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Abstract: In this paper, p-topologicalness (a relative topologicalness) in >-convergence spaces are
studied through two equivalent approaches. One approach generalizes the Fischer’s diagonal condition,
the other approach extends the Gähler’s neighborhood condition. Then the relationships between
p-topologicalness in >-convergence spaces and p-topologicalness in stratified L-generalized convergence
spaces are established. Furthermore, the lower and upper p-topological modifications in >-convergence
spaces are also defined and discussed. In particular, it is proved that the lower (resp., upper) p-topological
modification behaves reasonably well relative to final (resp., initial) structures.
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1. Introduction

The theory of convergence spaces [1] is natural extension of the theory of topological spaces.
The topologicalness is important in the theory of convergence spaces since it mainly researches the
condition of a convergence space to be a topological space. Generally, two equivalent approaches are
used to characterize the topologicalness in convergence spaces. One approach is stated by the well-known
Fischer’s diagonal condition [2], the other approach is stated by Gähler’s neighborhood condition [3].
In [4], by considering a pair of convergence spaces (X, p) and (X, q), Wilde and Kent investigated a kind
of relative topologicalness, called p-topologicalness. When p = q, p-topologicalness is equivalent to
topologicalness in convergence spaces. They also defined and discussed the lower and upper p-topological
modifications in convergence spaces. Precisely, for a pair of convergence spaces (X, p) and (X, q), the lower
(resp., upper) p-topological modification of (X, q) is defined as the finest (resp., coarsest) p-topological
convergence space which is coarser (resp., finer) than (X, q). Similarly, a topological modification of (X, q)
is defined as the finest topological convergence space which is coarser than (X, q).

Lattice-valued convergence spaces are common extension of convergence spaces and lattice-valued
topological spaces. It should be pined out that lattice-valued convergence spaces are established on the
basis of fuzzy sets. However, the lattice structure is used to replace the unit interval [0, 1] as the truth
table for membership degrees. In recent years, two kinds of lattice-valued convergence spaces received
much attention: (1) the theory of stratified L-generalized convergence spaces based on L-filters, which is
initiated by Jäger [5] and then developed by many researchers [6–25]; and (2) the theory of >-convergence
spaces based on >-filters, which is investigated by Fang [26] in 2017. The topologicalness in stratified
L-generalized convergence spaces was studied by Jäger [27–29] and Li [30,31], the p-topologicalness and
p-topological modifications in stratified L-generalized convergence spaces were discussed by Li [32,33].
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The topologicalness in >-convergence spaces was researched by Fang [26] and Li [34]. In this paper, we
shall consider the p-topologicalness and p-topological modifications in >-convergence spaces.

The contents are arranged as follows. Section 2 recalls some basic notions as preliminary. Section 3
discusses the p-topologicalness in >-convergence spaces by generalized Fischer’s diagonal condition
and generalized Gähler’s neighborhood condition, respectively. Then the relationships between
p-topologicalness in >-convergence spaces and p-topologicalness in stratified L-generalized convergence
spaces are established. Section 4 focuses on p-topological modifications in >-convergence spaces.
The lower and upper p-topological modifications in >-convergence spaces are defined and discussed.
Particularly, it is proved that the lower (resp., upper) p-topological modification behaves reasonably well
relative to final (resp., initial) structures.

2. Preliminaries

Let L be a complete lattice with the top element > and the bottom element ⊥. For a commutative
quantale, we mean a pair (L, ∗) such that ∗ is a commutative semigroup operation on L with the condition

∀a ∈ L, ∀{bj}j∈J ⊆ L, a ∗
∨
j∈J

bj =
∨
j∈J

(a ∗ bj).

(L, ∗) is called integral if the top element> is the unique unit, i.e., ∀a ∈ L,>∗ a = a. For any a ∈ L, each
function a ∗ (−) : L −→ L has a right adjoint a→ (−) : L −→ L defined as a→ b =

∨{c ∈ L : a ∗ c ≤ b}.
In the following, we list the usual properties of ∗ and→[35].

(1) a→ b = > ⇔ a ≤ b;
(2) a ∗ b ≤ c⇔ b ≤ a→ c;
(3) a ∗ (a→ b) ≤ b;
(4) a→ (b→ c) = (a ∗ b)→ c;
(5) (

∨
j∈J

aj)→ b =
∧
j∈J

(aj → b);

(6) a→ (
∧
j∈J

bj) =
∧
j∈J

(a→ bj).

We call (L, ∗) to be a meet continuous lattice if the complete lattice L is meet continuous [36], that is,
(L,≤) satisfies the distributive law: a ∧ (

∨
i∈I bi) =

∨
i∈I(a ∧ bi), for any a ∈ L and any directed subsets

{bi|i ∈ I} in L.
L is said to be continuous if (L,≤) is a continuous lattice [36], that is, for any nonempty family

{aj,k|j ∈ J, k ∈ K(j)} in L with {aj,k|k ∈ K(j)} is directed for all j ∈ J, the identity

(DD)
∧
j∈J

∨
k∈K(j)

aj,k =
∨

h∈N

∧
j∈J

aj,h(j)

holds, where N is the set of all choice functions on J with values h(j) ∈ K(j) for all j ∈ J. Obviously,
continuity implies meet-continuity for L.

In this article, unless otherwise stated, we always assume that L = (L, ∗) is a commutative, integral,
and meet continuous quantale.

A function µ : X → L is called an L-fuzzy set in X, and all L-fuzzy sets in X is denoted as LX.
The operations ∨,∧, ∗,→ on L can be translated pointwisely onto LX . Said precisely, for any µ, ν ∈ LX and
any {µt|t ∈ T} ⊆ LX ,

µ ≤ ν iff µ(x) ≤ ν(x) for any x ∈ X,
( ∨

i∈I
µt)(x) = ∨

t∈T
µt(x), ( ∧

t∈T
µt)(x) = ∧

t∈T
µt(x),

(µ ∗ ν)(x) = µ(x) ∗ ν(x), (µ→ ν)(x) = µ(x)→ ν(x).
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We don’t distinguish between a constant function and its value because no confusion will occur.
Let f : X −→ Y be a function. We define f→ : LX −→ LY and f← : LY −→ LX [35] by f→(µ)(y) =∨

f (x)=y µ(x) for µ ∈ LX and y ∈ Y, and f←(ν)(x) = ν( f (x)) for ν ∈ LY and x ∈ X.
Let µ, ν be L-fuzzy sets in X. The subsethood degree [37–40] of µ, ν, denoted by SX(µ, ν), is defined by

SX(µ, ν) = ∧
x∈X

(µ(x)→ ν(x)).

