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Abstract: In this article, our main purpose is to introduce a new and generalized quadratic Gauss
sum. By using analytic methods, the properties of classical Gauss sums, and character sums, we
consider the calculating problem of its fourth power mean and give two interesting computational
formulae for it.

Keywords: the generalized quadratic Gauss sums; the fourth power mean; analytic method;
computational formula

MSC: 11L05, 11L40

1. Introduction

For any integer q > 1, let χ denote any Dirichlet character mod q. Then the classical Gauss sum
τ(χ, m; q) is defined as follows:

τ(χ, m; q) =
q

∑
a=1

χ(a)e
(

am
q

)
,

where m is any integer and e(y) = e2πiy.
If (m, q) = 1 or χ is a primitive character mod q, then it is easy to prove the identity τ(χ, m; q) =

χ(m)τ(χ, 1; q), and τ(χ, 1; q) is called the classical Gauss sum. Usually, we denote τ(χ, 1; q) as τ(χ).
The generalized quadratic Gauss G(χ, m; q) is defined as

G(χ, m; q) =
q

∑
a=1

χ(a)e
(

ma2

q

)
. (1)

These sums have an important status in the research of analytic number theory. Many famous
number theory problems are closely related to them. Therefore, these Gauss sums have been studied
by many scholars, and they also have a series of interesting conclusions. For example, Zhang Wenpeng
and Hu Jiayuan [1] proved that for any prime p with p ≡ 1 mod 3 and any third-order character
ψ mod p, one has the equation

τ3(ψ) + τ3 (ψ) = dp,

where d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.
Chen Li [2] proved that for any prime p with p ≡ 1 mod 6 and any sixth-order character λ mod p,

one gets the identity

τ3(λ) + τ3 (λ) =
 p

1
2

(
d2 − 2p

)
if p = 12h + 1,

−i · p
1
2

(
d2 − 2p

)
if p = 12h + 7,
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where i2 = −1, d is the same as in the above.
Recently, the classical Gauss sum is also researched by Wang Tingting and Chen Guohui [3].

They proved that

Wk(p, χ) =
τ6k (χ)

τ6k (χ5)
+

τ6k (χ)

τ6k
(
χ5)

satisfying the second-order linear recurrence Formula

Wk+1(p, χ) =
2p2 − 4pd2 + d4

p2 Wk(p, χ)−Wk−1(p, χ),

where W0(p, χ) = 2, W1(p, χ) = 2p2−4pd2+d4

p2 , p is a prime with p ≡ 1 mod 12, χ be any twelfth-order
character mod p, and d is the same as before.

From the properties of the second-order linear recurrence sequence, we may easily calculate the
general terms Wk(χ, p) for any positive integer k. That is,

Wk(χ, p) =

(
β +

√
β2 − 4

2

)k

+

(
β−

√
β2 − 4

2

)k

,

where β = 2p2−4pd2+d4

p2 .
For any odd prime p and any integer n with (n, p) = 1, Zhang Wenpeng [4] obtained the identities

∑
χ mod p

|G(χ, n; p)|4 =


(p− 1)

(
3p2 − 6p− 1

)
if p ≡ 3 mod 4,

(p− 1)
(

3p2 − 6p− 1 + 4
(

n
p

)
√

p
)

if p ≡ 1 mod 4

and

1
p− 1 ∑

χ mod p
|G(χ, n; p)|6 = 10p3 − 25p2 − 4p− 1, if p ≡ 3 mod 4.

Many other papers related to classical Gauss sums, generalized quadratic Gauss sums, and
character sums can also be found in references [5–18], we do not enumerate them one by one here.

In this paper, we introduce a generalized quadratic Gauss sum as follows:

G(χ1, χ2, · · · , χk; q)

=
q

∑
a1=1

q

∑
a2=1
· · ·

q

∑
ak=1

χ1(a1)χ2(a2) · · · χk(ak)e

(
(a1 + a2 + · · ·+ ak)

2

q

)
, (2)

where k is any positive integer and χi mod q, 1 ≤ i ≤ k.
In fact, if we take k = 1, then (2) becomes (1) with m = 1. So (2) is also a generalized quadratic

Gauss sum, and (1) is a special case of (2). Therefore, G(χ1, χ2, · · · , χk; q) is a further promotion and
extension of G(χ, 1; q).

