
mathematics

Article

Extended Local Convergence for the Combined
Newton-Kurchatov Method Under the Generalized
Lipschitz Conditions

Ioannis K. Argyros 1 and Stepan Shakhno 2,*
1 Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA; iargyros@cameron.edu
2 Department of Theory of Optimal Processes, Ivan Franko National University of Lviv, 79000 Lviv, Ukraine
* Correspondence: stepan.shakhno@lnu.edu.ua

Received: 4 February 2019; Accepted: 20 February 2019; Published: 23 February 2019
����������
�������

Abstract: We present a local convergence of the combined Newton-Kurchatov method for solving
Banach space valued equations. The convergence criteria involve derivatives until the second and
Lipschitz-type conditions are satisfied, as well as a new center-Lipschitz-type condition and the notion
of the restricted convergence region. These modifications of earlier conditions result in a tighter
convergence analysis and more precise information on the location of the solution. These advantages
are obtained under the same computational effort. Using illuminating examples, we further justify
the superiority of our new results over earlier ones.
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1. Introduction

Consider the nonlinear equation

F(x) + Q(x) = 0, (1)

where F is a Fréchet-differentiable nonlinear operator on an open convex subset D of a Banach space
E1 with values in a Banach space E2, and Q : D → E2 is a continuous nonlinear operator.

Let x, y be two points of D. A linear operator from E1 into E2, denoted Q(x, y), which satisfies
the condition

Q(x, y)(x− y) = Q(x)−Q(y) (2)

is called a divided difference of Q at points x and y.
Let x, y, z be three points of D. A operator Q(x, y, z) will be called a divided difference of the

second order of the operator Q at the points x, y and z, if it satisfies the condition

Q(x, y, z)(y− z) = Q(x, y)−Q(x, z). (3)

A well-known simple difference method for solving nonlinear equations F(x) = 0 is the
Secant method

xn+1 = xn − (F(xn−1, xn))−1F(xn), n = 0,1,2, . . . , (4)

where F(xn−1, xn) is a divided difference of the first order of F(x) and x0, x−1 are given.
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Secant method for solving nonlinear operator equations in a Banach space was explored by the
authors [1–6] under the condition that the divided differences of a nonlinear operator F satisfy the
Lipschitz (Hölder) condition with constant L of type

‖F(x, y)− F(u, v)‖ ≤ L(‖x− u‖+ ‖y− v‖).

In [7] a one-point iterative Secant-type method with memory was psoposed.
In [8,9] the Kurchatov method under the classical Lipschitz conditions for the divided differences

of the first and second order was explored and its quadratic convergence of it was determined.
The iterative formula of Kurchatov method has the form [1,8–11]

xn+1 = xn − (F(2xn − xn−1, xn−1))
−1F(xn), n = 0,1,2, . . . . (5)

Related articles but with stronger convergence criteria exist; see works of Argyros, Ezquerro,
Hernandez, Rubio, Gutierrez, Wang, Li [1,12–15] and references therein.

In [14] which dealt with the study of the Newton method, it was proposed that there
are generalized Lipschitz conditions for the nonlinear operator, in which instead of constant L,
some positive integrable function is used.

In our work [16], we introduced, for the first time, a similar generalized Lipschitz condition for
the operator of the first order divided difference, and under this condition, the convergence of the
Secant method was studied and it was found that its convergence order is (1 +

√
5)/2.

In [17], we introduced a generalized Lipschitz condition for the divided differences of the second
order, and we have studied the local convergence of the Kurchatov method (5).

Note that in many papers, such as [3,18–21], the authors investigated the Secant and Secant-type
methods under the generalized conditions for the first divided differences of the form

‖(F(x, y)− F(u, v)))‖ ≤ ω(‖x− y‖, ‖u− v‖) ∀x, y, u, v ∈ D, (6)

where ω : R+ × R+ −→ R+ is continuous nondecreasing function in their two arguments. Under
these same conditions, in the work of Argyros [10], it was proven that there is a semi-local convergence
of the Kurchatov method and in [22] of Ren and Argyros the semi-local convergence of a combined
Kurchatov method and Secant method was demonstrated. In both cases, only the linear convergence
of the methods is received.

