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Abstract: A graph has genus k if it can be embedded without edge crossings on a smooth orientable
surface of genus k and not on one of genus k− 1. A mapping of the set of graphs on n vertices to itself is
called a linear operator if the image of a union of graphs is the union of their images and if it maps the
edgeless graph to the edgeless graph. We investigate linear operators on the set of graphs on n vertices
that map graphs of genus k to graphs of genus k and graphs of genus k + 1 to graphs of genus k + 1.
We show that such linear operators are necessarily vertex permutations. Similar results with different
restrictions on the genus k preserving operators give the same conclusion.
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1. Introduction

Let Gn denote the set of all simple graphs on the vertex set {v1, v2, · · · , vn}, so that all of our graphs
are loopless and determined by their edge set. An operator (mapping) on Gn is said to be linear if it
preserves unions (i.e., T(G ∪ H) = T(G) ∪ T(H)), and fixes the empty graph, Kn, in Gn.

Such operators were considered by Hershkowitz [1] in 1987 and by Pullman [2] in 1985. Linear
operators preserving the clique covering number were investigated in [2] and linear operators preserving
maximum cycle length were investigated in [1]. Linear operators preserving planarity and chromatic
number were investigated in [3].

In this article, we show that if a linear operator T : Gn → Gn preserves the set of graphs of genus
k, and also preserves the set of graphs of genus k + 1, then T is a vertex permutation, that is, there is a
permutation, τ, of {1, 2, · · · , n} such that for all indices, i 6= j, if vivj is an edge of G then vτ(i)vτ(j) is an
edge of T(G). Other similar results are presented.

2. Notation, Definitions and Preliminary Results

Let Gn denote the set of all simple graphs on the vertex set {v1, v2, · · · , vn} so that the union of two
graphs is the union of their edge sets. The properties we are investigating are not affected by isolated
vertices. Therefore, we can think of each nonempty graph, G, in terms of Ĝ, the subgraph of G obtained
by deleting its isolated vertices. We adopt the convention that “G has a property” means “Ĝ has that
property”. So that if we say that “G is a 4-cycle”, we mean that “Ĝ is a 4-cycle”. Also, “E is an edge” means
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that Ê = K2. If E is the graph whose edge set consists only of the edge vivj, denote E by Ei,j. By an abuse
of language we say that Ei,j (which is a graph) is an edge of G meaning that vivj is an edge of G.

A linear operator T : Gn → Gn is a vertex permutation if there is a permutation, τ, of {1, 2, · · · , n} such
that for all indices, i 6= j, if vivj is an edge of G then vτ(i)vτ(j) is an edge of T(G), or equivalently, for all
i 6= j,

T(Ei,j) = Eτ(i),τ(j). (1)

When mapping monoids whose addition is union, such as in Gn, if T maps the whole monoid to
a single element, then T preserves any set that contains that element, thus, in this case, to seriously
investigate any set of preservers, additional conditions must be placed on the operator. See Example 1.

We say that an operator preserves a set X if A ∈ X implies that T(A) ∈ X . The operator strongly
preserves the set X if

A ∈ X if and only if T(A) ∈ X . (2)

Thus, “T strongly preserves the set X ” is equivalent to saying “T preserves the set X and T preserves
the complement Gn\X ”.

Example 1. Let T : G10 → G10 be defined by T(X) = P for all X 6= K where P is the Petersen graph, and
T(K) = K. Then T is linear and preserves 3-regular graphs since P is 3-regular, but T maps every graph to a
3-regular graph except K. Clearly T does not strongly preserve any set except Gn.

Let f be a function on Gn. We say that T preserves f if T preserves the set {X ∈ Gn| f (X) = r} for each
r in the image of f . That is

T preserves f if and only if, for each r in the image of f ,

T (strongly) preserves f−1(r). (3)

Let ε(G) denote the number of edges in G, that is, ε(G) = |E(G)| where |X| denotes the cardinality of
the set X. A graph consisting of k edges sharing a common vertex is called a k-star. Note that a 2-star is
also a path of two edges.

The following lemma appeared in [3], we include the proof for completeness.

Lemma 1. [3] (Lemma 2.2) If T is a bijective linear operator on Gn that preserves the set of 2-stars, then T is a
vertex permutation.

