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Abstract: The present paper comprises the study of certain functions which are analytic and
defined in terms of reciprocal function. The reciprocal classes of close-to-convex functions and
quasi-convex functions are defined and studied. Various interesting properties, such as sufficiency
criteria, coefficient estimates, distortion results, and a few others, are investigated for these newly
defined sub-classes.
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1. Introduction

We denote by A the class of analytic functions on the unit disc U = {z € C : |z| < 1} having the
following taylor series representation:

flz)=z+ i anz". 1)
n=2

The analytic function f will be subordinate to an analytic function g, if there exists an analytic
function w, known as a Schwarz function, with w (0) = 0 and |w(z)| < |z|, such that f(z) = g(w(z)).
Moreover, if the function g is univalent in U, then we have the following (see [1,2]):

f(z2) <8(z), zeU <= f(0)=g(0) and f(U)Cg(U).

Uralegaddi et al. [3] introduced the reciprocal classes M () of starlike and N (7) of convex
functions for 1 < ¢ < %, which were further studied by Owa et al. [4-6] for the values v > 1.
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The classes M (1) of starlike functions and N () of reciprocal order convex functions vy, (y > 1) are
defined as follows:

M(y) = {fGA:i)‘ier]:;S) <'y,z€U},

1!
N(y) = {feA:‘)%{l—ka (Z)} <7, ZGU}.
f'(z)

Using the same concept, together with the idea of k-uniformly starlike and < ordered convex
functions, Nishiwaki and Owa [7] defined the reciprocal classes of uniformly starlike MD (k, y) and
convex functions N'D (k, y). The class MD (k, y) denotes the subclass of A consisting of functions f
satisfying the inequality

) _ |2
f(z) f(z)
for some v (v > 1) and k (k <0) and the class N'D (k, ) denotes the subclass of A consisting of
functions f(z) satisfying the inequality

’+7,@€U%

gicf@»’<7+kV4%aY_1

o O

for some ¥ (v > 1) and k (k <0). They also proved that the well-known Alexander relation holds
between MD (k,y) and N'D (k, y) . This means that

fEND(K,y) < zf'e MD(k7).

For a more detailed and recent study on uniformly convex and starlike functions,
we refer the reader to [8-12].
Considering the above defined classes, we introduce the following classes.

Definition 1. Let f belong to A. Then, it will belong to the class KD (B, 7y) if there exists g € MD (vy)
such that

%{i$?<ﬁ (ze ), @)

for some B,y > 1.

Definition 2. Let f belong to A. Then, it will belong to the class QD (B, ) if there exists g € N'D ()

such that
(zf'(2))’
SRe{ () } <B, (zeU), (3)

for some B,y > 1.
It is clear, from (2) and (3), that
f(z)€eQ@D(B,y) & zf'(z) eKD(B7).

Definition 3. Let f belong to A. Then, it will belong to the class KD (k, B, y) if there exists g € MD (k, )

such that £2)
e 6 ek

2f'(2) _ .
@) 1'+[5, (z €U, 4)

for somek < 0and B,y > 1.
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Definition 4. Let f belong to A. Then, it is said to be in the class QD (k, B,y) if there exists g € N'D (k,y)
such that )
!
me CLEN
8'(2)

forsomek < 0and B,y > 1.

(zf'(2))’
8'(z)

-1+ (z€U), (5)

We can see, from (4) and (5), that the well-known relation of Alexander type holds between the
classes KD (k, B,y) and QD (k, B, v), which means that

f(z2)eQ@D(kpB7) < zf (2) eKD (kB 7).

2. Preliminary Lemmas

Lemma 1. For positive integers t and o, we have

L(0)j-1 (o)
"L G- G-y ©
where (0)¢ is the Pochhammer symbol, defined by
(o) = rif(:)t) =0(c+1)(c+2)(c+3)---(c+t—-1).
Proof. Consider
()i
TE G-
o o(c+2) oclc+2)---(c+t—2)
= a(1+a)(<1+§+ 553 +(+ §><-(--><(t—1))
o+2 o c(c+3)---(c+t—-2
= o{l+0) 2 1+§+“'+ 3x4x---x(t—1)
I G Lo N W a<v4+x4>---<(atft1)—z>)
B (c0+2)(c+3) (7+4) ((7+t—2)
= o+ = g g (t—l))
_ 0(14_0)(0—2%2)(0;-3 (7+4 1+£
_ 0(1—}—(7)(032)((7;_3 (7+4 t_t;l)
_ (o)
(t—1)r

O
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Proof. Using the definition , we write

e By

@) fl) 1’ T
)
< KkRe f(Z) + k,

which implies that

After simplification, we obtain

%ezjigij) < %, k<0, v>1).

