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Abstract: In the paper, a new class of dynamic game models with a moving information horizon or
dynamic updating is studied. In this class of games, players do not have full information about the
game structure (motion equations, payoff functions) on the interval on which the game is defined.
It is supposed that the players at each stage of the dynamic game have only truncated information
about the game structure defined by the information horizon. Cooperative and noncooperative
settings are considered in the paper. Results are illustrated using the oligopoly advertising game
model, and comparison between the solution in the initial game model and in the game model with
moving information horizon is presented. Simulation results are presented.

Keywords: looking forward approach; dynamic updating; moving information horizon; dynamic
marketing model; advertising competition; time consistency; simulation

1. Introduction

Noncooperative game theory deals with strategic interactions among multiple decision makers
with the objective functions depending on the choices of all the players. It is supposed that the players
do not cooperate, and it is important to model their behavior using some optimality principal. There
are many results that have been obtained in the field of noncooperative game theory; for a general
description. see the fundamental book [1]. In the papers [2,3], the solution concept called the Nash
equilibrium was proposed; in the current paper, this solution concept is used, but for a dynamic setting.
The following book [4] can be used to study the main recent results in the field of dynamic cooperative
game theory, which is a focus of the current paper.

The cooperative dynamic game theory offers socially convenient and group efficient solutions
to different decision problems involving strategic actions. One of the fundamental questions in the
theory of cooperative dynamic games is to define the allocation rule for cooperative payoff or set of
imputations based on the optimal behavior of players, and the notation of characteristic function is
used for that, which shows the strength of coalition S. In this paper, it is defined as in [5] as a total payoff
of players from coalition S in Nash equilibrium in the game with the following set of players: coalition
S (acting as one player) and players from the set N\S. To compute the feedback Nash equilibrium,
we analyze [4]. A set of imputations or solutions of the game is determined using the characteristic
function at the beginning of each subinterval. In the paper [6], Haurie noted the problem of time
inconsistency for the Nash bargaining solution in one differential game model. The notion of time
consistency was formalized mathematically by Petrosyan in the paper [7]. In the next paper on time
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consistency [8], L. Petrosyan defined the notion of the Imputation Distribution Procedure (IDP), which
is used to compose a time consistent cooperative solution or single imputation. Later on, L. Petrosyan
defined the notion of strong time consistency in the paper [9]. See the recent publications on this topic
in [10–12]. In order to determine a solution for the game model with dynamic updating, it is necessary
to combine partial solutions and their IDP on subintervals. The theories of time consistency and strong
time consistency introduced by L. Petrosyan in [7,9] are also studied for the offered solution.

Classical dynamic game models assume that the game structure does not change in the interval
on which the game is defined or that the players have all information about the change of the game
structure. However, if we consider a long term process, then these assumptions cannot cope with the
reality. In the class of games with continuous updating, it is supposed that the players have or use
only information about motion equations and payoff functions defined on the interval with a length
equal to the value of the information horizon. This information is updated as the current time evolves,
see Figure 1. In order to define the best possible behavior for players in this type of dynamic game, it
is necessary to use a special approach, which is called the Looking Forward Approach (LFA).

The concept of the looking forward approach was introduced in [13] for differential games, where
a new class of games was presented and the foundation for further study of games with dynamic
updating or a moving information horizon was laid. To get more information about the approach,
one may consider the following papers [13–20]. In the paper [13], the looking forward approach
was applied to the cooperative differential game with a finite horizon. The paper [17] was focused
on studying the looking forward approach with stochastic forecast and dynamic adaptation. In the
paper [15], the looking forward approach was applied to a cooperative differential game of pollution
control. In the paper [16], the looking forward approach was applied to the cooperative differential
game with an infinite horizon. The paper [14] was devoted to studying the cooperative differential
games with an infinite horizon and different types of forecasts and information structures. The last
papers on the looking forward approach [18,21] were devoted to either studying the looking forward
approach for cooperative differential games with nontransferable utility and real-life application of the
looking forward approach to economic simulation. The class of differential games with continuous
updating was considered in the papers [19,20]; here, it was supposed that the updating process
evolves continuously in time. In the paper [19], the system of Hamilton–Jacobi–Bellman equations
was derived for the Nash equilibrium in the game with continuous updating. In the paper [20], the
class of linear-quadratic differential games with continuous updating was considered, and the explicit
form of the Nash equilibrium was derived. In this paper, we apply the looking forward approach to
the class of games with dynamic updating. The importance of the results of this paper is supported
by the applicability of dynamic models to real-life processes, the more simple structure of dynamic
models, and the dynamic nature of numerical model predictive control. In the papers described above,
we studied differential games. Another important thing is that in this paper, we study the dynamic
oligopoly marketing model of advertising, where we apply the looking forward approach. This result
is essentially new.