Proof. Suppose that T is bijective, then since Gn is finite, by the nature of the addition, that being union, T
maps edges to edges and preserves ε. Suppose that T preserves 2-stars, then it follows that T preserves
(n− 1)-stars. For i = 1, 2, · · · , n, let Si =

⋃n
k=1,k 6=i Ei,k. Then S1, S2, · · · , Sn are the (n− 1)-stars in Gn. Thus,

for each i there is j such that T(Si) = Sj. Let τ be defined by τ(i) = j if T(Si) = Sj. Since T is bijective, τ is
a permutation.

Suppose that i and j are distinct indices so that Ei,j is an edge of Si. Then, T(Ei,j) is a edge of Sk
where τ(i) = k. That is T(Ei,j) = Ek,` for some ` 6= k. But, Ei,j = Ej,i so that T(Ei,j) = T(Ej,i) = Eτ(j).m for
some m. Then, τ(j) = ` because τ(i) = k. Consequently, T(Ei,j) = Eτ(i),τ(j). Then, by Equation (1), T is a
vertex permutation.

If G and H are graphs in Gn and the edge set of G is contained in the edge set of H, that is E(G) ⊆ E(H),
we write G v H. In this case we say that H dominates G or G is dominated by H.
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The genus of a surface, (an orientable smooth surface) is zero if it is a plane or sphere. A surface of
genus one is equivalent to a sphere with one “handle”, or a torus. The genus of an orientable smooth
surface is k if it is equivalent to a sphere with k “handles”, or a surface with k holes.

The genus of a graph is the genus of the simplest surface in which it can be embedded (drawn) with
no crossings of edges. It is well known that the genus of a graph is zero (i.e., planar) if it is not a subdivision
of a K5, the complete graph on five vertices, or a K3,3, the complete bipartite graph whose bipartition
consists of two sets each of three members. Let γ(G) denote the genus of G for any G ∈ Gn. That is γ is a
function γ : Gn → N, where N is the set of nonnegative integers such that γ(G) = k if k is the genus of G.

If a graph has genus k then the addition of any edge will at most increase the genus by one, since at
most one “handle” must be added to the surface to embed the edge. For more on the genus of a graph and
embedding, see [4]. or one of the mathematical web sites such as http://en.wikipedia.org/wiki/Graph_theory,
or http://mathworld.wolfram.com/GraphTheory.html.

3. Genus Preservers

Let k be a nonnegative integer, and let T : Gn → Gn be a linear operator that preserves genus k,
and that preserves genus k + 1. Since n is finite, Gn is finite, so there is an integer d such that L = Td is
idempotent. Then, L being a power of T also preserves both genus k and genus k + 1.

Lemma 2. L is the identity operator on Gn.

Proof. Since L is linear, L(K) = K. Suppose that L(X) = K and E is an edge, E v X. Then, by the linearity
of L, L(E) = K. Choose a graph Z whose genus is k + 1 and dominates E, and such that the genus of Z \ E
is k. This is always possible, since given any graph of genus k + 1, delete edges until arriving at a graph of
genus k. Permute vertices so that the last edge deleted is the edge E. But then, T(Z) = T(Z \ E) so that
k + 1 = γ(Z) = γ(T(Z)) = γ(T(Z \ E)) = γ(Z \ E) = k, a contradiction. Therefore, X = K. That is,

L(X) = K if and only if X = K. (4)

Suppose that E is an arbitrary edge graph. Then, ε(T(E)) ≥ 1 since T(E) 6= K. Suppose that F
is an edge, F 6= E, and that F v L(E). It follows that L(F) v L(E) since L is idempotent. Now, let Z
be a graph whose genus is k + 1 and which dominates both E and F, and such that the genus of Z \ E
is k. Let Y = Z \ (E ∪ F). Then Y + F = Z \ E, so that γ(Y + F) = k and γ(Y ∪ F ∪ E) = k + 1 but
L(Y ∪ F ∪ E) = L(Y) ∪ L(E) ∪ L(F) v L(Y) ∪ L(E) = L(Y ∪ E) since L(F) v L(E). So that, k + 1 =

γ(Y ∪ F ∪ E) = γ(L(Y ∪ F ∪ E) = γ(L(Y ∪ E) = γ(Y ∪ E) = k, a contradiction. Thus, L(E) = E. That is,
by linearity, L is the identity operator.

Lemma 3. T is bijective.