We will consider the 2h-th power mean of (2) in this paper. i.e.,

∑
χ mod q

∣∣∣∣∣ q

∑
a1=1

q

∑
a2=1
· · ·

q

∑
ak=1

χ1(a1)χ2(a2) · · · χk(ak)e

(
(a1 + a2 + · · ·+ ak)

2

q

)∣∣∣∣∣
2h

. (3)

If q = p is an odd prime and k = h = 2, then we will use the analytic method and the properties
of classical Gauss sums to give an exact computational formula for (3). That is, we shall prove the
following results:
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Theorem 1. Let p be a prime with p ≡ 3 mod 4. Then for any character ψ mod p, we have the identity

1
p− 1 ∑

χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(b)e
(
(a + b)2

p

)∣∣∣∣∣
4

=


p5 − 7p4 + 17p3 − 10p2 − 12p− 1 if ψ = χ0,
3p4 − 6p3 − p2 if ψ(−1) = −1,
3p4 + E(ψ, p) if ψ(−1) = 1 and ψ 6= χ0,

where χ0 denotes the principal character mod p, and |E(ψ, p)| ≤ 23p3.

Theorem 2. Let p be a prime with p ≡ 1 mod 4. Then for any character ψ mod p, we have the identity

1
p− 1 ∑

χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)e

(
(a + b)2

p

)∣∣∣∣∣
4

= p5 − 7p4 + 17p3 − 6p2 − 24p− 1 + 4
√

p
(

p3 − 5p2 + 7p + 1
)

and

1
p− 1 ∑

χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(b)e

(
(a + b)2

p

)∣∣∣∣∣
4

=

{
3p4 − 6p3 − p2 + 4p

5
2 if ψ(−1) = −1,

3p4 + H(ψ, p) if ψ(−1) = 1 and ψ 6= χ0,

where H(ψ, p) satisfies the estimate |H(ψ, p)| ≤ 22p3.

Theorem 3. Let p be an odd prime, ψ be a fixed non-principal character mod p. Then for any character
χ mod p, we have the upper bound estimate

|G(χ, ψ; p)| ≤ 2p.

From Theorem 1 and Theorem 2 we may immediately deduce the following:

Corollary 1. Let p be an odd prime. Then for any odd character ψ mod p, we have the identity

1
p− 1 ∑

χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(b)e

(
(a + b)2

p

)∣∣∣∣∣
4

=

{
3p4 − 6p3 − p2 if p ≡ 3 mod 4,
3p4 − 6p3 − p2 + 4p

5
2 if p ≡ 1 mod 4.

Corollary 2. Let p be an odd prime. Then for any non-principal character ψ mod p, we have the asymptotic
formula

∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(b)e

(
(a + b)2

p

)∣∣∣∣∣
4

= 3p5 + K(ψ, p),

where K(ψ, p) satisfies the estimate |K(ψ, p)| ≤ 23p4.
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Some notes: If ψ is a non-principal even character mod p, then we cannot get the exact value of
the sum ∣∣∣∣∣p−1

∑
a=1

ψ(a)e
(

a2

p

)∣∣∣∣∣
4

.

So, in this case, we can only get a sharp asymptotic formula for mean value (3).
It is clear that if q = p is an odd prime and k ≥ 3, maybe we can also give an accurate calculating

formula for mean value (3). However, in this case, various discussions are required based on the
different characters χi mod p with 1 ≤ i ≤ k, and the situation is more complicated, so we do not
discuss it further here.

If p ≡ 3 mod 4 and ψ = χ0 or ψ(−1) = −1, then from the result in [4] and the method of proving
Theorem 1 we can also give an accurate calculating formula for (3) with k = 3 and k = 2.

For general integer q, does there exist a calculating formula similar to our theorems? These are
open problems, which need to be further studied.

2. Several Simple Lemmas

To prove our theorems, we need two simple lemmas. In the process of proving our lemmas, we
need to use some basic properties of classical Gaussian sums and character sums, all of which can be
found in references [3,6,19], so there is no need to repeat them here.