In order to demonstrate the looking forward approach, we present the dynamic marketing model
of advertising with a finite horizon. We refrain from reviewing the literature on advertising models,
given that there are recent surveys on this topic. Huang, Leng, and Liang [22] gave an extensive
and comprehensive survey of dynamic advertising competition since 1994, their coverage starting
where the previous survey in Feichtinger, Hartl, and Sethi [23] stopped. Jørgensen and Zaccour [24]
covered advertising models in oligopolies (horizontal strategic interactions) and in marketing channels
(vertical strategic interactions), whereas He, Prasad, Gutierrez, and Sethi [25] focused on Stackelberg
differential game models in supply chains and marketing channels that include advertising. Finally,
Aust and Buscher [26] and Jørgensen and Zaccour [27] concentrated on cooperative advertising in
marketing channels. This model was based on the model presented by Naik, Prasad, and Sethi in [28].
The model in [28] is the extension of the Sethi model for awareness of auto brands with the churn term,
which is the extension of the decay market share term in monopoly models capturing forgetting and
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noise. The closed-loop Nash equilibrium concept is used to obtain the optimal advertising expenditure
for the noncooperative game model. Considering the applications of game theory in different fields of
research, many subjects from society modeling have been covered, for example see [29]. In this paper,
the looking forward approach is applied to the dynamic case of the model presented in [28]. Both
noncooperative and cooperative models are considered.

The paper is structured as follows. In Section 2 , a description of the looking forward approach is
presented for a general dynamic game model, and a solution for a game with dynamic updating is
presented for both fixed and random information horizons. In Section 3, the looking forward approach
is applied to a dynamic oligopoly marketing model of advertising for noncooperative game and
cooperative game models, respectively. In Section 4, simulation results for a marketing game model
are presented.

2. Looking Forward Approach

Information plays one of the main roles in game theory. Generally, classical differential game
models consider only the complete information, which means the information about the game structure
is known and will not change during the whole game. This paper focuses on, however, the case that
when information updates dynamically, players use only the truncated information and update it at
each stage. In order to model the behavior of players when information updates dynamically, a novel
approach called the looking forward approach in [13] is introduced.

Consider a general N-stage n-person nonzero-sum discrete-time dynamic game Γ(x0, N) [30] with
initial state x0 ∈ Rm. The state dynamics of the game is defined by the following difference equation:

xk+1 = fk(xk, uk
1, uk

2, ..., uk
n), (1)

x1 = x0,

where uk
i ∈ Ui ⊂ Rmi is the control vector of player i at stage k, xk ∈ X is the state of the game, and

k ∈ {1, 2..., N} ≡ T.
The payoff function of player i is:

Ki(x0, N, U) =
N

∑
j=1

gj
i [xj, uj

1, uj
2, ..., uj

n, xj+1]

(
1

1 + r

)j−1
, f or i ∈ {1, 2..., n} ≡ I, (2)

where r is the discount rate.
This game is a complete information game; however, in real-life-like games, players do not have

full information about the game structure on the interval on which the game is defined. We apply the
looking forward approach in order to model the behavior of players when information about the game
updates dynamically.