We also refer the reader to the intersting paper by Donchev et al. [23], where several other relaxed
Lipschitz conditions are used in the setting of fixed points for these conditions. Clearly, our results can
be written in this setting too in an analogous way.

In [24], we first proposed and studied the local convergence of the combined
Newton-Kurchatov method

xn+1 = xn − (F′(xn) + Q(2xn − xn−1, xn−1))
−1(F(xn) + Q(xn)), n = 0,1,2, . . . , (7)

where F′(u) is a Fréchet derivative, Q(u, v) is a divided difference of the first order, x0, x−1 are given,
which is built on the basis of the mentioned Newton and Kurchatov methods. Semi-local convergence
of the method (7) under the classical Lipschitz conditions is studied in the mentioned article, but the
convergence only with the order (1 +

√
5)/2 has been determined.

In [25], we studied the method (7) under relatively weak, generalized Lipschitz conditions for the
derivatives and divided differences of nonlinear operators. Setting Q(x) ≡ 0, we receive the results for
the Newton method [14], and when F(x) ≡ 0 we got the known results for Kurchatov method [9,17].
We proved the quadratic order of convergence of the method (7), which is higher than the convergence
order (1 +

√
5)/2 for the Newton–Secant method [1,26–28]

xn+1 = xn − (F′(xn) + Q(xn−1, xn))−1(F(xn) + Q(xn)), n = 0,1,2, . . . , . (8)
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The results of the numerical study of the method (7) and other combined methods on the test
problems are provided in our works [24,28].

In this work, we continue to study a combined method (7) for solving nonlinear Equation (1),
but with optimization considerations resulting in a tighter analysis than in [25].

The rest of the article is structured as follows: In Section 2, we present the local convergence
analysis of the method (7) and the uniquness ball for solution of the equation. Section 3 contains the
Corollaries of Theorems from Section 2. In Section 4, we provide the numerical example. The article
ends with some conclusions.

2. Local Convergence of Newton-Kurchatov Method (7)

Let us denote B(x0, r) = {x : ‖x − x0‖ < r} an open ball of radius r > 0 with center at point
x0 ∈ D, B(x0, r) ⊂ D.

Condition on the divided difference operator Q(x, y)

‖Q(x, y)−Q(u, v)‖ ≤ L(‖x− u‖+ ‖y− v‖) ∀x, y, u, v ∈ D (9)

is called Lipschitz condition in domain D with constant L > 0. If the condition is being fulfilled

‖Q(x, y)−Q′(x0)‖ ≤ L(‖x− x0‖+ ‖y− x0‖) ∀x, y ∈ B(x0, r), (10)

then we call it the center Lipschitz condition in the ball B(x0, r) with constant L.
However, L in Lipschitz conditions can be not a constant, and can be a positive integrable function.

In this case, if for x∗ ∈ D inverse operator [F′(x∗)]−1 exists, then the conditions (9) and (10) for x0 = x∗
can be replaced respectively for

‖Q′(x∗)−1(Q(x, y)−Q(u, v)))‖ ≤
∫ ‖x−y‖+‖u−v‖

0
L(t)dt ∀x, y, u, v ∈ D (11)

and

‖Q′(x∗)−1(Q(x, y)−Q′(x∗))‖ ≤
∫ ‖x−x∗‖+‖y−x∗‖

0
L(t)dt ∀x, y ∈ B(x∗, r). (12)

Simultaneously
Lipschitz conditions (11) and (12) are called generalized Lipschitz conditions or Lipschitz

conditions with the L average.
Similarly, we introduce the generalized Lipschitz condition for the divided difference of the

second order

‖Q′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤
∫ ‖u−v‖

0
N(t)dt ∀x, y, u, v ∈ B(x∗, r), (13)

where N is a positive integrable function.