Lemma 1. Let p be a prime. For any character χ, ψ mod p with χ(−1)ψ(−1) = 1, if p ≡ 3 mod 4, then we
have the identity

|G(χ, ψ; p)|2 =



p(p− 2)2 + 1 if χ = ψ = χ0(
p2 + p

)
if χψ = χ0 and χ 6= χ0,

p ·
∣∣∣∣∣p−1

∑
b=1

χ(b)ψ(b)e
(

b2

p

)∣∣∣∣∣
2

if χψ 6= χ0 and χ 6= χ0,∣∣∣∣∣p−1

∑
b=1

ψ(b)e
(

b2

p

)∣∣∣∣∣
2

if χ = χ0 and ψ 6= χ0;

If p ≡ 1 mod 4, then we have the identity

|G(χ, ψ; p)|2 =



(1 +
√

p(p− 2))2 if χ = ψ = χ0

(p−√p)2 if χψ = χ0 and χ 6= χ0,

p ·
∣∣∣∣∣p−1

∑
b=1

χ(b)ψ(b)e
(

b2

p

)∣∣∣∣∣
2

if χψ 6= χ0 and χ 6= χ0,∣∣∣∣∣p−1

∑
b=1

ψ(b)e
(

b2

p

)∣∣∣∣∣
2

if χ = χ0 and ψ 6= χ0,

where χ0 denotes the principal character mod p.

Proof. First, if χ(−1)ψ(−1) = −1, then we have G(χ, ψ; p) = 0. In fact, if χ(−1)ψ(−1) = −1, then
from the definition of G(χ, ψ; p) we have

G(χ, ψ; p) =
p−1

∑
a=1

p−1

∑
b=1

χ(−a)ψ(−b)e
(
(−a− b)2

p

)

= χ(−1)ψ(−1)
p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(b)e
(
(a + b)2

p

)
= −G(χ, ψ; p),
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which implies the identity G(χ, ψ; p) = 0.
On the other hand, for any integer k with (k, p) = 1, from the properties of the Legendre’s symbol

mod p (see Theorem 7.5.4 in [3]) we have

p−1

∑
a=0

e
(

ka2

p

)
= 1 +

p−1

∑
a=1

(1 + χ2(a)) e
(

ka
p

)

=
p−1

∑
a=1

χ2(a)e
(

ka
p

)
= χ2(k) · τ (χ2) , (4)

where χ2 =
(
∗
p

)
denotes the Legendre’s symbol mod p.

Now if χ = ψ = χ0, then we have

G(χ, ψ; p) =
p−1

∑
a=1

p−1

∑
b=1

e
(
(a + b)2

p

)
=

p−1

∑
a=1

p−1

∑
b=1

e
(

b2(a + 1)2

p

)

= (p− 1) +
p−2

∑
a=1

(
p−1

∑
b=0

e
(

b2(a + 1)2

p

)
− 1

)

= 1 +
p−2

∑
a=1

p−1

∑
b=0

e
(

b2

p

)
= 1 + (p− 2)τ (χ2) . (5)

If χψ = χ0 and χ 6= χ0, then applying the properties of the reduced residue system mod p and
(4) we have

G(χ, ψ; p) =
p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(b)e
(
(a + b)2

p

)
=

p−1

∑
a=1

χ(a)
p−1

∑
b=1

χ(b)ψ(b)e
(

b2(a + 1)2

p

)

= χ(p− 1)(p− 1) +
p−2

∑
a=1

χ(a)

(
p−1

∑
b=0

e
(

b2(a + 1)2

p

)
− 1

)

= χ(−1)p +
p−2

∑
a=1

χ(a)
p−1

∑
b=0

e
(

b2

p

)
= χ(−1) (p− τ (χ2)) . (6)

If χ 6= χ0 and χψ 6= χ0, then we have

G(χ, ψ; p) =
p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(b)e
(
(a + b)2

p

)
=

p−1

∑
a=1

χ(a)
p−1

∑
b=1

χ(b)ψ(b)e
(

b2(a + 1)2

p

)