Proof. Recall that L = Td is the identity. We may assume that d > 1 in the definition, for if p = 1, by
Lemma 2 T is the identity and the lemma follows. Equation (4) implies that

T(X) = K if and only if X = K. (5)

Suppose that E is an edge and S = T(E). Then Lemma 2 implies that Td−1(S) = L(E) = E. Let F be any
edge dominated by S. Then Td−1(F) = E, so T(E) = L(F) = F, by Lemma 2. We now have that T maps
edge graphs to edge graphs in Gn.

http://en.wikipedia.org/wiki/Graph_theory
http://mathworld.wolfram.com/GraphTheory.html
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Suppose that for some edges E and F that T(E) = T(F). Then Td(E) = Td(F), and hence, E = F
by Lemma 2. Thus T is bijective on the set of edge graphs of Gn and by the linearity of T, T is bijective
on Gn.

By the finiteness of Gn, we have

Corollary 1. T−1 exists and preserves genus k and genus k + 1.

We now define a function that gives the minimum n such that Gn has a vertex of genus k. That is, let
ϕ : N→ N such that n = ϕ(k) if and only if Gn contains a graph of genus k and Gn−1 does not. For example,
ϕ(1) = 5 since K5 has genus 1 and every graph on four vertices is planar.

From [5] we have

Lemma 4. [5] (Corollary 4.1) Let k be a nonnegative integer. Let n ≥ 6 if k = 0 or 1, and n ≥ 8 + ϕ(k− 1) if
k ≥ 2. Then, T : Gn → Gn is a linear operator that strongly preserves genus k if and only if T is a vertex permutation.

Lemma 5. Let k be a nonnegative integer. If k = 0 or 1, let n ≥ 6 and for k ≥ 2 let n ≥ 8 + ϕ(k− 1). Then T is
bijective and preserves genus k if and only if T is a vertex permutation,

Proof. If T is a vertex permutation, then T is bijective and preserves genus k since the genus of a graph is
independent of the labeling of the vertices.

If k = 0, the lemma follows from Lemma 4 since Gn is a finite set. If k = 1, then T strongly preserves
the set of planar graphs since T is bijective and if the image of a planar graph (genus 0) is not planar it
must have genus at least 2. But by adding edges to the planar graph we get a graph of genus 1 mapped to
a graph of genus at least 2, a contradiction. Thus the lemma again follows from Lemma 4.

Suppose that T is bijective and preserves genus k. Due to the nature of the addition, that being union,
T preserves the set of edges. That is, T maps edges to edges and is bijective on that set.

Suppose that T maps a pair of parallel edges, say E and F, to a 2-star. Then there is an edge Q such
that E ∪ F ∪Q is a graph of three edges, at least two of which are parallel, and T(E ∪ F ∪Q) is a 3-cycle.
For notational convenience and without loss of generality we may assume that T(Q) is the edge {v1, v2},
T(F) is the edge {v2, v3}, and T(E) is the edge {v1, v3}. Let Q be the edge {u, w}.

Let H be a graph of genus k− 1 on n− 8 vertices that dominates edge Q and neither edge E nor F.
By appending a K5 at each of the vertices u and w we may assume that E is an edge in one of the K5’s and
F is an edge in the other. Call this graph G. Since appending the two K5’s adds four vertices each to the
graph, G ∈ Gn. Let Z = G \ (E ∪ F). Then the genus of Z is k− 1, the genus of Z ∪ E is k, as is the genus
of Z ∪ F, and the genus of G = Z ∪ E ∪ F is k + 1. Further, because T strongly preserves genus k, we can
deduce that the genus of T(Z) is at most k− 1, the genus of T(Z ∪ E) is k and the genus of T(G) is at least
k + 1. In fact, since the addition of a single edge can increase the genus by at most one, we have that the
genus of T(Z) is k− 1 and the genus of T(G) is k + 1.

Embed the graph T(Z) in a surface of genus k− 1. Thus, the edge T(Q) is drawn on this surface,
append a handle on the surface that goes from any face adjacent to the vertex v3 to a face adjacent to vertex
v1 and vertex v2, and to the edge T(Q). Use this handle to draw the edge T(F) without edge crossings
from vertex v2 to vertex v3. On this surface (of genus k) draw the edge T(E) by beginning at vertex v1,
proceed parallel to the edge T(Q) in the face that the new handle was inserted to the handle then parallel
to the edge T(F) (on the handle) to vertex v3. Drawing this edge does not require crossing any edge. Thus,
we have embedded T(G) in a surface of genus k, a contradiction since the genus of T(G) is k + 1 and T−1

preserves genus k by Corollary 1. Thus, T maps parallel pairs to parallel pairs, or equivalently, since T is
bijective, T maps 2-stars to 2-stars.
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The lemma now follows from Lemma 1.