Remark 1. Note than the operator F is Fréchet differentiable on D when the Lipschitz conditions (9) or (11) are
fulfilled ∀x, y, u, v ∈ D (the divided differences F(x, y) are Lipschitz continuous on D) and F(x, x) = F′(x)
∀x ∈ D [29].

Suppose that equation

∫ r

0
L0

1(u)du +
∫ 2r

0
L0

2(u)du + 2r
∫ 2r

0
N0(u)du = 1.

has at least one positive solution. Denote by r0 the smallest such solution. Set D0 = D ∩ B(x∗, r0)
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The radius of the convergence ball and the convergence order of the combined Newton–Kurchatov
method (7) are determined in next theorem.

Theorem 1. Let F and Q be continuous nonlinear operators defined in open convex domain D of a Banach
space E1 with values in the Banach space E2. Let us suppose, that: (1) H(x) ≡ F(x) + Q(x) = 0 has a solution
x∗ ∈ D, for which there exists a Fréchet derivative H′(x∗) and it is invertible; (2) F has the Fréchet derivative of
the first order, and Q has divided differences of the first and second order on B(x∗, 3r) ⊂ D, so that for each
x, y, u, v ∈ D

‖H′(x∗)−1(F′(x)− F′(x∗))‖ ≤
∫ ρ(x)

0
L0

1(u)du, (14)

‖H′(x∗)−1(Q(x, y)−Q(x∗, x∗))‖ ≤
∫ ‖x−x∗‖+‖y−x∗‖

0
L0

2(t)dt, (15)

‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤
∫ ‖u−v‖

0
N0(t)dt, (16)

and for each x, y, u, v ∈ D0

‖H′(x∗)−1(F′(x)− F′(xθ))‖ ≤
∫ ρ(x)

θρ(x)
L1(u)du, 0 ≤ τ ≤ 1, (17)

‖H′(x∗)−1(Q(x, y)−Q(u, v))‖ ≤
∫ ‖x−u‖+‖y−v‖

0
L2(t)dt, (18)

‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤
∫ ‖u−v‖

0
N(t)dt, (19)

where xθ = x∗ + θ(x− x∗), $(x) = ‖x− x∗‖, L0
1, L0

2, N0 L1, L2 and N are positive nondecreasing integrable
functions and r > 0 satisfies the equation

1
r
∫ r

0 L1(u)udu +
∫ r

0 L2(u)du + 2r
∫ 2r

0 N(u)du

1−
( ∫ r

0 L0
1(u)du +

∫ 2r
0 L0

2(u)du + 2r
∫ 2r

0 N0(u)du
) = 1. (20)

Then for all x0, x−1 ∈ B(x∗, r) the iterative method (7) is well defined and the generated by it sequence
{xn}n≥0, which belongs to B(x∗, r), converges to x∗ and satisfies the inequality

‖xn+1 − x∗‖ ≤ en :=
1

ρ(xn)

∫ ρ(xn)
0 L1(u)udu +

∫ ρ(xn)
0 L2(u)du +

∫ ‖xn−xn−1‖
0 N(u)du‖xn − xn−1‖

1−
( ∫ ρ(xn)

0 L0
1(u)du +

∫ 2ρ(xn)
0 L0

2(u)du +
∫ ‖xn−xn−1‖

0 N0(u)du‖xn − xn−1‖
)‖xn − x∗‖.

(21)