=
p−2

∑
a=1

χ(a)χ(a + 1)ψ(a + 1)
p−1

∑
b=1

χ(b)ψ(b)e
(

b2

p

)

=
p−1

∑
a=1

χ (1− a)ψ(a)
p−1

∑
b=1

χ(b)ψ(b)e
(

b2

p

)
. (7)

Please note that the identity

p−1

∑
a=1

χ (1− a)ψ(a) =
1

τ (χ)

p−1

∑
a=1

ψ(a)
p−1

∑
b=1

χ(b)e
(

b(1− a)
p

)

=
1

τ (χ)

p−1

∑
b=1

χ(b)e
(

b
p

) p−1

∑
a=1

ψ(a)e
(
−ab

p

)
=

ψ(−1)τ(ψ) · τ
(
χψ
)

τ (χ)
. (8)
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Combining (7), (8) and |τ(ψ)| =
∣∣τ (χψ

)∣∣ = |τ (χ)| = √p we have

|G(χ, ψ; p)|2 = p ·
∣∣∣∣∣p−1

∑
b=1

χ(b)ψ(b)e
(

b2

p

)∣∣∣∣∣
2

. (9)

For any even character ψ mod p with ψ 6= χ0, we have

G(χ0, ψ; p) =
p−1

∑
a=1

p−1

∑
b=1

ψ(b)e
(
(a + b)2

p

)
=

p−1

∑
a=1

p−1

∑
b=1

ψ(b)e
(

b2(a + 1)2

p

)

=
p−2

∑
a=1

ψ (a + 1)
p−1

∑
b=1

ψ(b)e
(

b2

p

)
= −

p−1

∑
b=1

ψ(b)e
(

b2

p

)
. (10)

Please note that if p ≡ 1 mod 4, then τ (χ2) =
√

p, and if p ≡ 3 mod 4, then τ (χ2) = i · √p. So,
from (5), (6), (9) and (10) we may deduce Lemma 1 immediately.

Lemma 2. Let p be a prime. Then for any Dirichlet character ψ mod p, we have the identity

∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

χ(a)ψ(a)e
(

a2

p

)∣∣∣∣∣
4

=

 (p− 1)
(

3p2 − 6p− 1
)

if p ≡ 3 mod 4,

(p− 1)
(

3p2 − 6p− 1 + 4
√

p
)

if p ≡ 1 mod 4.

Proof. It is clear that if χ(−1)ψ(−1) = −1, then we have

p−1

∑
a=1

χ(a)ψ(a)e
(

a2

p

)
= 0.

If χψ 6= χ0 and χ(−1)ψ(−1) = 1, then from (4) and the properties of the reduced residue system
mod p we have∣∣∣∣∣p−1

∑
a=1

χ(a)ψ(a)e
(

a2

p

)∣∣∣∣∣
2

=
p−1

∑
a=1

χ(a)ψ(a)
p−1

∑
b=1

e

(
b2 (a2 − 1

)
p

)

= (1 + χ(−1)ψ(−1)) (p− 1) +
p−2

∑
a=2

χ(a)ψ(a)

(
p−1

∑
b=0

e

(
b2 (a2 − 1

)
p

)
− 1

)

= 2p + τ (χ2) ·
p−2

∑
a=2

χ(a)ψ(a)χ2

(
a2 − 1

)
−

p−1

∑
a=1

χ(a)ψ(a)

= 2p + τ (χ2) ·
p−1

∑
a=1

χ(a)ψ(a)χ2

(
a2 − 1

)
. (11)

If ψ = χ0 and p ≡ 3 mod 4, then from (11) and the orthogonality of the characters mod p we
have

∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

χ(a)ψ(a)e
(

a2

p

)∣∣∣∣∣
4

= ∑
χ mod p
χ(−1)=1

∣∣∣∣∣2p + τ (χ2) ·
p−1

∑
a=1

χ(a)χ2

(
a2 − 1

)∣∣∣∣∣
2

+ |τ (χ2)− 1|4

−
∣∣∣∣∣2p + τ (χ2) ·

p−1

∑
a=1

χ2

(
a2 − 1

)∣∣∣∣∣
2
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= 2p2(p− 1) + 4pτ(χ2)
p−1