As '1y : Ilcc > 1, we have f(z) € MD (ﬂ) . With this, we obtain the required result. O

Lemma 3. If f belongs to the class MD (k,y), then

jan| < (Sf’”_)’ﬁf, )
where 2y 1)
Uy =" - 8
Proof. Let us define a function
(-0 -a-0 (L)
ple) = S8/, ©
where p € P, the class of Caratheodory functions (see [1]). One may write
1 k) (v —
ZJJ;(S) _ (=K : (jk D) (10)
or
() = (15 - Topr@) £la) an
Let us write p(z) as p(z) =1+ OXO; pnz" and let f have the series form, as in (1). Then, (11) can be
written as "~

o o0 ’)/—k 7_1( o n))
nayz" = anz" — 1+ Pnz , a1 =1
Bt = (L) (15152 (0

n=1 n=1

which reduces to

[ee) o0 o 1 o0
Y napZ" = anz”> (1 - ’Ifk ) pnz”>

n=1 n=1
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This implies that

Y. (n1—1)a,z" = -2 ‘ii(iwn />

n=1

After comparing the n'" term’s coefficients, appearing on both sides, combined with the fact that
ag = 0, we obtain

—(r =
”":(n_l Z“]Pnf

Now, we take the absolute value and then apply the triangle inequality to get
|an]

,Y_l n—1
< I | pnil -
< Gmna-n g ol pe

Applying the coefficient estimates, such that |p,| < 2 (n > 1) for Caratheodory functions [1],
we obtain

20v-1)
< ——mF—— il
|a7’l‘ = (1’[ _ 1) (1 7k) ]; |LZ]|

0 n—1

Y% |aj], (12)
1 &

j=1

where 6y, = % We prove (7) by induction on n. Thus, first for n = 2, we obtain the following
from (12):

Sy (Oky)py
1 - @2-1n

This proves that, for n = 2, (7) is true. For n = 3, we obtain

(13)

Oy Sy (1+3kq) — (k)s s
oal < 5 (1+ fna]) = 2 B

This proves that when n = 3, (7) holds true. Now, we assume that for t < n, (7) is true, that means

( k,v) -
la;| < (t—lt)!l t=1,2,...,n. (14)
Using (12) and (14), we have
5k t /’Y l
o] < 52y < %0 G
j=1
After applying (6), we obtain
|a | ((skv) _ (‘Sk,'y)t
=1 =) T

As a result of mathematical induction, it is shown that (7) is true for all n > 2. Hence, the required
bound is obtained. O

Lemma 4 ([13]). Let w be analytic in U with w(0) = 0. If there exists zy € U such that

max |w(z)| = |w(zo)|,
|z[<|zo]



Mathematics 2019, 7, 309 60f 13

then

zow'(20) = cw(zo),

where c is real and ¢ > 1.

3. Main Results
Theorem 1. If f(z) € KD (k,B, ), then

f@)eKD(f:sy).

Proof. If f(z) € KD (k,B,7), thenk <0, B > 1, and so we obtain

w({15) < oo
c poon(E)

which leads to

(T @ e

After simplification, we obtain

2f'(2)\ _ B—k
%e{g(z)}<1—k' (k<0,6>1). (15)

This completes the proof. [

In a similar way, one can easily prove the following important result.

Theorem 2. If f € QD (k,B,y), then
B—k
feQbD (1 _k,'y> .

Theorem 3. If f(z) € KD (k,B, ), then

lan| < ((Skﬁ)nfl i "Skﬁ n_l ((Skﬁ)]‘fl
- n! no5 (G—1)
where Sy, is given by (8) and
2(Bp—1
Skp = % (16)

Proof. If f is in the class KD(k, B, v), then there exists g(z) € MD (k, ) such that the function

(-0 - -0 (LE)
p(z) = 51 (17)

belongs to P. Therefore, we write

of'(2) = P Xe(e) - B Lsa)pla). 18)
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Let us write p(z) as p(z) = 1+ Yo puz", g(z) as g(z) = z+ Y5, byz", and let f(z) have the
series form as in (1). Then, (18) can be written as

z+2nanz”—ﬁ< +anz ) R <1+anz ) <z+2bnz”>.
n=2 —k n=2
Comparing the nth term'’s coefficients on both sides, we obtain

:B_

T k[Pn 1+ Pu—2br + pu_zbs+ ... 4+ p1by_1].

na, = b, —
By taking the absolute value, we get
'5 -

nlay| = |bn— — [Pn 1+ Pu—abr + pu_3bs + ...+ p1by_1]

|b|+'B |Pn 1+ Pn—2by+pu_3bs+ ... 4+ piby_1].