Proof. First we show that f (t) =
1
t2

∫ t

0
L1(u)udu, g(t) =

1
t

∫ t

0
L2(u)du, h(t) =

1
t

∫ t

0
N(u)du, f0(t) =

1
t2

∫ t

0
L0

1(u)udu, g0(t) =
1
t

∫ t

0
L0

2(u)du, h0(t) =
1
t

∫ t

0
N0(u)du monotonically nondecreasing with

respect to t. Indeed, under the monotony of L1, L2, N we have( 1
t2
2

∫ t2

0
− 1

t2
1

∫ t1

0

)
L1(u)udu =

( 1
t2
2

∫ t2

t1

+
( 1

t2
2
− 1

t2
1

) ∫ t1

0

)
L1(u)udu ≥

≥ L(t1)
( 1

t2
2

∫ t2

t1

+
( 1

t2
2
− 1

t2
1

) ∫ t1

0

)
udu = L1(t1)

( 1
t2
2

∫ t2

0
− 1

t2
1

∫ t1

0

)
udu = 0,
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( 1
t2

∫ t2

0
− 1

t1

∫ t1

0

)
L2(u)du =

( 1
t2

∫ t2

t1

+
( 1

t2
− 1

t1

) ∫ t1

0

)
L2(u)du ≥

≥ L2(t1)
( 1

t2

∫ t2

t1

+
( 1

t2
− 1

t1

) ∫ t1

0

)
du = L2(t1)

( t2 − t1

t2
+ t1

( 1
t2
− 1

t1

))
= 0

for 0 < t1 < t2. So, f (t), g(t) are nondecreasing with respect to t. Similarly we get for h(t), f0(t), g0(t)
and h0(t).

We denote by An linear operator An = F′(xn)+Q(2xn− xn−1, xn−1). Easy to see that if xn, xn−1 ∈
B(x∗, r), then 2xn − xn−1, xn−1 ∈ B(x∗, 3r). Then An is invertible and the inequality holds

‖A−1
n H

′
(x∗)‖ = ‖[I − (I − H

′
(x∗)−1 An)]−1‖ ≤

≤
(

1−
( ∫ ρ(xn)

0
L0

1(u)du +
∫ 2ρ(xn)

0
L0

2(u)du +
∫ ‖xn−xn−1‖

0
N0(u)du‖xn − xn−1‖

))−1
.

(22)

Indeed from the formulas (14)–(16) we get

‖I − H
′
(x∗)−1 An‖ = ‖H

′
(x∗)−1(F′(x∗)− F′(xn) + Q(x∗, x∗)−Q(xn, xn)+

+Q(xn, xn)−Q(2xn − xn−1, xn−1)‖) ≤
∫ ρ(xn)

0
L0

1(u)du + ‖H
′
(x∗)−1(Q(x∗, x∗)−

−Q(xn, xn) + Q(xn, xn)−Q(xn, xn−1) + Q(xn, xn−1)−Q(2xn − xn−1, xn−1))‖ ≤

≤
∫ ρ(xn)

0
L0

1(u)du +
∫ 2ρ(xn)

0
L0

2(u)du+

+‖H
′
(x∗)−1(Q(xn, xn−1, xn)−Q(2xn − xn−1, xn−1, xn))(xn − xn−1)‖ ≤

≤
∫ ρ(xn)

0
L0

1(u)du +
∫ 2ρ(xn)

0
L0

2(u)du +
∫ ‖xn−xn−1‖

0
N0(u)du‖xn − xn−1‖.

From the definition r0 (20), we get

∫ r0

0
L1(u)du +

∫ 2r0

0
L2(u)du + 2r

∫ 2r0

0
N(u)du < 1, (23)

since r < r0.
Using the Banach theorem on inverse operator [30], we get formula (22). Then we can write

‖xn+1 − x∗‖ = ‖xn − x∗ − A−1
n (F(xn)− F(x∗) + Q(xn)−Q(x∗))‖ =

= ‖ − A−1
n (

∫ 1

0
(F′(xτ

n)− F′(xn))dτ + Q(xn, x∗)−Q(2xn − xn−1, xn−1))(xn − x∗)‖ ≤

≤ ‖A−1
n H

′
(x∗)‖(‖H

′
(x∗)−1

∫ 1

0

∫ ρ(xn)

τρ(xn)
L1(u)dudτ + ‖H

′
(x∗)−1(+Q(xn, x∗)−

−Q(2xn − xn−1, xn−1))‖)‖xn − x∗‖.