∑
a=1

χ2

(
a2 − 1

)
∑

χ mod p
χ(a) + |τ (χ2)− 1|4

+τ2(χ2)
p−1

∑
a=1

p−1

∑
b=1

χ2

(
a2 − 1

)
χ2

(
b2 − 1

)
∑

χ mod p
χ(ab)− 4p2

= 2p2(p− 1) + (p− 1)τ2(χ2)
p−1

∑
a=1

χ2

(
a2 − 1

)
χ2

(
a2 − 1

)
− 3p2 + 2p + 1

= 2p2(p− 1) + p(p− 1)(p− 3)− 3p2 + 2p + 1

= (p− 1)
(

3p2 − 6p− 1
)

. (12)

If ψ = χ0 and p ≡ 1 mod 4, then note that the identity

p−1

∑
a=1

(
a2 − 1

p

)
=

p−1

∑
a=1

(
a2 + 2a

p

)
− 1 =

p−1

∑
a=1

(
1 + 2a

p

)
− 1 = −2,

from the method of proving (12) we have

∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

χ(a)ψ(a)e
(

a2

p

)∣∣∣∣∣
4

= 2p2(p− 1) + p(p− 1)(p− 3) + (
√

p− 1)4 −
(

2p +
√

p
p−1

∑
a=1

χ2

(
a2 − 1

))2

= 2p2(p− 1) + p(p− 1)(p− 3) + (p + 1− 2
√

p)2 − (2p− 2
√

p)2

= (p− 1)
(

3p2 − 6p− 1 + 4
√

p
)

. (13)

If ψ 6= χ0 and p ≡ 3 mod 4, then from (11) and the method of proving (12) we also have
the identity

∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

χ(a)ψ(a)e
(

a2

p

)∣∣∣∣∣
4

= ∑
χ mod p

χ(−1)=ψ(−1)

∣∣∣∣∣2p + τ (χ2) ·
p−1

∑
a=1

χ(a)ψ(a)χ2

(
a2 − 1

)∣∣∣∣∣
2

+ |τ (χ2)− 1|4

−
∣∣∣∣∣2p + τ (χ2) ·

p−1

∑
a=1

χ2

(
a2 − 1

)∣∣∣∣∣
2

= ∑
χ mod p
χ(−1)=1

∣∣∣∣∣2p + τ (χ2) ·
p−1

∑
a=1

χ(a)χ2

(
a2 − 1

)∣∣∣∣∣
2

+ |τ (χ2)− 1|4

−
∣∣∣∣∣2p + τ (χ2) ·

p−1

∑
a=1

χ2

(
a2 − 1

)∣∣∣∣∣
2

= (p− 1)
(

3p2 − 6p− 1
)

. (14)
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Similarly, if ψ 6= χ0 and p ≡ 1 mod 4, then from (11) and the method of proving (13) we have
the identity

∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

χ(a)ψ(a)e
(

a2

p

)∣∣∣∣∣
4

= (p− 1)
(

3p2 − 6p− 1 + 4
√

p
)

. (15)

Now Lemma 2 follows from (12), (13), (14) and (15).

3. Proofs of the Theorems

In this section, we shall complete the proofs of our theorems. First we prove Theorem 1.
If p ≡ 3 mod 4, let ψ be any character mod p, if ψ = χ0, then from Lemma 1 and Lemma 2 we have

∑
χ mod p

|G(χ, ψ; p)|4 = ∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)e

(
(a + b)2

p

)∣∣∣∣∣
4

= ∑
χ mod p
χ(−1)=1

∣∣∣∣∣τ(χ2)
p−1

∑
a=1

χ(a)−
p−1

∑
a=1

χ(a)e
(

a2

p

)∣∣∣∣∣
4

= ∑
χ mod p

∣∣∣∣∣p−1

∑
b=1

χ(b)e
(

b2

p

)∣∣∣∣∣
4

+
(

1 + (p− 2)2 p
)2
− |τ(χ2)− 1|4

= (p− 1)
(

3p2 − 6p− 1
)
+
(

1 + (p− 2)2 p
)2
− (p + 1)2

= (p− 1)
(

p5 − 7p4 + 17p3 − 10p2 − 12p− 1
)