2.1. Truncated Subgame

Assume that at each stage k, players have full information about the motion equations and payoff
functions within k + T̄ stages, where T̄ is a fixed value, namely the information horizon. At the stage k,
information about the game is updated. At the stage k + 1, players have full information about the
game structure on the interval until the stage k + 1 + T̄, see Figure 1.

Definition 1. Let k = 1, ..., N − T̄. Truncated subgame Γk(xk,0, k, k + T̄) is defined on the interval [k, k + T̄].
The motion equation and payoff function of truncated subgame on the stage interval [k, k + T̄] coincide with that
of the initial game on the same stage interval. The motion equation and initial condition of truncated subgame
have the following form:
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xk+1 = fk(xk, uk
1, uk

2, ..., uk
n), (3)

x1,0 = x1 = x0,

(denote xk,l = xk+l , uk,l
i = uk+l

i , l = 0, T̄ for the truncated subgame Γk(xk,0, k, k + T̄)).
The payoff function of firm i in truncated subgame Γk(xk,0, k, k + T̄) has the form:

Ki(xk,0, k, k + T̄, U) =
T̄

∑
j=0

gk+j
i [xk,j, uk,j

1 , uk,j
2 , ..., uk,j

n , xk,j+1]

(
1

1 + r

)k+j−1
, (4)

for i ∈ {1, 2..., n} ≡ I.

Figure 1. The behavior of players in the game with truncated information can be modeled using a
series of truncated subgames Γk(xk,0, k, k + T̄), k = 1, ..., N − T̄.

2.2. Noncooperative Outcomes in the Game Model with a Moving Information Horizon

Considering each truncated subgame, let uNE,l
k (x) = (uNE,k,l

1 (x), . . . , uNE,k,l
n (x)), l ∈ [0, T̄] be a

vector of strategies that provides a feedback Nash equilibrium solution for the truncated subgame
Γk(xk,0, k, k + T̄), and by V̄k

i (l, x), denote the payoff of player i ∈ I in feedback Nash equilibrium in the
subgame defined on the interval [l, k + T̄], l = k, ..., k + T̄:

V̄k
i (l, x) =

k+T̄

∑
j=l

gk+j
i [xk,j, uNE,k,j

1 , uNE,k,j
2 , . . . , uNE,k,j

n , xk,j+1]

(
1

1 + r

)k+j−1
.

Theorem 1. ([31]) Suppose that there exist functions V̄k
i (l, x) satisfying (5), then strategies that maximize the

right hand side of (5) constitute the feedback Nash equilibrium:
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V̄k
i (l, x) = max

uk,l
i

{
gk

i [x, uNE,k,l
1 (x), . . . , uNE,k,l

i−1 , uk,l
i , uNE,k,l

i+1 , . . . , uNE,k,l
n (x), f̄k(x, uk,l

i )]

(
1

1 + r

)k+l−1

+ V̄k
i (l + 1, f̄k(x, uk,l

i ))

}
= gk

i [x, uNE,k,l
1 (x), ..., uNE,k,l

n (x), fk(xk, uNE,k,l
1 (x), ..., uNE,k,l

n (x))]

×
(

1
1 + r

)k+l−1
+ V̄k

i (l + 1, fk(xk, uNE,k,l
1 (x), ..., uNE,k,l

n (x))),

(5)

where V̄k
i (T̄ + 1, x) = 0, i ∈ I.

Denote the strategies obtained by maximization the right hand side of (5) by uNE,l
k (x), l ∈ [0, T̄].

By xNE
k = (xNE

k,0 , . . . , xNE
k,T̄ ), denote the trajectory obtained with strategies uNE,l

k (x) involved. The
presented solution is valid only for a truncated subgame, not for the whole game defined on the
interval [0, N]. It is also impossible to construct the Nash equilibrium using the classical approaches,
since information about the game updates dynamically, and it is different on different intervals.
In order to construct the resulting equilibrium strategies and corresponding trajectory for a class of
games with dynamic updating, we introduce the notion of the resulting strategies and corresponding
resulting trajectory:

Definition 2. The resulting feedback Nash equilibrium strategies {ûNE,j
i }N

j=1, ∀i ∈ I are constructed in the
following way:

ûNE,j
i =

{
uNE,j,0

i , j ∈ {1, ..., N − T̄} ,

uNE,N−T̄,j−N−T̄
i , j ∈ {N − T̄ + 1, . . . , N} .