(24)
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According to the condition (17)–(19) of the theorem we get

‖H
′
(x∗)−1(

∫ 1

0

∫ ρ(xn)

τρ(xn)
L1(u)dudτ + Q(xn, x∗)− An)‖ =

=
1

ρ(xn)

∫ ρ(xn)

0
L1(u)udu + ‖H′(x∗)−1(Q(xn, x∗)−Q(xn, xn)+

+Q(xn, xn)−Q(xn, xn−1) + Q(xn, xn−1)−Q(2xn − xn−1, xn−1))‖ ≤

≤ 1
ρ(xn)

∫ ρ(xn)

0
L1(u)udu + ‖H′(x∗)−1(Q(xn, x∗)−Q(xn, xn))‖+

+‖H′(x∗)−1(Q(xn, xn−1, xn)−Q(2xn − xn−1, xn−1, xn))(xn − xn−1)‖ ≤

≤ 1
ρ(xn)

∫ ρ(xn)

0
L1(u)udu +

∫ ρ(xn)

0
L2(u)du +

∫ ‖xn−xn−1‖

0
N(u)du‖xn − xn−1‖.

From (22) and (24) shows that fulfills (21). Then from (21) and (20) we get

‖xn+1 − x∗‖ < ‖xn − x∗‖ < ... < max{‖x0 − x∗‖, ‖x−1 − x∗‖} < r.

Therefore, the iterative process (5) is correctly defined and the sequence that it generates belongs
to B(x∗, r). From the last inequality and estimates (21) we get lim

n→∞
‖xn − x∗‖ = 0. Since the sequence

{xn}n≥0 converges to x∗, then

‖xn − xn−1‖ ≤ ‖xn − x∗‖+ ‖xn−1 − x∗‖ ≤ 2‖xn−1 − x∗‖

and lim
n→∞

‖xn − xn−1‖ = 0.

Corollary 1. The order of convergence of the iterative procedure (7) is quadratic.

Proof. Let us denote ρmax = max{ρ(x0), ρ(x−1)}. Since g(t) and h(t) are monotonically
nondecreasing, then with taking into account the expressions

1
ρ(xn)

∫ ρ(xn)

0
L1(u)udu =

∫ ρ(xn)
0 L1(u)uduρ(xn))

(ρ(xn))2 ≤
∫ ρmax

0 L1(u)uduρ(xn)

(ρmax)2 =: A1ρ(xn),

∫ ρ(xn)

0
L2(u)du =

∫ ρ(xn)
0 L2(u)duρ(xn)

ρ(xn)
≤
∫ ρmax

0 L2(u)duρ(xn)

ρmax
=: A2ρ(xn),

∫ ‖xn−xn−1‖

0
N(u)du =

∫ ‖xn−xn−1‖
0 N(u)du‖xn − xn−1‖

‖xn − xn−1‖
<

<

∫ ‖x0−x−1‖
0 N(u)du‖xn − xn−1‖

‖x0 − x−1‖
=: A3‖xn − xn−1‖

and (
1−

( ∫ ρ(xn)

0
L0

1(u)du + 2
∫ ρ(xn)

0
L0

2(u)du +
∫ ‖xn−xn−1‖

0
N0(u)du‖xn − xn−1‖

))−1
<

<
(

1−
( ∫ ρmax

0
L0

1(u)du + 2
∫ ρmax

0
L0

2(u)du +
∫ ‖x0−x−1‖

0
N0(u)du‖x0 − x−1‖

))−1
=: A4,
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from the inequality (21) follows