. (16)

If ψ 6= χ0, then from Lemma 1 and Lemma 2 we have

∑
χ mod p

|G(χ, ψ; p)|4 = ∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(a)e

(
(a + b)2

p

)∣∣∣∣∣
4

= p2 · ∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

χ(a)ψ(a)e
(

a2

p

)∣∣∣∣∣
4

+
(

1− p2
) ∣∣∣∣∣p−1

∑
b=1

ψ(b)e
(

b2

p

)∣∣∣∣∣
4

= (p− 1)

3p4 − 6p3 − p2 − (p + 1)

∣∣∣∣∣p−1

∑
b=1

ψ(b)e
(

b2

p

)∣∣∣∣∣
4
 . (17)

Please note that if ψ(−1) = −1, then we have

p−1

∑
b=1

ψ(b)e
(

b2

p

)
= 0. (18)

If ψ(−1) = 1 and ψ 6= χ0, then we have the estimate∣∣∣∣∣p−1

∑
b=1

ψ(b)e
(

b2

p

)∣∣∣∣∣ ≤ 2
√

p. (19)

Combining (16)–(19) we may immediately deduce Theorem 1.
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Similarly, we can use the method of proving Theorem 1 to prove Theorem 2. If p ≡ 1 mod 4 and
ψ = χ0, then from Lemma 1 and Lemma 2 we have

∑
χ mod p

|G(χ, m; p)|4 = ∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)e

(
(a + b)2

p

)∣∣∣∣∣
4

= ∑
χ mod p
χ(−1)=1

∣∣∣∣∣τ(χ2)
p−1

∑
a=1

χ(a)−
p−1

∑
a=1

χ(a)e
(

a2

p

)∣∣∣∣∣
4

= ∑
χ mod p

∣∣∣∣∣p−1

∑
b=1

χ(b)e
(

b2

p

)∣∣∣∣∣
4

+ (1 + (p− 2)
√

p)4 − (
√

p− 1)4

= (p− 1)
(

3p2 − 6p− 1 + 4
√

p
)
+ (1 + (p− 2)

√
p)4 − (

√
p− 1)4

= (p− 1)
[

p5 − 7p4 + 17p3 − 6p2 − 24p− 1 + 4
√

p
(

p3 − 5p2 + 7p + 1
)]

or

1
p− 1 ∑

χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)e

(
(a + b)2

p

)∣∣∣∣∣
4

= p5 − 7p4 + 17p3 − 6p2 − 24p− 1 + 4
√

p
(

p3 − 5p2 + 7p + 1
)

. (20)

If p ≡ 1 mod 4 and ψ 6= χ0, then form Lemma 1 and Lemma 2 we have

∑
χ mod p

|G(χ, ψ; p)|4 = ∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

p−1

∑
b=1

χ(a)ψ(a)e

(
(a + b)2

p

)∣∣∣∣∣
4

= p2 · ∑
χ mod p

∣∣∣∣∣p−1

∑
a=1

χ(a)ψ(a)e
(

a2

p

)∣∣∣∣∣
4

+
(

1− p2
) ∣∣∣∣∣p−1

∑
b=1

ψ(b)e
(

b2

p

)∣∣∣∣∣
4

= (p− 1)

3p4 − 6p3 − p2 + 4p
5
2 − (p + 1)

∣∣∣∣∣p−1

∑
b=1

ψ(b)e
(

b2

p

)∣∣∣∣∣
4
 . (21)

Combining (18)–(21) we complete the proof of Theorem 2.
For any characters χ and ψ mod p with ψ 6= χ0, applying (19) and Lemma 1 we may immediately

deduce the upper bound estimate
|G(χ, ψ; p)| ≤ 2p.

This completes the proof of Theorem 3.

4. Conclusions

The main results of this paper are Theorem 1, Theorem 2, and Corollary 1. They obtain some exact
expressions for the fourth power mean (3) with k = 2 and q = p, an odd prime. For Corollary 1 in
particular, the result is very simple and beautiful. These works have good references for further research
on generalized multivariate quadratic Gauss sums. In addition, these theorems also profoundly reveal
the regularity of the value distribution of this kind of new Gauss sum. In other words, its value is
mainly concentrated on G(χ0, χ0; p), where χ0 is the principal character mod p.