IN

Applying the triangle inequality, we obtain

B—

nlay| < \an‘ k{|Pn 1|+ [pn—2ba| + [pn—3bs3| + ...+ |p1by_1]}- (19)

AsRe{p(z)} > 0in U, we have |p,| <2 (n > 1) (see [1]). Then, from (19), we have

nlﬂn| < |bn|+ Z

where by = 1. Using Lemma (3), we obtain

(5k “r) ‘Sk 'Y) 1
< n— 1 j=
where 6 g = % and 0 , is defined by (8). This can be written as

(5k,7)n 1 B (‘Skﬂ)]’q
lan] < = +7]Z; G-

This completes the proof. O

From Definition 4 and Theorem 2, we immediately get the following corollary.

Corollary 1. If f(z) € QD(k,B, ), then

where Sy, g and by, are given by (16) and (8), respectively.

By taking k = 0 in the above results, we obtain the coefficient inequality for the classes D(B, )
and QD(B, ).
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Theorem 4. If a function f € KD(k, B, ), then there exists § € MD(k,y) such that

ZQS) <1+2(p1—1) - 2(51__21), (z€ ), (20)
where ‘
p=b=r @
Proof. Let f(z) € KD(k,B,v). Then, there exists g(z) in MD(k,y) and a Schwarz function w(z)
such that £2)
zf'(z
p- (45 1t -
p1—1 1—w(z)’
as w(z) is analytic U with w(0) = 0 and
Re <ijigg;) >0, (zel).
So, from (22), we obtain
zf'(z) B B 1+ w(z)
- Ao ()
_ Bl -w(z) = (f—1) (1 +w(z))
1—w(z)
1+ w(z) —2B1w(z)
N 1—w(z)
_ 1-w(z) =21 -1 w(z)
B 1—w(z)
_ 1-w@)+2B1—1) =21 —Dw(z) —2(f1 —1)
1—w(z)
_ l-w@ 42— (A -w(z) —2(f1—1)
n 1—w(z) '
This implies that
z2f'(z) _ 2(f1—1)
FEN R R =k
and hence , ) .
Zg(g) <1+2(p1-1) — 7(51__2 ), zew),
which is as required in (20). O
Corollary 2. If f € QD(k, B, ), then there exists g € N'D (k,7y) such that
(Zg,((j))) <1+42(B1—1) - 2831__2)1), (z € U), (23)
where By is given by (21).
Theorem 5. If f € KD(k,B,y), then there exists a function § € MD (k, ) such that
1— (21— 1)r <mezf’(z) < 14+ (261 —1)r (24)

1—r - g(z) — 1+7r
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where |z| = r < 1 and By is given by (21).

Proof. Using Theorem 4, we define the function ¢ as follows

¢(z):1+2(,81—1)+2(17:51),(26U).

Letting z = r¢’? (0 < r < 1), we observe that

2(1-p1) (1—rcos(9).

= -1
Regp(z) =1+2(p1 — 1) + 1472 —2rcosf

Let us define
1—rt

= —-—-—— t: 6 .
1+r2—2rt'( cos )

¥(t)
r(1—r?)

A ey

> 0 (since r < 1), we get

1“(51‘1”@9‘@(2) §1+2(ﬁ1—1)+%.

After simplification, we have

1— (21— 1)r

281 —)r
1—7r ’

1
< Rep(z) < . (l +r

/
With the fact that Zj; (S) < ¢(z), (z € U) and as ¢ is univalent in U, by using (22), we get the

required result. [
Corollary 3. If f € QD(k, B, ), then there exists g € N'D (k, ) such that

1— (2B —)r (zf'(z)) _ 1+ (2B —Dr
1—7r < Re <'(z) = 1+7r ! (25)

where |z| = r < 1 and By is given by (21).