‖xn+1 − x∗‖ ≤ A4(A1ρ(xn) + A2ρ(xn) + A3‖xn − xn−1‖2)‖xn − x∗‖.

or
‖xn+1 − x∗‖ ≤ C3‖xn − x∗‖2 + C4‖xn − xn−1‖2‖xn − x∗‖. (25)

Here Ak, k = 1, ..., 4, C3, C4 are some positive constants.
Assume that the order of convergence of the iterative process (7) is not lower 2, therefore there

exist C5 ≥ 0 and N > 0, that for all n ≥ N the inequality holds

‖xn − x∗‖ ≥ C5‖xn−1 − x∗‖2.

Since
‖xn − xn−1‖2 ≤ (‖xn − x∗‖+ ‖xn−1 − x∗‖)2 ≤ 4‖xn−1 − x∗‖2,

then from (44) we get

‖xn+1 − x∗‖ ≤ C3‖xn − x∗‖2 + 4C4‖xn−1 − x∗‖2‖xn − x∗‖

≤ (C3 + 4C4/C5)‖xn − x∗‖2 = C6‖xn − x∗‖2.
(26)

inequality (26) means that the order of convergence is not lower than 2. Thus, the convergence
rate of sequence {xn}n≥0 to x∗ is quadratic.

3. Uniqueness Ball of the Solution

The next theorem determines the ball of uniqueness of the solution x∗ of (1) in B(x∗, r).

Theorem 2. Let us assume that: (1) H(x) ≡ F(x) + Q(x) = 0 has a solution x∗ ∈ D, in which there exists a
Fréchet derivative H′(x∗) and it is invertible; (2) F has a continuous Frećhet derivative in B(x∗, r), F′ satisfies
the generalized Lipschitz condition

‖̆H′(x∗)−1(F′(x)− F′(x∗))‖ ≤
∫ ρ(x)

0
L0

1(u)du ∀x ∈ B(x∗, r),

the divided difference Q(x, y) satisfies the generalized Lipschitz condition

‖H′(x∗)−1(Q(x, x∗)− G′(x∗))‖ ≤
∫ ρ(x)

0
L0

2(u)du ∀x ∈ B(x∗, r),

where L1 and L2 are positive integrable functions. Let r > 0 satisfy

1
r

∫ r

0
(r− u)L0

1(u)du +
∫ r

0
L0

2(u)du ≤ 1.

Then the equation H(x) = 0 has a unique solution x∗ in B(x∗, r).

Proof analogous to [27,31].

4. Corollaries

In the study of iterative methods, the traditional assumption is that the derivatives and/or the
divided differences satisfy the classical Lipschitz conditions. Assuming that L1, L2 and N are constants,
we get from Theorems 1 and 2 important corollaries, which are of interest.
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Corollary 2. Let us assume that: (1) H(x) ≡ F(x) + Q(x) = 0 has a solution x∗ ∈ D, in which there exists
Fréchet derivative H′(x∗) and it is invertible; (2) F has a continuous Fréchet derivative and Q has divided
differences of the first and second order Q(x, y) and Q(x, y, z) in B(x∗, 3r) ⊂ D, which satisfy the Lipschitz
conditions for each x, y, u, v ∈ D

‖H′(x∗)−1(F′(x)− F′(x∗)‖ ≤ L0
1‖x− x∗‖,

‖H′(x∗)−1(Q(x, y)−Q(u, v))‖ ≤ L0
2(‖x− u‖+ ‖y− v‖),

for x, y, u, v ∈ D0

‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤ N0‖u− v‖,

‖H′(x∗)−1(F′(x)− F′(x∗ + τ(x− x∗))‖ ≤ (1− τ)L1‖x− x∗‖,

‖H′(x∗)−1(Q(x, y)−Q(u, v))‖ ≤ L2(‖x− u‖+ ‖y− v‖),

‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤ N‖u− v‖,

where L0
1, L0

2, N0, L1, L2 and N are positive numbers,

r0 =
2

L0
1 + 2L0

2 +
√
(L0

1 + 2L0
2)

2 + 16N0

,

and r is the positive root of the equation

L1r/2 + L2r + 4Nr2

1− L0
1r− 2L0

2r− 4N0r2
= 1.