Definition 3. The resulting noncooperative trajectory
{

x̂NE
j

}N

j=1
is a combination of xNE

k for each truncated

subgame Γk(xNE
k,0 , k, k + T̄):

{
x̂NE

j

}N

j=0
=

xNE
j,0 , j = 1, N − T̄,

xNE
N−T̄,j−(N−T̄), j = N − T̄ + 1, N.

(6)

Along the resulting noncooperative trajectory, players receive a payoff according to the following
formula:

V̂(x̂NE
k , N − k) =


N−1−T̄

∑
j=k

[V̄ j
i (0, xNE

j,0 )− V̄ j
i (1, xNE

j,1 )] + V̄N−T̄
i (0, xNE

N−T̄,0), k = 1, N − T̄,

V̄N−T̄
i (k− N + T̄, xNE

N−T̄,k−N+T̄), k = N − T̄ + 1, N.

(7)

2.3. Cooperative Game Model with a Moving Information Horizon

The theory of cooperative dynamic games offers socially convenient and group efficient solutions
to different decision problems involving strategic actions. One of the fundamental problems in the
theory of cooperative dynamic games is the formulation of optimal or cooperative behavior for players
and the definition of the allocation rule or cooperative solution, which is the set of imputations chosen
by the players in the game. We suppose that the players decide to cooperate in each truncated subgame.
By Γc

k(xk,0, k, k + T̄), we denote a truncated cooperative subgame defined on the interval [k, k + T̄]
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with the initial condition xk,0. The maximal joint payoff of all players in this game can be defined by
maximizing functional:

∑
i∈I

Ki(xk,0, k, k + T̄, U) = ∑
i∈I

T̄

∑
j=0

gk+j
i [xk,j, uk,j

1 , uk,j
2 , ..., uk,j

n , xk,j+1]

(
1

1 + r

)k+j−1
, (8)

subject to:

xk+1 = fk(xk, uk
1, uk

2, ..., uk
n), (9)

x1,0 = x1 = x0. (10)

Assume that the Bellman function for each truncated subgame Γc
k(xk,0, k, k + T̄) has the following

form [32]:

Wk(0, xk,0) = max
ui(k),i∈I

{
∑
i∈I

T̄

∑
j=0

gk+j
i [xk,j, uk,j

1 , . . . , uk,j
n , fk(xk,j, uk,j

1 , . . . , uk,j
n )]

(
1

1 + r

)k+j−1
}

, (11)

where ui(k) =
{

uk,0
i , ..., uk,T̄

i

}
.

Theorem 2. Suppose that there exists function Wk(l, x) in truncated subgame Γc
k(xk,0, k, k + T̄), l ∈ [0, T̄]

such that the following recursive relations are satisfied:

Wk(l, x) = max
ui(k),i∈I

{
∑
i∈I

gk
i [x, uk,l

1 , . . . , uk,l
n , fk(x, uk,l

1 , . . . , uk,l
n )]

(
1

1 + r

)k+l−1

+ Wk(l + 1, fk(x, uk
1(x), ..., uk

n(x)))

}
,

(12)

where Wk(T̄ + 1, x) = 0. Assume that the maximum in (12) is achieved under control u∗i (k), then u∗i (k) is
optimal in the control problem (8), (9).

Definition 4. The resulting cooperative strategies {û∗,ji }
N
j=1, ∀i ∈ I are constructed in the following way:

û∗,ji =

{
u∗,j,0i , j ∈ {1, ..., N − T̄} ,

u∗,N−T̄,j−N−T̄
i , j ∈ {N − T̄ + 1, . . . , N} .

In a similar way, we define the resulting cooperative trajectory. By u∗, denote the optimal strategies
obtained by maximization of the right hand side of (12). The corresponding trajectory is defined by
x∗k = (x∗k,0, . . . , x∗k,T̄).