2.1. >-Filters and Stratified L-Filters

A filter on a set X is an upper set of (2X ,⊆) (2X denotes the power set of X) wich is closed for finite
meets and does not contain the empty set. The conception of filter has been generalized to the fuzzy setting
in two methods; prefilters (or >-filters more general) and L-filters. Both prefilters (>-filters) and L-filters
play important roles in the theory of fuzzy topology, see [26,27,34,35,41–44].

Definition 1 ([35]). A nonempty subset F ⊆ LX is called a >-filter on the set X whenever:
(TF1)

∨
x∈X

λ(x) = > for all λ ∈ F, (TF2) λ ∧ µ ∈ F for all λ, µ ∈ F,

(TF3) if λ ∈ LX such that
∨

µ∈F
SX(µ, λ) = >, then λ ∈ F.

The set of all >-filters on X is denoted as F>L (X).

Definition 2 ([35]). A nonempty subset B ⊆ LX is called a >-filter base on the set X provided:
(TB1)

∨
x∈X

λ(x) = > for all λ ∈ B, (TB2) if λ, µ ∈ B, then
∨

ν∈B
SX(ν, λ ∧ µ) = >.

Each >-filter base generates a >-filter FB defined by

FB := {λ ∈ LX |
∨

µ∈B
SX(µ, λ) = >}.

Example 1 ([26,45]). Let f : X −→ Y be a function, F ∈ F>L (X) and G ∈ F>L (Y). Then
(1) The family { f→(λ)|λ ∈ F} forms a >-filter base on Y, and the >-filter f⇒(F) generated by it is called the

image of F under f . It is easily seen that µ ∈ f⇒(F)⇐⇒ f←(µ) ∈ F.
(2) The family { f←(µ)|µ ∈ G} forms a >-filter base on Y if and only if

∨
y∈ f (X)

µ(y) = > holds for all

µ ∈ G, and the >-filter f⇐(G) (if exists) generated by it is called the inverse image of G under f . Additionally,
G ⊆ f⇒( f⇐(G)) holds whenever f⇐(G) exists. Particularly, f⇐(G) always exists and G = f⇒( f⇐(G)) if f
is surjective.

(3) For any x ∈ X, the family [x]> =: {λ ∈ LX |λ(x) = >} is a >-filter on X, and f⇒([x]>) = [ f (x)]>.

A stratified L-filter [35] on a set X is a function F : LX −→ L such that: ∀λ, µ ∈ LX, ∀α ∈ L, (LF1)
F (⊥) = ⊥, F (>) = >; (LF2) F (λ) ∧ F (µ) = F (λ ∧ µ); (LFs) F (α ∗ λ) ≥ α ∗ F (λ).

The set of all stratified L-filters on X is denoted as F s
L(X). A stratified L-filter F is called tight if

F (α) = α for each α ∈ L.

Example 2 ([35]). Let f : X −→ Y be a function, F ∈ F s
L(X) and G ∈ F s

L(Y). Then
(1) The function f⇒(F ) : LY −→ L defined by µ 7→ F (µ ◦ f ) is a stratified L-filter on Y called the image of

F under f .
(2) For any x ∈ X, the function [x] : LX −→ L, [x](λ) = λ(x) is a stratified L-filter on X, and f⇒([x]) = [ f (x)].
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For each F ∈ F>L (X), define Λ(F) : LX −→ L as

∀λ ∈ LX , Λ(F)(λ) =
∨

µ∈F
SX(µ, λ),

then Λ(F) is a tightly stratified L-filter on X [44].
Conversely, for each tightly stratified L-filter F on a set X, the family

Γ(F ) = {λ ∈ LX ,F (λ) = >}

is a >-filter on X [44]. Given F ∈ F>L (X), we have ΓΛ(F) = F.

Lemma 1. Let {Fj}j∈J ⊆ F>L (X). If L is continuous then Λ(
⋂

j∈J Fj) =
∧

j∈J Λ(Fj).

Proof. For any λ ∈ LX and any j ∈ J, note that {SX(µj, λ)|µj ∈ Fj} is a directed subset of L. Then

∧
j∈J

Λ(Fj)(λ) =
∧
j∈J

∨
µj∈Fj

SX(µj, λ)
(DD)
=

∨
h∈N

∧
j∈J

SX(h(j), λ)

=
∨

h∈N

SX(
∨
j∈J

h(j), λ), by
∨
j∈J

h(j) ∈
⋂
j∈J

Fj

≤
∨

ν∈⋂j∈J Fj

SX(ν, λ) ≤ Λ(
⋂
j∈J

Fj)(λ).

Thus Λ(
⋂

j∈J Fj)(λ) =
∧

j∈J Λ(Fj)(λ) since Λ(
⋂

j∈J Fj)(λ) ≤
∧

j∈J Λ(Fj)(λ) holds obviously.

2.2. >-Convergence Spaces and Stratified L-Generalized Convergence Spaces

Definition 3. A >-convergence structure [26] on a set X is a function q : F>L (X) −→ 2X satisfying

(TC1) [x]>
q−→ x for every x ∈ X; (TC2) if F

q−→ x and F ⊆ G, then G
q−→ x, where F

q−→ x is
shorthand for x ∈ q(F). The pair (X, q) is called a >-convergence space.

A function f : X −→ X′ between two >-convergence spaces (X, q), (X′, q′) is called continuous if

f⇒(F)
q′−→ f (x) whenever F

q−→ x.
The category whose objects are>-convergence spaces and whose morphisms are continuous functions

will be denoted by >-CS. This category is topological over SET [26,46].

For a given source (X
fi−→ (Xi, qi))i∈I , the initial structure [47], q on X is defined by

F
q−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)

qi−→ fi(x).

For a given sink ((Xi, qi)
fi−→ X)i∈I , the final structure, q on X is defined as

F
q→ x ⇐⇒

{
F ⊇ [x]>, x 6∈ ∪i∈I fi(Xi);

F ⊇ f⇒i (Gi), ∃i ∈ I, xi ∈ Xi,Gi ∈ F>L (Xi) s.t f (xi) = x,Gi
qi→ xi.

Thus, when X = ∪i∈I fi(Xi), the final structure q can be simplified as

F
q→ x ⇐⇒ F ⊇ f⇒i (Gi) for some Gi

qi→ xi with f (xi) = x.
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For a nonempty set X, we use>(X) to denote all>-convergence structures on X. For p, q ∈ >(X), we
say that q is finer than p, or p is coarser than q, denoted by p ≤ q for short, if the identity idX : (X, q) −→
(X, p) is continuous, that is, F

q−→ x =⇒ F
p−→ x. It is easily observed from [26,47] that (>(X),≤) forms a

completed lattice, and the discrete (resp., indiscrete) structure δ (resp., ι) is the top (resp., bottom) element

of (T(X),≤), where δ is given by F δ−→ x iff F ⊇ [x]>; and ι is given by F ι−→ x for all F ∈ F>L (X), x ∈ X.