Then Newton-Kurchatov method (5) converges for all x−1, x0 ∈ B(x∗, r) and there fulfills

‖xn+1 − x∗‖ ≤
(L1/2 + L2)‖xn − x∗‖+ N‖xn − xn−1‖2

1−
(

L0
1 + 2L0

2‖xn − x∗‖+ N0‖xn − xn−1‖2
) .

Moreover, r is the best of all possible.

Note that value of r =
2

3L
improves r̄ =

2
3L1

1
for Newton method for solving equation F(x) =

0 [14,32,33], and with r = 2/(3L2 +
√

9L2
2 + 32N) improves r̄ = 2/(3L1

2 +
√

9(L1
2)

2 + 32N1) for
Kurchatov method for solving the equation Q(x) = 0, as derived in [8].

Corollary 3. Suppose that: (1) H(x) ≡ F(x) + Q(x) = 0 has a solution x∗ ∈ D, in which there exists the
Fréchet derivative H′(x∗) and it is invertible; (2) F has continuous derivative and Q has divided difference
Q(x, x∗) in B(x∗, r) ⊂ D, which satisfy the Lipschitz conditions

‖H′(x∗)−1(F′(x)− F′(x∗))‖ ≤ L0
1‖x− x∗‖,

‖H′(x∗)−1(Q(x, x∗)− G′(x∗))‖ ≤ L0
2‖x− x∗‖

for all x ∈ B(x∗, r), where L0
1 and L0

2 are positive numbers and r =
2

L0
1 + 2L0

2
. Then x∗ is the only solution in

B(x∗, r) of H(x) = 0 , r does not depend on F and Q and is the best choice.
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Note that the resulting radius of the uniqueness ball of the solution r =
2
L1

improves r̄ =
2
L1

1
for

Newton method for solving the equation F(x) = 0 [14] and r =
1
L2

improves r̄ =
1
L1

2
for Kurchatov

method for solving the equation Q(x) = 0 [8]. (See also the numerical examples).

Remark 2. We compare the results in [25] with the new results in this article. In order to do this, let us consider
the conditions given in [25] corresponding to our conditions (15)–(17):

For each x, y, u, v ∈ D

‖H′(x∗)−1(F′(x)− F′(xθ))‖ ≤
∫ ρ(x)

θρ(x)
L1

1(u)du, 0 ≤ θ ≤ 1, (27)

‖H′(x∗)−1(Q(x, y)−Q(u, v))‖ ≤
∫ ‖x−u‖+‖y−v‖

0
L1

2(t)dt, (28)

‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤
∫ ‖u−v‖

0
N1(t)dt, (29)

1
r̄
∫ r̄

0 L1
1(u)udu +

∫ r̄
0 L1

2(u)du + 2r̄
∫ 2r̄

0 N1(u)du

1−
( ∫ r̄

0 L1
1(u)du +

∫ 2r̄
0 L1

2(u)du + 2r̄
∫ 2r̄

0 N11(u)du
) = 1, (30)

‖xn+1 − xn‖ ≤ ēn. (31)

It follows from (14)–(16), (17)–(19), (27)–(29), that

L0
1(t) ≤ L1

1(t), (32)

L1(t) ≤ L1
1(t), (33)

L0
2(t) ≤ L1

2(t), (34)

L2(t) ≤ L1
2(t), (35)

N0(t) ≤ N1(t), (36)

N(t) ≤ N1(t), (37)

leading to
r̄ ≤ r, (38)

en ≤ ēn, (39)

Al ≤ Āl , l = 1, 2, 3, 4, (40)