Definition 5. The resulting cooperative trajectory
{

x̃∗l
}N

j=1 is a combination of cooperative trajectories x∗k for
each truncated cooperative subgame Γc

k(x∗k , k, k + T̄) defined on the successive intervals [k, k + T̄]:

{
x̃∗j
}N

j=1
=

x∗j,0, j = 1, N − T̄,

x∗N−T̄,j−(N−T̄), j = N − T̄ + 1, N.
(13)

On the interval [k, k + 1], the resulting cooperative trajectory coincides with the cooperative
trajectory x∗k in the truncated cooperative subgame Γc

k(x∗k , k, k + T̄). At the stage k + 1, information
about the game structure updates. On the interval [k+ 1, k+ 2], trajectory x̃∗k coincides with cooperative
trajectory x∗k+1 in the truncated cooperative subgame Γc

k+1(x∗k+1, k + 1, k + 1 + T̄), etc.
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The characteristic function of the coalition is an essential concept in the theory of cooperative
games. In this paper, it is defined as in [5] as a total payoff of players from coalition S ⊆ I in Nash
equilibrium in the game with the following set of players: coalition S (acting as one player) and players
from the set I\S (acting as individuals). For each coalition S ⊆ I, define the values of the characteristic
function for each truncated subgame as was done in [16]:

Vk(S; x∗k,0) =


∑i∈I Kk

i (x∗k,0; u), S = I,

Ṽk(S, x∗k,0), S ⊆ I,

0, S = ∅,

(14)

where Ṽk(S, x∗k,0) is defined as the total payoff of players from coalition S \ I in feedback Nash
equilibrium uNE = (ūNE

1 , ..., ūNE
n ) in the game with the following set of players: coalition S (acting as

one player) and players from the set |I \ S|, i.e., in the game with |I \ S|+ 1 players. For |S| = 1, the
cooperative case turns into the noncooperative case. In other cases, players from coalition S act as one
player maximizing their total payoff.

2.4. Resulting Cooperative Solution and Theoremerties

An imputation ξk(x∗k , k, k + T̄) for each truncated cooperative subgame Γc
k+1(x∗k , k, k + T̄) is

defined as an arbitrary vector satisfying the conditions:

individual rationality: ξk
i (x∗k , k, k + T̄) ≥ V({i}; x∗k , k, k + T̄),

group rationality: ∑
i∈I

ξk
i (x∗k , k, k + T̄) = V(I; x∗k , k, k + T̄).

Denote the set of all possible imputations for each truncated subgame by Ek(x∗, k, k + T̄). Suppose
that for each truncated subgame, a non-empty cooperative solution is defined by:

Mk(x∗, k, k + T̄) ⊆ Ek(x∗, k, k + T̄), (15)

it can be a core, nucleus, or Shapley value.
In order to guarantee time consistency Theoremerty [30] in each cooperative truncated subgame,

it is necessary to use the notion of the imputation distribution procedure. The Theoremerty of time
consistency was introduced in 1977 by L. Petrosyan [33].

Following the continuous time analysis of Yeung and Petrosyan [34] for cooperative differential
games, we formulate a discrete time version of the imputation distribution procedure [8] so that the
agreed upon imputations will be time consistent. By Bk

i (x∗,ki ), denote the payment that firm i receives

in stage k under the cooperative agreement along the cooperative trajectory
{

x∗,ki

}N

k
. The payment

scheme involving Bk
i (x∗,ki ) constitutes an IDP in the sense that the imputation of firm i over the stages

from k to N can be expressed as:

ξk
i (x∗,ki ) = Bk

i (x∗,ki ) +
N

∑
j=k+1

Bj
i (x∗,ji ), i ∈ I. (16)
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Definition 6. Solution M(x∗k , k) is called time consistent, if for any imputation
ξk(x∗,k) ∈ M(x∗k , k), there exists IDP Bk(x∗,ki ) = (Bk

1(x∗,ki ), . . . , Bk
n(x∗,ki )) such that for k = 1, N,

this satisfies:
N

∑
k

Bk(x∗,ki ) ∈ M(x∗k , k)(
N

∑
k

Bk(x∗,ki ) = ξk(x∗,ki )

)
.