Definition 4. (Jäger [5] and Yao [25]) A stratified L-generalized convergence structure on a set X is a function
limq : F s

L(X) −→ LX satisfying
(LC1) limq[x](x) = 1 for every x ∈ X; (LC2) ∀F ,G ∈ F s

L(X), F ≤ G =⇒ limqF ≤ limqG.
The pair (X, limq) is called a stratified L-generalized convergence space.

Let (X, q) be a >-convergence space. We define limq : F s
L(X) −→ LX as

limqF (x) =

{
>, F ≥ Λ(F) for some F

q−→ x;
⊥, otherwise.

Note that [x] = Λ([x]>). It follows that (X, limq) is a stratified L-generalized convergence space.

Remark 1. When L = {⊥,>}, both >-convergence spaces and stratified L-generalized convergence spaces all
reduce to convergence spaces. Therefore, these two kinds of lattice-valued convergence spaces are all natural extensions
of convergence spaces.

3. p-Topologicalness in >-Convergence Spaces

In this section, we shall discuss the p-topologicalness in >-convergence spaces by generalized
Fischer’s diagonal condition and generalized Gähler’s neighborhood condition, respectively. We also try
to establish the relationships between p-topologicalness in >-convergence spaces and p-topologicalness in
stratified L-generalized convergence spaces.

3.1. p-Pretopologicalness in >-Convergence Spaces

Let (X, p) be a >-convergence space. Then for any x ∈ X, the >-filter

Up(x) = ∩{F ∈ F>L (X)|F p−→ x}

is called the >-neighborhood with respect to p at x. Then the family Up := {Up(x)}x∈X is called the
>-neighborhood system generated by (X, p) [26]. It is easily seen that if p, p′ ∈ T(X) and p ≤ p′ then
Up(x) ⊆ Up′(x) for any x ∈ X.

In the following, we shorten a pair of >-convergence spaces (X, p) and (X, q) as (X, p, q). It is easy to
check that the following conditions are equivalent:

p-(TP1): ∀{Fj}j∈J ⊆ F>L (X), ∀x ∈ X, ∀j ∈ J,Fj
p−→ x =⇒ ⋂

j∈J Fj
q−→ x.

p-(TP2): ∀F ∈ F>L (X), ∀x ∈ X, F ⊇ Up(x) =⇒ F
q−→ x.

p-(TP3): ∀x ∈ X, Up(x)
q−→ x.

Definition 5. Assume that (X, p, q) is a pair of >-convergence spaces. Then q is said to be p-pretopological if it
fulfills either of the above three conditions.
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Remark 2. When p = q, p-pretopologicalness is precise the pretopologicalness in [26]. In this case, it is observed
easily that the “=⇒" in p-(TP2) can be replaced with “⇐⇒". In the following, when p = q, we omit the prefix “p"
in symbols p-(TP1)–p-(TP3). This simplification is also used for the subsequent p-topological conditions.

Proposition 1. A >-convergence structure q on X is pretopological iff it is p-pretopological for any q ∈ >(X)

with q ≤ p.

Proof. Let (X, q) be pretopological and q ≤ p. Then by q ≤ p we have Up(x) ⊇ Uq(x) for any x ∈ X. By

pretopologicalness of q we get that Uq(x)
q−→ x. It follows that Up(x)

q−→ x. Thus q is p-pretopological.
The converse implication is obvious.

The following example shows there is no p-pretopologicalness implies pretopologicalness in general.

Example 3. Let L be the linearly ordered frame ({⊥, α,>},∧,>) with ⊥ < α < >, and X = {x, y}. For each
F ∈ F>L (X) and z ∈ X, let F

p−→ z ⇐⇒ F ⊇ [z]. In [26], it is proved that (X, p) is a >-convergence space and
for each z ∈ X,Up(z) = [z].

For x, y ∈ X, it is easily seen that the subsets Fx,Fy of LX defined by

Fx = {λ ∈ LX : λ(x) ≥ α, λ(y) = >}; Fy(λ) = {λ ∈ LX : λ(y) ≥ α, λ(x) = >}

are all >-filters on X. For each F ∈ F>L (X) and each z ∈ X, let F
q−→ z⇐⇒ F ⊇ [z] or F ⊇ Fz. Then (X, q) is a

>-convergence space. For each z ∈ X, Uq(z) = [z] ∩ Fz = {>X} and so [z] ∩ Fz 6= [z],Fz.

Obviously, q satisfies p-(TP3). But q is not pretopological since we have no Uq(z)
q−→ z.

3.2. p-Topologicalness in >-Convergence Spaces

At first, we fix the notions of diagonal >-filter and neighborhood >-filter to state p-topologicalness.
Let J, X be any sets and φ : J −→ F>L (X) be any function. Then a function φ̂ : LX → LJ is defined as

∀λ ∈ LX , ∀j ∈ J, φ̂(λ)(j) = Λ(φ(j))(λ) =
∨

µ∈φ(j)

SX(µ, λ).

For all F ∈ F>L (J), it is proved that a subset of LX defined by

kφF := {λ ∈ LX |φ̂(λ) ∈ F}

is a >-filter, called diagonal >-filter of F under φ [26]. In addition, for any λ, µ ∈ LX , it was proved in [26]
that SX(λ, µ) ≤ SJ(φ̂(λ), φ̂(µ)).

Definition 6 ([34]). Let (X, p) be a >-convergence space and Up : X −→ F>L (X) be the >-neighborhood system
generated by (X, p). Then for each F ∈ F>L (X), the >-filter Up(F) := kUpF, is called neighborhood >-filter of F
w.r.t. p.

Let N be the set of natural numbers including 0. Let (X, p) be a >- convergence space and F ∈ F>L (X).
For any n ∈ N, we define U0

p(F) = F, and if Un
p(F) has been defined, then we define the n + 1 th iteration

of the neighborhood >-filter of F inductive by Un+1
p (F) = Up(Un

p(F)).

Proposition 2. Let (X, p) be a >- convergence space, n ∈ N and F,G ∈ F>L (X). Then
(1) Un

p(F) ⊆ F,
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(2) if F ⊆ G, then Un
p(F) ⊆ Un

p(G),
(3) if p′ ∈ T(X) and p ≤ p′, then Un

p(F) ⊆ Un
p′(F).