Lemma 6. Let k ≥ 1 be a nonnegative integer and n ≥ 6 for k = 1 and n ≥ 8+ ϕ(k− 1) for k ≥ 2. If T : Gn → Gn

is a linear operator that preserves genus k and maps edges to edges, then T is a vertex permutation.

Proof. By Lemma 5, we only need show that T is bijective. Since T maps edges to edges, T(X) = K if
and only if X = K. Now, suppose that T(E) = T(F) for some distinct edges E and F. Let Z be a graph
of minimum size (number of edges) that is of genus k. By a vertex permutation we may assume that Z
dominates E ∪ F. Since T maps edges to edges, ε(T(G)) ≤ ε(G) for every G ∈ Gn. Now, γ(G \ F) = k− 1
so γ(T(G \ F)) ≤ k − 1. Since T(E) = T(F), it follows that T(G) = T((G \ (E ∪ F)) ∪ E ∪ F) = T(G \
(E ∪ F)) ∪ T(E) ∪ T(F) = T(G \ (E ∪ F)) ∪ T(E) = T(G \ F). But, k = γ(T(G)) = γ(T(G \ F)) ≤ k− 1 a
contradiction. Thus, T is bijective.

Note that if T : Gn → Gn is a linear operator defined by T(X) = Ei,j for some fixed i 6= j for all X 6= K
(and T(K) = K) then T satisfies the hypothesis of Lemma 6 for k = 0. Thus the lemma is not true for planar
graphs (k = 0).

Lemma 7. Let k be a nonnegative integer. If k = 0 or 1, let n ≥ 6 and for k ≥ 2 let n ≥ 8 + ϕ(k − 1). If
T : Gn → Gn is a linear operator that preserves genus k and such that T(Kn) = Kn, then T is a vertex permutation.

Proof. Suppose there is an edge whose image has more than one edge, say ε(T(F)) ≥ 2. Let Z be a graph
whose genus is k+ 1 and has the minimum number of edges possible for a graph of genus k+ 1. Let ε(Z) =
q, so that any graph with fewer than q edges has genus at most k. By a vertex permutation, we may assume
that ε(Z ∩ T(F)) ≥ 2. Let F1 = F. Since T(Kn) = Kn, there is some edge F2 such that ε(Z ∩ T(F1 ∪ F2)) ≥ 3.
Continuing in this way there are ` edges F1, F2, · · · , F` such that ` < q and T(F1 ∪ F2 ∪ · · · ,∪F`) w Z. Then,
however, γ(F1 ∪ F2 ∪ · · · ,∪F`) ≤ k while γ(T(F1 ∪ F2 ∪ · · · ,∪F`)) ≥ k+ 1 since T(F1 ∪ F2 ∪ · · · ,∪F`) w Z,
a contradiction. Thus, the image of an edge is either an edge or K.

Suppose that T(F) = K for some edge F. Then, since T(Kn) = Kn, there is some edge whose image
dominates more than one edge, a contradiction by the paragraph above. Thus, the image of an edge is an
edge. and since T(Kn) = Kn, it follows that T is bijective on the set of edges, and hence bijective on Gn.
By Lemma 6, T is a vertex permutation.

Theorem 1. Let k be a nonnegative integer. Let n ≥ 6 if k = 0 or 1, and n ≥ 8 + ϕ(k − 1) if k ≥ 2. Let
T : Gn → Gn be a linear operator. Then, the following are equivalent:

(1) T strongly preserves genus k;
(2) T is bijective and preserves genus k;
(3) T preserves genus k and genus k + 1;
(4) T preserves genus k and T(Kn) = Kn;
(5) T preserves genus k and T maps edges to edges, for k ≥ 1;
(6) T is a vertex permutation.

Proof. Clearly, (6) implies all the other five statements.
By Lemma 4, we have (1) implies (6). By Lemma 5, (2) implies (6).
Suppose that T preserves genus k and genus k + 1. By Lemma 3, T is bijective, and hence, by Lemma 5,

T is a vertex permutation. Thus, (3) implies (6).
By Lemma 7, (4) implies (6), and by Lemma 6 we have (5) implies (6). We now have established

all equivalences.
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4. Conclusions

In this paper, we investigated the linear operators that preserve the genus of a graph. Thus we proved
that such linear operators are necessarily vertex permutations. We also obtained some characterizations of
the linear operators that preserve the genus of a graph, say, the linear operator that preserves consecutive
two genus of a graph. For further research, we conjecture that the linear operator which preserves any two
genus of a graph should be the vertex permutation.
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