Theorem 6. Assume that a function f € A satisfies

) e
for some g(z) € MD (k,y) and for real By given by (21). If
e
"=

is analytic in U and ¢(z) # 0and ¢(z) # 21 —1in U, then f € KD(k, B1).

Proof. Let us define a function w(z) by
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Then, w(z) is analytic in U as ¢(z) # 2p; — 1 and

_2f(2) _ 1+ (1-28)w(2)

¢(z) ¢(2) = 1—w(z) . (27)
Because ¢(z) # 0, we use logarithmic differentiation to get
1 e gE)_ (-280wE) |, w()
z flz) gz) 1+(1-2B)w(z) 1-w(z)
which further yields
e ), (- | w(e) o8
g(z) f'(z) 1+(1-2B1)w(z) 1—w(z)

Then, we note that w is analytic in open unit disk and w(0) = 0. Therefore, from (28), we obtain

e (zg'(z) B zf”(z)> ~ e (1 (=280 (x)  zw'(2) >

g(z)  f(z) 1+(1-26)w(z) 1—w(z)
B1+1
> .
2p1
Suppose there exists a point zg € U such that
max [w(z)| = [w(z)| =1,
|z[<]zol

then, by Lemma 4, we can write w(zg) = ¢’ and zow’(z9) = ce’® for a point zp, and we have

z08'(z0)  z0f"(20)
n (2 -t

(1—2B1) ce® ce'?

- (- e 1)

B (1 =2B1) (¢ + (1-281)) c(1—e"?)
s'Re<l 1—|—(1—2,81)2—0—2(1—2[$1)c059+2(1C059)>
c(2p1—1)[cosO+(1—-2p1)] ¢

1+ (1-21)*+2(1—2B1)cosd 2

< 1 @1

2B 2
_ B

2B

-1
< 1—[&l ,asc <1

2p1
. pi+1

261

which gives that
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which is the contradiction to the supposed condition (26). Hence, there is no zyp € U such that
|w(zp)| = 1. This implies that |w(z)| < 1, (z € U) and, therefore, by (27), we have

2f'(z) 11— (261~ 1)z
gz | 1-z

me{zggg)} < B, zeU.

Hence, we conclude that f(z) € KD(k,1). O

or

Theorem 7. Assume thatk < 0and p > 1. If f € A and if there exists g € MD (k,y) such that

Zgg)—1‘<f:k zel, (29)
then f € KD(k, B, 7).
Proof. We have
2f'(z) _ ’ p1
() 1—k
= (1-k) ZQS) —1’+1</3
e o Rt o I
- it g .

= feKD(kpB,7).
O

Corollary 4. Let f € A have the form (1). Assume that § = z + byz? + - - - belongs to the class MD (k, )
and satisfies

Yo 5 (nay — by)z" 1 g—1
T4y, by 1 < T % ze T, (30)
for some k (k <0), B(B>1).
Then, f(z) € KD(k, B, 7).
Proof. We have
2f(2) ‘
-1
8(z)
z 4+ E nayz"
n=2
e
z+4+ Y byz"
n=2
_ Yoo (nay —by)z" !
1 + 21;.0:2 an”*1

o B-1
1—k’

ey

and hence (29) follows immediately from (30). O
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Theorem 8. Let f € A have the form (1) and let § = z+ ;"5 byz", belonging to the class MD (k, ), satisfy

1+iz(n|an|+y|bn\)<y zel, (31)
e
for some k (k <0), B(B > 1) and where
1= {5 >
Then, f(z) € KD(k, B, 7).

Proof. Consider

1+ 3 (nlea] +y ) < @)

n—

= 14+ ) nlaa| <y—y)_ |b
n=2 n=2

= O<y—y2|bn|
n=2

= 0<y—y)_ |blz""|
n=2

= 0<y[1+ Y biz"|. (33)

n=2

We have
T+ ) (n]an] +ylbal) <y
n=2
= 14+ Zn|an| <y—yz |by |
n=2 n=2

[e¢] [ee]
= 1+ ) nlan| 2" <y —y ) [ballz" ]

n=2 n=2
[ee] [ee]
= |1+) na,z" <y (1+ ) b,z 1
n=2 n=2
1+ Y, nayz" !
= 3 <V,
‘ 14y, bzt | Y

from (33). By (30), it follows that f € KD(k,B,v). O
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