Proof. It is obvious.

Definition 7. Let f : (X, q) −→ (Y, p) be a function between >-convergence spaces. Then f is said to be an
interior function if f→(Ûq(λ)) ≤ Ûp( f→(λ)) for all λ ∈ LX .

Proposition 3. Let f : (X, q) −→ (Y, p) be a function between >- convergence spaces and F ∈ F>L (X).
(1) If f is continuous, then f⇒(Un

q (F)) ⊇ Un
p( f⇒(F)).

(2) If f is an interior function, then f⇒(Un
q (F)) ⊆ Un

p( f⇒(F)).

Proof. (1) We prove f⇒(Un
q (F)) ⊇ Un

p( f⇒(F)) inductively.

For each F
q−→ x and each λ ∈ Up( f (x)) we have λ ∈ f⇒(F), i.e., f←(λ) ∈ F and then

f←(λ) ∈ ∩{F|F q−→ x} = Uq(x),

i.e., λ ∈ f⇒(Uq(x)). Thus Up( f (x)) ⊆ f⇒(Uq(x)).
Fixing λ ∈ LY, we get

Ûp(λ)( f (x)) =
∨

µ∈Up( f (x)) SY(µ, λ) ≤ ∨
f←(µ)∈Uq(x) SX( f←(µ), f←(λ)) ≤∨

ν∈Uq(x) SX(ν, f←(λ)) = Ûq( f←(λ))(x).

It follows that f←(Ûp(λ)) = Ûq( f←(λ)). Thus

λ ∈ Up( f⇒(F)) =⇒ Ûp(λ) ∈ f⇒(F) =⇒ f←(Ûp(λ)) ∈ F =⇒ Ûq( f←(λ)) ∈ F
=⇒ f←(λ) ∈ Uq(F) =⇒ λ ∈ f⇒(Uq(F)).

So, f⇒(Un
q (F)) ⊇ Un

p( f⇒(F)) when n = 1.
We assume that f⇒(Un

q (F)) ⊇ Un
p( f⇒(F)) when n = k. Then we need to check that f⇒(Un

q (F)) ⊇
Un

p( f⇒(F)) when n = k + 1. Indeed,

f⇒(Uk+1
q (F)) = f⇒(Uq(Uk

q(F))) ⊇ Up( f⇒(Uk
q(F))) ⊇ Up(Uk

p( f⇒(F))) = Uk+1
p ( f⇒(F)).

(2) We check only the inequalities for n = 1.
Let f be an interior function. For each λ ∈ Uq(F), i.e., Ûq(λ) ∈ F we have f→(Ûq(λ)) ∈ f⇒(F)

and then Ûp( f→(λ)) ∈ f⇒(F) by f is an interior function. That means f←(λ) ∈ Up( f⇒(F)).
Thus f⇒(Uq(F)) ⊆ Up( f⇒(F)).

Now, we tend our attention to p-topologicalness.
We say a pair of >-convergence spaces (X, p, q) satisfy the Gähler >-neighborhood condition if

p-(TG): ∀F ∈ F>L (X), ∀x ∈ X,F
q−→ x =⇒ Up(F)

q−→ x.

Definition 8. Let (X, p, q) be a pair of >-convergence spaces. Then q is called p-topological if the condition p-(TG)
is satisfied.
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Remark 3. When L = {⊥,>}, the condition p-(TG) is precise the Gähler neighborhood condition in [4], which
is used to define p-topological convergence spaces. Therefore, our p-topologicalness is a natural extension of crisp
p-topologicalness.

We say a pair of >-convergence spaces (X, p, q) satisfy the Fischer >-diagonal condition if

p-(TF): Let J, X be any sets, ψ : J −→ X, and φ : J −→ F>L (X) such that φ(j)
p−→ ψ(j), for each j ∈ J.

Then for each F ∈ F>L (J) and each x ∈ X, ψ⇒(F)
q−→ x implies kφF

q−→ x.
Restricting J = X and ψ =id in p-(TF), we obtain a weaker condition p-(TK). When p = q, p-(TF) is

precise the Fischer >-diagonal condition (TF), and p-(TK) is precise the Kowalsky >-diagonal condition
(TK) in [26].

Proposition 4. Let (X, p, q) be a pair of >-convergence spaces. Then (1) p-(TF)=⇒p-(TP1)+p-(TK), and (2)
p-(TK)=⇒p-(TF) if p satisfies (TP1).

Proof. (1) Obviously, p-(TF)=⇒ p-(TK). Now, we check p-(TF)=⇒ p-(TP1). Let {Fj}j∈J ⊆ F>L (X) and x ∈
X satisfy ∀j ∈ J, Fj

p−→ x. Take ψ(j) ≡ x, φ(j) = Fj and F = F⊥ (i.e., F⊥ = {>J}, the smallest >-filter on

J) in p-(TF), then it is easily seen that ψ⇒(F⊥) = [x]> and kφF⊥ =
⋂

j∈J Fj. Because ψ⇒(F⊥) = [x]>
q−→ x

we have kφF⊥ =
⋂

j∈J Fj
q−→ x by p-(TF).

(2) Let J, X, ψ, φ satisfy the condition of p-(TF). Then we define a function φ̃ : X −→ F>L (X) as
φ̃(x) =

⋂{φ(j) : j ∈ J, ψ(j) = x} if there exists j ∈ J such that ψ(j) = x and φ̃(x) = [x]> if not so. For each

x ∈ X, if φ̃(x) = [x]> then φ̃(x)
p−→ x. If φ̃(x) =

⋂{φ(j) : j ∈ J, ψ(j) = x} then by φ(j)
p−→ x and (TP1)

we have φ̃(x)
p−→ x. Let F ∈ F>L (J) and ψ⇒(F)

q−→ x. Then by p-(TK) we obtain kφ̃ψ⇒(F)
q−→ x. One

can prove that kφF ⊇ kφ̃ψ⇒(F). Thus kφF
q−→ x.

Corollary 1. Let (X, p, q) be a pair of >-convergence spaces. If p satisfies (TP1) then p-(TF)⇔p-(TK)+p-(TP1).
In particular, when p = q we have (TF)⇐⇒(TK)+(TP1) [26].

Remark 4. Let L, X and Fz(z ∈ X) be defined as in Example 3. Let q be defined as F
q−→ z for any F ∈ F>L (X)

and any z ∈ X, and let p be defined as F
p−→ z ⇐⇒ F ⊃ F⊥. Then (X, p, q) is a pair of >-convergence spaces.