The agreed-upon optimality principle or cooperative solution is time consistent, if the condition (6)
is maintained at any time instant throughout the game along the cooperative trajectory.

In order to construct the resulting cooperative solution or cooperative solution in the game with
dynamic updating Γ(x0, N), it is necessary to use a special approach, because the standard approach
can only be applied to each truncated subgame with dynamic updating defined on the interval
[k, k + T̄]. IDP also provides the time consistency Theoremerty of the new solution concept and the
ability to determine solutions within the interval [k, k + T̄].

Suppose that in each truncated subgame Γc
k(x∗k , k, k + T̄), cooperative solution

Mk(x∗, k, k + T̄) 6= ∅ along the cooperative trajectory x∗k is selected. Suppose that the imputation:

ξk(x∗k , k, k + T̄) ∈ Mk(x∗, k, k + T̄)

and corresponding IDP for k ∈ 1, N − T̄ are selected in a way so as to guarantee the time consistency
Theoremerty:

βk,l(x∗k,l) = [βk,l
1 (x∗k,l), ..., βk,l

n (x∗k,l)], for l ∈ 0, T̄.

The corresponding IDP βk,l(x∗k,l) can be obtained in the following form [30]:

βk,l(x∗k,l) = ξk(x∗k,l , k + l, k + T̄)− ξk(x∗k,l+1, k + l + 1, k + T̄), l ∈ 0, T̄, (17)

where ξk(x∗k,T̄+1, k + T̄ + 1, k + T̄) = 0.
However, the time consistency only holds on the interval [k, k + T̄] for each truncated subgame

Γc
k(x∗k , k, k + T̄), k ∈ {1, ..., N}. In order to guarantee time consistency for the whole interval [1, N], we

introduce the resulting IDP.

Definition 7. The resulting IDP β̂k(x̃∗) is defined for a set of chosen imputations in each truncated subgame
ξk(x∗k,0, k, k + T̄) ∈ Mk(x∗, k, k + T̄) using the corresponding βk(x∗k ) as follows:

{
β̂k(x∗)

}N

k=1
=

{
βk,0(x∗k,0), k = 1, N − T̄,

βN−T̄,k−N+T̄(x∗N−T̄,k−N+T̄), k = N − T̄ + 1, N.
(18)

Using the resulting IDP β̂k(x̃∗), we define the following vector:

Definition 8. The resulting imputation ξ̂(x̃∗, N − k) is a vector defined using the resulting IDP β̂k(x∗) in the
following way, for stage k = 1, N:

ξ̂(x̃∗, N − k) =
N

∑
l=k

β̂l(x̃∗), (19)

in particular ξ̂(x̃∗, N) = ∑N
l=1 β̂l(x̃∗).

Using the notion of resulting imputation, it is possible to define the allocation rule for the
joint payoff:
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Definition 9. Resulting solution M̂k(x̃∗, N − k) is the set of resulting imputations
ξ̂(x̃∗, N − k) for all possible resulting IDPs, β̂k(x̃∗) (defined by different imputations in each truncated
subgame).

Any resulting imputation ξ̂(x̃∗, N) ∈ M̂(x̃∗, N) and corresponding resulting IDP β̂k(x̃∗) allocate
the total payoff of players along the resulting cooperative trajectory x̃∗l in the initial game with
prescribed duration or the following condition holds:

∑
i∈I

k

∑
j=1

β̂
j
i(x̃∗j ) = ∑

i∈I

k

∑
j=1

gj
i [x̃
∗
j , ũ∗, x̃∗l+1]

(
1

1 + r

)j−1
. (20)

The resulting solution M̂k(x̃∗, N − k) is time consistent by construction. However, it can also be
proven that an arbitrary resulting cooperative solution is strong time consistent in the game model with
dynamic updating. By an arbitrary solution, we understand a solution that for example is composed
of some vectors from the core in the first stage, the Shapley value in the second stage, etc.

