For any ε > 0, take
ȳ ∈ (C \ {0Y}) ∩ B(0Y, ε) in (36). Then we can observe that ω(z̄) ≥ 0, ∀z̄ ∈ intD, which implies
ω ∈ D+.

It follows from (35) that

ν(y) + ω(z) ≥ 0, ∀(y, z) ∈ ED[(m)
w (F, G)(x0, y0, z0)(Θ) + C× D + {(0Y, z0)}. (37)

Together with (25), we get ω(z0) ≥ 0. It follows from z0 ∈ −D and ω ∈ D+ that ω(z0) ≤ 0. Thus,

ω(z0) = 0.

Combining this with (37), one has

ν(y′) + ω(z′) ≥ 0, ∀(y′, z′) ∈ ED[(m)
w (F, G)(x0, y0, z0)(Θ) + C× D,

and so
ν(y) + ω(z) ≥ 0, ∀(y, z) ∈ ED[(m)

w (F, G)(x0, y0, z0)(Θ).

Thus (x0, y0, z0, ν, ω) is a feasible solution of (DSOP).
Step 3. We prove that (x0, y0, z0, ν, ω) is a maximal solution of (DSOP).
Suppose on the contrary that there exists a feasible solution (x̂, ŷ, ẑ, ν′, ω′) such that ŷ − y0 ∈

C \ {0Y}. By ν′ ∈ C+i, we have
ν′(ŷ) > ν′(y0) (38)

Since (x0, y0) is a feasible solution of (SOP), it follows from Theorem 2 that ν′(y0) > ν′(ŷ), which
contradicts (38). The proof is complete. �
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Theorem 4. (Converse Duality) Let E be a star-shaped set at x0 ∈ E. Let y0 ∈ F(x0), z0 ∈ G(x0) ∩ (−D),
ν ∈ C+i and ω ∈ D+ such that (x0, y0, z0, ν, ω) is a feasible solution of (DSOP). Then (x0, y0) is a Benson
proper efficient solution of (SOP) if the following conditions are satisfied:

(i) (F, G) is decreasing-along-rays at x0;
(ii) (F, G) is a generalized C× D-convex at x0 on E;
(iii) the set P(F,G)(x − x0) := {y ∈ Y | (x − x0, y, z) ∈ T[(m)

epi(F,G)
(x0, y0, z0)} fulfills the weak

domination property for all x ∈ domP(F,G).

Proof. It follows from (1), (3) and (4) that

ν(y) + ω(z) ≥ 0, ∀(y, z) ∈ ED[(m)
w (F, G)(x0, y0, z0)(x) + C× D,

∀x ∈ Θ := domED[(m)
w (F, G)(x0, y0, z0).

(39)

According to Proposition 4, we get

(y− y0, z− z0) ∈ ED[(m)
w (F, G)(x0, y0, z0)(x− x0) + C× D,

∀x ∈ M, y ∈ F(x), z ∈ G(x) ∩ (−D).
(40)

By (2), we have ω(z0) ≥ 0. It follows from z0 ∈ G(x0) ∩ (−D) and ω ∈ D+ that ω(z0) 6 0, thus
ω(z0) = 0. Then

ω(z− z0) = ω(z)−ω(z0) = ω(z) 6 0, ∀z ∈ G(x) ∩ (−D), x ∈ M. (41)

It follows from (39), (40) and (41) that

ν(y− y0) ≥ 0, ∀y ∈ F(x), x ∈ M.

Further more, we can get

ν(y + c− y0) ≥ 0, ∀y ∈ F(x), x ∈ M,

and so
ν(y) ≥ 0, ∀y ∈ clcone(F(M) + C− {y0}). (42)

Assume that the feasible solution (x0, y0) is not a Benson proper efficient solution of (SOP).
Then there exists y′ ∈ −(C \ {0Y}) such that y′ ∈ clcone(F(M) + C− {y0}). This together with (42)
implies that

ν(y′) ≥ 0. (43)

It follows from ν ∈ C+i and y′ ∈ −(C \ {0Y}) that ν(y′) < 0, which contradicts (43). Thus (x0, y0)

is a Benson proper efficient of (SOP) and the proof is complete. �

Remark 4. Example 9 also illustrates that Theorem 4 extends [2], Theorem 4.3 from the cone convexity to
generalized cone convexity. Indeed, take (x0, y0, z0) = (0, 0, 0). Then simple calculations show that

T[(2)
epi(F,G)

(0, 0, 0) ={(x, y, z) ∈ X×Y× Z | x ≤ 0, y ≥ 0, z ≥ 0}∪

{(x, y, z) ∈ X×Y× Z | x > 0, y ≥ 0, z ∈ R}

and

ED[(2)
w (F, G)(0, 0, 0)(x) =

{
{(y, z) ∈ Y× Z | y = 0, z ≥ 0} ∪ {(y, z) ∈ Y× Z | y ≥ 0, z = 0}, x ≤ 0,

{(y, z) ∈ Y× Z | y = 0, z ∈ R}, x > 0.
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Then we can choose ν = 1 and ω = 0 such that (x0, y0, z0, ν, ω) = (0, 0, 0, 1, 0) is a feasible solution of
(DSOP). It is easy to show that the all conditions of Theorem 4 are fulfilled and (0, 0) is a Benson proper efficient
solution of (SOP). Thus Theorem 4 holds here. However, [2], Theorem 4.3 is not applicable here because G is not
C-convex on E.
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