Obviously, the axiom p-(TF) is satisfied. But p does not fulfill the axiom (TP1) since Up(z) = F⊥
p
6−→ z. Thus

this example shows that p-(TF) does not imply (TP1) of (X, p) generally. Therefore, we guess that the additional
condition (TP1) in the above corollary can not be removed.

The following theorem shows that if we restricting the lattice-context slightly, p-topologicalness can
be described by Fischer >-diagonal condition p-(TF).

Theorem 1. Let (X, p, q) be a pair of >-convergence spaces. Then p-(TG)=⇒p-(TF), and the converse inclusion
holds if L is continuous.
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Proof. p-(TG)=⇒p-(TF). Let J, X, φ, ψ satisfy the condition of p-(TF). For any F ∈ F>L (J), we prove below
that Up(ψ⇒(F)) ⊆ kφF. Let λ ∈ LX ,

∨
µ∈F

SX(ψ
→(µ), Ûp(λ)) =

∨
µ∈F

∧
x∈X

((
∨

ψ(j)=x

µ(j))→
∨

ν∈Up(x)

SX(ν, λ))

=
∨

µ∈F

∧
j∈J

(µ(j)→
∨

ν∈Up(ψ(j))

SX(ν, λ)), by φ(j)
p−→ ψ(j)

≤
∨

µ∈F

∧
j∈J

(µ(j)→
∨

ν∈φ(j)

SX(ν, λ))

=
∨

µ∈F

∧
j∈J

(µ(j)→ φ̂(λ)(j)) =
∨

µ∈F
SJ(µ, φ̂(λ)).

It follows that

λ ∈ Up(ψ
⇒(F)) =⇒

∨
µ∈F

SX(ψ
→(µ), Ûp(λ)) = > =⇒

∨
µ∈F

SJ(µ, φ̂(λ)) = > =⇒ λ ∈ kφF.

Thus Up(ψ⇒(F)) ⊆ kφF.

If ψ⇒(F)
q−→ x then it follows by p-(TG) that Up(ψ⇒(F))

q−→ x, and so kφF
q−→ x. That is, p-(TF)

is satisfied.
p-(TF)=⇒p-(TG). Note that Lemma 1 holds since L is continuous. Take

J = {(G, y) ∈ F>L (X)× X|G p−→ y}; ψ : J −→ X, (G, y) 7→ y; φ : J −→ F>L (X), (G, y) 7→ G.

Then ∀j ∈ J, φ(j)
p−→ ψ(j). Because [y]

p−→ y we have that ψ is a surjective function. Thus for each
F ∈ F>L (X), H = ψ⇐(F) ∈ F>L (J) exists and ψ⇒(H) = F.

We prove below that kφH = Up(F). For any y ∈ X, denote Iy = {G ∈ F>L (X)|G p−→ y}. Then for any
λ ∈ LX , ∨

µ∈F
SJ(ψ

←(µ), φ̂(λ)) =
∨

µ∈F

∧
(G,y)∈J

(ψ←(µ)(G, y)→ φ̂(λ)(G, y))

=
∨

µ∈F

∧
y∈X

∧
G∈Iy

(µ(y)→ Λ(G)(λ))

=
∨

µ∈F

∧
y∈X

(µ(y)→
∧

G∈Iy

Λ(G)(λ)), by Lemma1

=
∨

µ∈F

∧
y∈X

(µ(y)→ Λ(
⋂

G∈Iy

G)(λ))

=
∨

µ∈F

∧
y∈X

(µ(y)→ Λ(Up(y))(λ))

=
∨

µ∈F

∧
y∈X

(µ(y)→ Ûp(λ)(y)) =
∨

µ∈F
SX(µ, Ûp(λ)).

It follows that

λ ∈ kφH ⇐⇒ φ̂(λ) ∈ ψ⇐(F)⇐⇒
∨

µ∈F
SJ(ψ

←(µ), φ̂(λ)) = > ⇐⇒
∨

µ∈F
SX(µ, Ûp(λ)) = >

⇐⇒ Ûp(λ) ∈ F⇐⇒ λ ∈ Up(F).
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Thus kφH = Up(F).
Let F = ψ⇒(H)

q−→ x. Then by p-(TF) we have kφH = Up(F)
q−→ x. That is, p-(TG) holds.

The following theorem shows that for pretopological >-convergence spaces, p-topologicalness can be
described by Fischer >-diagonal condition p-(TF).

Theorem 2. Let (X, p, q) be a pair of >-convergence spaces and (X, p) be pretopological. Then p-(TF)⇐⇒p-(TG).

Proof. Most of the proof can copy that of Theorem 1. We only check that∨
µ∈F

SJ(ψ
←(µ), φ̂(λ)) =

∨
µ∈F

SX(µ, Ûp(λ)),

for any λ ∈ LX in p-(TF)=⇒p-(TG). Indeed, since p is pretopological then Up(y) ∈ Iy for any y ∈ X. Thus∨
µ∈F

SJ(ψ
←(µ), φ̂(λ)) =

∨
µ∈F

∧
(G,y)∈J

(ψ←(µ)(G, y)→ φ̂(λ)(G, y))

=
∨

µ∈F

∧
y∈X

∧
G∈Iy

(µ(y)→ Λ(G)(λ))

=
∨

µ∈F

∧
y∈X

(µ(y)→
∧

G∈Iy

Λ(G)(λ)), by Up(y) ∈ Iy

=
∨

µ∈F

∧
y∈X

(µ(y)→ Λ(Up(y))(λ))

=
∨

µ∈F
SX(µ, Ûp(λ)).

By Corollary 1 and Theorem 2 we get the following corollary.

Corollary 2. [34] Let (X, p) be a >-convergence space. Then (TF)⇐⇒(TG).

Remark 5. The above corollary is one of the main results in [34]. Based on this equivalence, it was proved that
>-convergence spaces with (TF) or (TG) characterize precisely the conical L-topological spaces in [44].

The following theorem shows that p-topologicalness is preserved under initial constructions.

Theorem 3. Let {(Xi, qi, pi)}i∈I be pairs of>-convergence spaces with each qi being pi-topological. If q (resp., p) is the

initial structure on X relative to the source (X
fi−→ (Xi, qi))i∈I (resp., (X

fi−→ (Xi, pi))i∈I), then (X, q) is p-topological.

Proof. Let F
q−→ x. Then by definition of q, we have f⇒i (F)

qi−→ fi(x) for any i ∈ I. Because qi

is pi-topological we have Upi ( f⇒i (F))
qi−→ fi(x). Then by Proposition 3 (1) we have f⇒i (Up(F)) ⊇

Upi ( f⇒i (F)) and so f⇒i (Up(F))
qi−→ fi(x) for all i ∈ I. That is, Up(F)

q−→ x. Thus q is p-topological.