For the general integer q > 1 (or q = p and k ≥ 3), we also proposed two open problems. These
will contribute to the further study of these contents.



Mathematics 2019, 7, 258 10 of 10

Author Contributions: All authors have equally contributed to this work. All authors read and approved the
final manuscript.

Funding: This work is supported by the N. S. F. (11771351) and (11826205) of P. R. China.

Acknowledgments: The authors would like to thank the Editor and referees for their very helpful and detailed
comments, which have significantly improved the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, W.P.; Hu, J.Y. The number of solutions of the diagonal cubic congruence equation modp. Math. Rep.
2018, 20, 73–80.

2. Chen, L. On the classical Gauss sums and their some properties. Symmetry 2018, 10, 625. [CrossRef]
3. Wang, T.T.; Chen, G.H. A note on the classical Gauss sums. Mathematics 2018, 6, 313. [CrossRef]
4. Zhang, W.P. Moments of Generalized Quadratic Gauss Sums Weighted by L-functions. J. Number Theory

2002, 92, 304–314.
5. Chen, Z.Y.; Zhang, W.P. On the fourth-order linear recurrence formula related to classical Gauss sums.

Open Math. 2017, 15, 1251–1255.
6. Berndt, B.C.; Evans, R.J. The determination of Gauss sums. Bull. Am. Math. Soc. 1981, 5, 107–128. [CrossRef]
7. Bai, H.; Hu, J.Y. On the classical Gauss sum and the recursive properties. Adv. Differ. Equ. 2018, 2018, 387.

[CrossRef]
8. Shen, S.M.; Zhang, W.P. On the quartic Gauss sums and their recurrence property. Adv. Differ. Equ. 2017,

2017, 43. [CrossRef]
9. Chen, L.; Hu, J.Y. A linear Recurrence Formula Involving Cubic Gauss Sums and Kloosterman Sums.

Acta Math. Sin. 2018, 61, 67–72.
10. Chowla, S.; Cowles, J.; Cowles, M. On the number of zeros of diagonal cubic forms. J. Number Theory 1977,

9, 502–506. [CrossRef]
11. Berndt, B.C.; Evans, R.J. Sums of Gauss, Jacobi, and Jacobsthal. J. Number Theory 1979, 11, 349–389. [CrossRef]
12. Zhang, W.P.; Yi, Y. On Dirichlet characters of polynomials. Bull. London Math. Soc. 2002, 34, 469–473.
13. Zhang, W.P.; Yao, W.L. A note on the Dirichlet characters of polynomials. Acta Arith. 2004, 115, 225–229.

[CrossRef]
14. Zhang, H.; Zhang, W.P. The fourth power mean of two-term exponential sums and its application. Math. Rep.

2017, 19, 75–83.
15. Bourgain, J.; Garaev, M.Z.; Konyagin, S.V.; Shparlinski, I.E. On the hidden shifted power problem.

SIAM J. Comput. 2012, 41, 1524–1557. [CrossRef]
16. Zhang, W.P.; Liu, H.N. On the general Gauss sums and their fourth power mean. Osaka J. Math. 2005,

42, 189–199.
17. Weil, A. On some exponential sums. Proc. Natl. Acad. Sci. USA 1948, 34, 204–207. [CrossRef]
18. Hua, L.K. Introduction to Number Theory; Science Press: Beijing, China, 1979.
19. Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/sym10110625
http://dx.doi.org/10.3390/math6120313
http://dx.doi.org/10.1090/S0273-0979-1981-14930-2
http://dx.doi.org/10.1186/s13662-018-1804-7
http://dx.doi.org/10.1186/s13662-017-1097-2
http://dx.doi.org/10.1016/0022-314X(77)90010-5
http://dx.doi.org/10.1016/0022-314X(79)90008-8
http://dx.doi.org/10.4064/aa115-3-3
http://dx.doi.org/10.1137/110850414
http://dx.doi.org/10.1073/pnas.34.5.204
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Several Simple Lemmas
	Proofs of the Theorems
	Conclusions
	References