Cl ≤ C̄l , l = 1, 2, 3, 4, 6 (41)

and
C5 ≥ C̄5, (42)

ēn :=
1

ρ(xn)

∫ ρ(xn)
0 L1

1(u)udu +
∫ ρ(xn)

0 L1
2(u)du +

∫ ‖xn−xn−1‖
0 N1(u)du‖xn − xn−1‖

1−
( ∫ ρ(xn)

0 L1
1(u)du +

∫ 2ρ(xn)
0 L1

2(u)du +
∫ ‖xn−xn−1‖

0 N1(u)du‖xn − xn−1‖
)‖xn − x∗‖,

(43)

‖xn+1 − x∗‖ ≤ Ā4(Ā1ρ(xn) + Ā2ρ(xn) + Ā3‖xn − xn−1‖2)‖xn − x∗‖,
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or

‖xn+1 − x∗‖ ≤ C̄3‖xn − x∗‖2 + C̄4‖xn − xn−1‖2‖xn − x∗‖, (44)

or

‖xn+1 − x∗‖ ≤ C̄6‖xn − x∗‖2

with

C̄6 = (C̄3 + 4C̄4/C̄5)

for some
‖xn − x∗‖ ≥ C̄5‖xn−1 − x∗‖2.

Hence, we obtain the impovements:

(1) At least as many initial choices x−1, x0 as before.
(2) At least as few iterations than before to obtain a predetermined error accuracy.
(3) At least as precice information on the location of the solution as before.

Moreover, if any of (32)–(37) holds as a strict inequality, then so do (38)–(42). Furthermore,
we notice that these improvements are found using the same information, since the functions L0

1, L0
2, N0,

L1, L2, N are special cases of functions L1
1, L1

2, N1 used in [25]. Finally, if G = 0 or F = 0, we obtain the
results for Newton’s method or the Kurchatov method as special cases. Clearly, the results for these
methods are also improved. Our technique can also be used to improve the results of other iterative
methods in an analogous way.

5. Numerical Examples

Example 1. Let E1 = E2 = R3 and Ω = S(x∗, 1). Define functions F and Q for v = (v1, v2, v3)
T on Ω by

F(v) =
(
ev1 − 1, e−1

2 v2
2 + v2, v3

)T ,
Q(v) =

(
|v1|, |v2|, |v2|, | sin(v3)|

)T (45)

F′(v) = diag
(

ev1 , (e− 1)v2 + 1, 1
)

,

Q(v, v̄) = diag
(
|v̄1|−|v1|

v̄1−v1
, |v̄2|−|v2|

v̄2−v2
, | sin(v̄3)|−| sin(v3)|

v̄3−v3

) (46)

Choose:

H(x) = F(x) + Q(x),

‖H′(x∗)−1‖ = 1, L0
1 = e− 1, L0

2 = 1, N0 =
1
2

,

L1 = e
1

e−1 , L2 = 1, N =
1
2

,

L1
1 = e, L1

2 = 1, N1 =
1
2

.

Then compute:
r using (20), r = 0.1599;
r̄ using (30), r̄ = 0.1315.
Also, r̄ < r.
Notice that L0

1 < L1 < L1
1, so the improve ments stated in Remark 1 hold.
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6. Conclusions

In [1,8,34], we studied the local convergence of Secant and Kurchatov methods in the case of
fulfilment of Lipschitz conditions for the divided differences, which hold for some Lipschitz constants.
In [14], the convergence of the Newton method is shown for the generalized Lipschitz conditions for
the Fréchet derivative of the first order. We explored the local convergence of the Newton-Kurchatov
method under the generalized Lipschitz conditions for Fréchet derivative of a differentiable part of the
operator and the divided differences of the nondifferentiable part. Our results contain known parts as
partial cases.

By using our idea of restricted convergence regions, we find tighter Lipschitz constants leading to
a finer local convergence analysis of method (7) and its special cases compared to in [25].
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