The next theorem shows that p-topologicalness is preserved under final constructions with some
additional conditions.

Theorem 4. Let {(Xi, qi, pi)}i∈I be pairs of >- convergence spaces with each qi being pi-topological. Let q (resp.,

p) be the final structure on X w.r.t. The sink ((Xi, qi)
fi−→ X)i∈I (resp., ((Xi, pi)

fi−→ X)i∈I). If X = ∪i∈I fi(Xi)

and each fi : (Xi, pi) −→ (X, p) is an interior function, then (X, q) is p-topological.
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Proof. Let F
q−→ x. Then by definition of q, there exists i ∈ I, xi ∈ Xi,Gi ∈ F>L (Xi) such that fi(xi) =

x, f⇒i (Gi) ⊆ F and Gi
qi−→ xi.

By f⇒i (Gi) ⊆ F and fi is a interior function we have f⇒i (Upi (Gi)) ⊆ Up( f⇒i (Gi)) ⊆ Up(F).
By Gi

qi−→ xi and qi is pi-topological we have Upi(Gi)
qi−→ xi, and then f⇒i (Upi(Gi))

q−→ fi(xi) = x.

Then it follows that Up(F)
q−→ x. By Theorem 1 we get that q is p-topological.

From Theorem 3 and Theorem 4, we conclude easily the following corollary. It will tell us that
p-topologicalness is preserved under supremum and infimum in the lattice >(X).

Corollary 3. Let {qi|i ∈ I} ⊆ >(X) and p ∈ >(X) such that each (X, qi) is p-topological. Then both
(X, inf{qi}i∈I) and (X, sup{qi}i∈I) are all p-topological.

3.3. On the Relationship between p-Topologicalness in >-Convergence Spaces and in Stratified L-Generalized
Convergence Spaces

Let J, X be any set and Φ : J −→ F s
L(X) be any function. Then a function Φ̂ : LX → LJ is defined as

∀λ ∈ LX, ∀j ∈ J, Φ̂(λ)(j) = Φ(j)(λ). For all F ∈ F s
L(J), it is proved that the function KΦF : LX −→ L

defined by ∀λ ∈ LX , KΦF (λ) = F (Φ̂(λ)) is a stratified L-filter, which is called the diagonal L-filter of F
under Φ [27,30].

Let (X, limp) be a stratified L-generalized convergence space. For any α ∈ L, x ∈ X, let U α
p (x) =∧{F : limp F (x) ≥ α}. Take Φ = U α

p : X −→ F s
L(X), then for each F ∈ F s

L(X), the stratified L-filter
U α

p (F ) := kU α
pF is called α-level neighborhood L-filter of F w.r.t. limp [29].

We say a pair of stratified L-generalized convergence spaces (X, limp, limq) satisfy the Fischer
L-diagonal condition if

p-(LF): Let J, X be any sets, Ψ : J −→ X and Φ : J −→ F s
L(X) be functions.

∀F ∈ F s
L(J), ∀x ∈ X, limqΨ⇒(F )(x) ∧

∧
j∈J

limpΦ(j)(Ψ(j)) ≤ limqKΦF (x).

We say a pair of stratified L-generalized convergence spaces (X, limp, limq) satisfy the Gähler
L-neighborhood condition if p-(LG): ∀α ∈ L, ∀F ∈ F s

L(X), α ∗ limq F ≤ limq U α
p (F ).

It was proved in [32] that p-(LF)⇐⇒ p-(LG).

Definition 9 ([32]). Let (X, limp, limq) be a pair of stratified L-generalized convergence spaces. Then limq is called
p-topological if the condition p-(LF) or p-(LG) is satisfied.

Lemma 2. Let φ : J −→ F>L (X) be any function and F ∈ F>L (J). Then
(1) Λ(kφF) ≤ K(Λ ◦ φ)Λ(F);
(2) kφF = Γ(K(Λ ◦ φ)Λ(F)).

Proof. (1) Let λ ∈ LX . Then for any j ∈ J, φ̂(λ)(j) = Λ(φ(j))(λ) = (Λ ◦ φ)(j)(λ) = Λ̂ ◦ φ(λ)(j). It follows

Λ(kφF)(λ) =
∨

µ∈kφF
SX(µ, λ) =

∨
φ̂(µ)∈F

SX(µ, λ)

≤
∨

φ̂(µ)∈F
SJ(φ̂(µ), φ̂(λ)) ≤

∨
ν∈F

SJ(ν, φ̂(λ))

=
∨

ν∈F
SJ(ν, Λ̂ ◦ φ(λ)) = Λ(F)(Λ̂ ◦ φ(λ)) = K(Λ ◦ φ)Λ(F)(λ).
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(2) Let λ ∈ LX . Then

λ ∈ kφF ⇐⇒ Λ̂ ◦ φ(λ) ∈ F⇐⇒ Λ̂ ◦ φ(λ) ∈ F⇐⇒ Λ(F)(Λ̂ ◦ φ(λ)) = >
⇐⇒ K(Λ ◦ φ)Λ(F)(λ) = > ⇐⇒ λ ∈ Γ(K(Λ ◦ φ)Λ(F)).

Theorem 5. Let (X, p, q) be pair of >-convergence spaces and L be continuous. Then limq is p-topological iff q
is p-topological.

Proof. Let q be p-topological. We check that (X, limp, limq) satisfies p-(LG). Obviously, we need only
prove that limq F (x) = > implies limq U α

p (F )(x) = > for any α 6= ⊥.
Note that for any α 6= ⊥ and any x ∈ X we have

U α
p (x) =

∧
{F|limpF (x) = >} =

∧
{F|F ≥ Λ(F),F

p−→ x}

=
∧
{Λ(F)|F p−→ x} Lemma1

= Λ(
⋂

F{|F p−→ x}) = Λ(Up(x)).

Let limq F (x) = > then F ≥ Λ(F) for some F
q−→ x. It follows by p-(TG) that Up(F)

q−→ x and

U α
p (F ) ≥ U α

p (Λ(F)) = KU α
p Λ(F) = K(Λ ◦Up)Λ(F)

Lemma2(1)
≥ Λ(kUpF) = Λ(Up(F)),

and so limq U α
p (F )(x) = > as desired.

Conversely, let limq be p-topological. We check that (X, p, q) satisfies p-(TG).

Assume that F
q−→ x. It follows by p-(LG) that

limqU>p (Λ(F))(x) = limqKU>p Λ(F) = limqK(Λ ◦Up)Λ(F) = >,

and then K(Λ ◦Up)Λ(F) ≥ Λ(G) for some G
q−→ x. By Lemma 2(2) we have

kUpF = Γ(K(Λ ◦Up)Λ(F)) ⊇ ΓΛ(G) = G.

So, Up(F) = kUpF
q−→ x as desired.

4. Lower and Upper p-Topological Modifications in >-Convergence Spaces

In this section, we shall discuss the p-topological modification in >-convergence spaces.
At first, we fix a lemma for later use. The proof is obvious, so we omit it.

Lemma 3. (1) If (X, q) is p-topological, then F
q−→ x implies Un

p(F)
q−→ x for any n ∈ N.

(2) If (X, q) is p-topological, then (X, q) is p′-topological for any p ≤ p′.
(3) (X, ι) is p-topological for any p ∈ >(X).

4.1. Lower p-Topological Modification

Corollary 3 shows that p-topologicalness is preserved under supremum in the lattice >(X).
Lemma 3(3) shows that the indiscrete space (X, ι) is p-topological for any p ∈ >(X). These two results
make the following definition available.

Definition 10. Let (X, p, q) be a pair of >-convergence spaces. Then there is a finest p-topological >-convergence
structure τpq on X which is coarser than q. The structure τpq is called the lower p-topological modification of q.
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The next theorem gives a direct characterization on lower p-topological modification.

Theorem 6. Let p, q ∈ >(X). Then F
τpq
−→ x ⇐⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ Un
p(G).

Proof. Let q′ be defined as F
q′−→ x ⇐⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ Un
p(G). We need only check

that τpq = q′.

It is obvious that q′ ∈ >(X) and q′ ≤ q. We prove that q′ is p-topological. Indeed, let F
q′−→ x. Then

there exists n ∈ N,G
q−→ x such that F ⊇ Un

p(G). It follows that Up(F) ⊇ Up(Un
p(G)) = Un+1

p (G) and so

Up(F)
q′−→ x, as desired. Thus q′ is p-topological.

Let (X, r) be p-topological and r ≤ q. We prove below r ≤ q′. Indeed, let F
q′−→ x. Then there exists

n ∈ N,G
q−→ x such that F ⊇ Un

p(G), and then G r−→ x by q ≤ r. Since r is p-topological it follows by

Lemma 3(1) we have F ⊇ Un
p(G)

r−→ x. Thus r ≤ q′.

Theorem 7. Let f : (X, q) −→ (X′, q′) and f : (X, p) −→ (X′, p′) be continuous function between
>-convergence spaces. Then f : (X, τpq) −→ (X′, τp′q′) is also continuous.

Proof. For any F ∈ F>L (X) and x ∈ X.

F
τpq
−→ x =⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ Un
p(G)

=⇒ ∃n ∈ N, f⇒(G)
q′−→ f (x) s.t. f⇒(F) ⊇ f⇒(Un

p(G))

=⇒ ∃n ∈ N, f⇒(G)
q′−→ f (x) s.t. f⇒(F) ⊇ Un

p′( f⇒(G))

=⇒ f⇒(F)
τp′ q

′

−→ ( f (x)),

where the second implication holds for f : (X, q) −→ (X′, q′) being continuous, and the third implication
holds by f : (X, p) −→ (X′, p′) being continuous and Proposition 3(1).

The next theorem shows that lower p-topological modification behaves reasonably well relative to
final structures.

Theorem 8. Let {(Xi, qi, pi)}i∈I be pairs of spaces in >-CS and let q be the final structure w.r.t. The sink

((Xi, qi)
fi−→ X)i∈I with X = ∪i∈I fi(Xi). If (X, p) is in >-CS such that each fi : (Xi, pi) −→ (X, p) is

a continuous interior function, then τpq is the final structure w.r.t. the sink ((Xi, τpi qi)
fi−→ X)i∈I .

Proof. Let s denote the final structure w.r.t. The sink ((Xi, τpi qi)
fi−→ X)i∈I . Let F ∈ F>L (X) and x ∈

X. Then

F s−→ x =⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x,Gi
τpi qi−→ xi s.t. f⇒i (Gi) ⊆ F, by Theorem 6

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, fi(xi) = x,Hi
qi−→ xi s.t. Un

pi
(Hi) ⊆ Gi, f⇒i (Gi) ⊆ F, Proposition 3(1)

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, f⇒i (Hi)
q−→ x s.t. Un

p( f⇒i (Hi)) ⊆ f⇒i (Un
pi
(Hi)) ⊆ f⇒i (Gi), f⇒i (Gi) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, f⇒i (Hi)
q−→ x s.t. Un

p( f⇒i (Hi)) ⊆ F
=⇒ F

τpq
−→ x.
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Conversely,

F
τpq
−→ x =⇒ ∃n ∈ N,G

q−→ x s.t. Un
p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. f⇒i (Hi) ⊆ G,Un

p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. Un

p( f⇒i (Hi)) ⊆ Un
p(G),Un

p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. f⇒i (Un

pi
(Hi)) ⊆ Un

p( f⇒i (Hi)) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Un
pi
(Hi)

τpi qi−→ xi s.t. f⇒i (Un
pi
(Hi)) ⊆ F

=⇒ F s−→ x,

where the fourth implication uses Proposition 3(2).

The following corollary shows that lower p-topological modification behaves reasonably well relative
to infimum in the lattice >(X).

Corollary 4. Let {qi|i ∈ I} ⊆ >(X), p ∈ >(X) and q = inf{qi|i ∈ I}. Then τpq = inf{τpqi|i ∈ I}.

At last, we give the notion of topological modification. By Corollary 3, it is observed that
topologicalness is preserved under supremum in the lattice >(X). Since the indiscrete space is topological,
the following notion is available.

Definition 11. Let (X, q) be a >-convergence space. Then there exists a finest topological >-convergence structure
τq which is coarser than q. The structure τq is called the topological modification of (X, q). Indeed, τq = sup{p|p ≤
q and p is topological}.

4.2. Upper p-Topological Modification

Note that for an arbitrary p ∈ >(X), the discrete space (X, δ) is generally not p-topological. Thus for
a given q ∈ >(X), there may not exist p-topological >-convergence structure on X which is finer than q.

Definition 12. Let (X, p, q) be a pair of>-convergence spaces. If there exists a coarsest p-topological>-convergence
structure τpq on X which is finer than q, then it is called the upper p-topological modification of q.

From Corollary 3 we easily conclude that the existence of τpq depends on the existence of
a p-topological >-convergence structure on X which is finer than q. Additionally, note that τpδ is the finest
p-topological >-convergence structure on X. Then it follows immediately that τpq exists if and only if
q ≤ τpδ. Using Theorem 6, this result can be stated as below.

Theorem 9. Let (X, p, q) be a pair of >-convergence spaces. Then τpq exists if and only if Un
p([x]>)

q−→ x for all
x ∈ X, n ∈ N.

Proof. For each F ∈ F>L (X) and each x ∈ X, by Theorem 6 we have

F
τpδ
−→ x ⇐⇒ ∃n ∈ N,G δ−→ x s.t. Un

p(G) ⊆ F.
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Necessity. Let τpq exist. Then q ≤ τpδ. It follows that for all x ∈ X, n ∈ N

[x]>
δ−→ x =⇒ Un

p([x]>)
τpδ
−→ x =⇒ Un

p([x]>)
q−→ x.

Sufficiency. Let Un
p([x]>)

q−→ x for all x ∈ X, n ∈ N. Then for all F ∈ F>L (X) we have

F
τpδ
−→ x =⇒ ∃n ∈ N,G δ−→ x s.t. Un

p(G) ⊆ F
=⇒ ∃n ∈ N, [x]> ⊆ G s.t. Un

p(G) ⊆ F
Proposition2(2)

=⇒ ∃n ∈ N,Un
p(([x]>) ⊆ Un

p(G) s.t. Un
p(G) ⊆ F

=⇒ ∃n ∈ N s.t. Un
p(([x]>) ⊆ F

=⇒ F
q−→ x.

It follows that q ≤ τpδ, which means that τpq exists.

The next theorem gives a direct characterization on upper p-topological modification whenever
it exists.

Theorem 10. Let (X, p, q) be a pair of >-convergence spaces. If τpq exists, then F
τpq−→ x ⇐⇒ ∀n ∈

N,Un
p(F)

q−→ x.

Proof. Let q′ be defined as F
q′−→ x ⇐⇒ ∀n ∈ N,Un

p(F)
q−→ x.

(1) q′ ∈ >(X).

(TC1) Let x ∈ X. Then by Theorem 9 we have Un
p([x]>)

q−→ x for all n ∈ N, which means [x]>
q′−→ x.

(TC2) It is obvious.

(2) q ≤ q′. Indeed, let F
q′−→ x then F = U0

p(F)
q−→ x.

(3) (X, q′) is p-topological. Indeed, let F
q′−→ x. Then for any n ∈ N we have Un

p(Up(F)) =

Un+1
p (F)

q−→ x, which means Up(F)
q′−→ x. Thus (X, q′) is p-topological.

(4) Let (X, r) be p-topological and q ≤ r. Then q′ ≤ r. Indeed, let F r−→ x then for any n ∈ N,

by Proposition 3(1) we have Un
p(F)

r−→ x and so Un
p(F)

q−→ x by q ≤ r. That means F
q′−→ x.

(1)–(4) show that q′ is the coarsest p-topological >-convergence structure on X which is finer than q.
Thus τpq = q′.

Theorem 11. Let f : (X, q) −→ (X′, q′) be a continuous function, and f : (X, p) −→ (X′, p′) be an interior
function between >-convergence spaces. If τpq and τp′q′ exist then f : (X, τpq) −→ (X′, τp′q′) is also continuous.

Proof. Let F
τpq−→ x. Then ∀n ∈ N,Un

p(F)
q−→ x. Because f : (X, q) −→ (X′, q′) is a continuous function

and f : (X, p) −→ (X′, p′) is an interior function we have

∀n ∈ N,Un
p′( f⇒(F)) ⊇ f⇒(Un

p(F))
q′−→ f (x),

which means f⇒(F)
τp′ q′−→ f (x) as desired.
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The next theorem shows that the upper p-topological modification exhibits comparable behavior
relative to initial structures.

Theorem 12. Let {(Xi, qi, pi)}i∈I be pairs of spaces in >-CS and q be the initial structure w.r.t. The source

(X
fi−→ (Xi, qi))i∈I . Let (X, p) be in >-CS such that each fi : (X, p) −→ (Xi, pi) is continuous interior function.

If τpi qi exists for all i ∈ I, then τpq exists and is the initial structure w.r.t. The source (X
fi−→ (Xi, τpi qi))i∈I .

Proof. To prove τpq exists, it suffices, by Theorem 10, to show that Un
p([x]>)

q−→ x for any x ∈ X, n ∈ N.

Indeed, by the existence of τpi qi we have Un
pi
([ fi(x)])

qi−→ fi(x) for any i ∈ I, x ∈ X, n ∈ N. It follows by
that each fi : (X, p) −→ (Xi, pi) being a continuous interior function we get

f⇒i (Un
p([x]>) = Un

pi
( f⇒i ([x]>)) = Un

pi
([ fi(x)]>)

qi−→ fi(x),

which means Un
p([x]>)

q−→ x for any x ∈ X, n ∈ N, i.e., τpq exists.

Let s denote the initial structure on X relative the source (X
fi−→ (Xi, τpi qi))i∈I . Then.

F s−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)
τpi qi−→ fi(x) Theorem10⇐⇒ ∀i ∈ I, ∀n ∈ N,Un

pi
( f⇒i (F))

qi−→ fi(x)
Proposition3⇐⇒ ∀i ∈ I, ∀n ∈ N, f⇒i (Un

p(F))
qi−→ fi(x)

⇐⇒ ∀n ∈ N,Un
p(F)

q−→ x Theorem10⇐⇒ F
τpq−→ x.

The following corollary shows that upper p-topological modification exhibits comparable behavior
relative to supremum in the lattice >(X).

Corollary 5. Let {qi|i ∈ I} ⊆ >(X), p ∈ >(X) and q = sup{qi|i ∈ I}. If τpqi exists for all i ∈ I, then τpq
exists and τpq = sup{τpqi|i ∈ I}.

5. Conclusions

In this paper, we discussed the p-topologicalness in >-convergence spaces by a Fischer >-diagonal
condition and a Gähler >-neighborhood condition, respectively. We proved that the p-topologicalness was
preserved under the initial and final structures in the category >-CS. As a straightforward conclusion, we
further obtained that p-topologicalness was naturally preserved under the infimum and supremum in the
lattice >(X). We also established the relationship between p-topologicalness in >-convergence spaces and
p-topologicalness in stratified L-generalized convergence spaces. Furthermore, we defined and studied
the lower and upper p-topological modifications in >-convergence spaces. In particular, we proved that
the lower (resp., upper) p-topological modification exhibited comparable behavior relative to final (resp.,
initial) structures.
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