Definition 10. Cooperative solution M(x0, N) is called strong time consistent, if for ∀k = 1, N and every
ξ(x0, N) ∈ M(x0, N), the corresponding IDP βk(x∗k ) satisfies the condition:

k

∑
j=1

βj(x∗j )⊕M(x∗k,0, N − k) ⊆ M(x0, N), (21)

where a⊕ A = {a + a′ : a′ ∈ A}.

Theorem 3. The arbitrary resulting cooperative solution M̂(x̃∗, N) is strong time consistent in the game model
with dynamic updating.

2.5. Construction of the Characteristic Function in the Game Model with Dynamic Updating

In the previous section, we defined the notion of the resulting cooperative solution or we defined
a way for allocating cooperative payoff along the chosen trajectory in the game with dynamic updating.
However, we did not show that the constructed set was a set of imputations or was a set of vectors
satisfying individual and group rationality Theoremerties. In order to justify the resulting cooperative
solution, we need to define the characteristic function for the game model with dynamic updating.

Definition 11. The resulting characteristic function V̄(S; x̃∗k , N − k), S ⊆ I in the game Γ(x̃∗k , N − k) with
dynamic updating was the function calculated using the values of characteristic functions V(S; x∗k , k, k + T̄) in
every truncated subgame Γc

k(xk,0, k, k + T̄) along the resulting cooperative trajectory x̃∗k for k ∈ {1, ..., N}:

V̄(S; x̃∗k , N − k) =


N−T̄−1

∑
l=k

[V(S; x∗l , l, l + T̄)−V(S; x∗l+1, l + 1, l + T̄)]

+V(S; x∗N−T̄ , N − T̄, N), k = 1, N − T̄,

V(S; x∗k , k, N), k = N − T̄ + 1, N.

(22)

Using the resulting characteristic function, we can show that the resulting imputation ξ̂(x̃∗, N)

was the imputation in the game with dynamic updating:
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Theorem 4. The resulting imputation ξ̂(x̃∗, N) is the imputation in the game Γ(x0, N) with dynamic updating,
if for k ∈ {1, ..., N − T̄}, the following condition is satisfied:

ξk
i (x∗k,l , k + l, k + T̄)− ξk

i (x∗k,l+1, k + l + 1, k + T̄)

≥ V({i}; x∗k,l , k + l, k + T̄)−V({i}; x∗k,l+1, k + l + 1, k + T̄), i ∈ I,
(23)

where l = 0, T̄.

The proof of Theorems 4, 5, 6, 8, 9, 10, 11 in the paper can be found in the Appendix A.

2.6. Relationship of the Solutions in Truncated Subgames and Resulting Solutions

In this section, it is shown that if the players choose imputations ξk(x∗k , k, k + T̄) ∈ Ek(x∗, k, k + T̄)
based on V(S; x∗, k, k + T̄) for k ∈ {1, ..., N − T̄}, S ⊆ I in every truncated subgame by the same rule,
then the resulting imputation ξ̂(x̃∗, N − k) corresponds to the imputation chosen by the same rule
using the resulting characteristic function V̄(S; x∗, N − k), S ⊆ I. Further, we prove it for the number
of classical optimality principals.

We assume that if in every truncated subgame Γc
k(x∗k , k, k + T̄), players choose Shapley value

Shk(x∗k , k, k + T̄) as the imputation, then the corresponding resulting imputation ξ̂(x̃∗, N− k) coincides
with the Shapley value Ŝh(x̃∗k , N − k) calculated using the resulting characteristic function V̄(S; x̃∗,
N − k), S ⊆ I.

Theorem 5. Suppose that in every truncated subgame Γc
k(x∗k , k, k + T̄):

ξk(x∗k,0, k, k + T̄) = Shk(x∗k , k, k + T̄),

where k ∈ {1, ..., N − T̄}, then corresponding resulting imputation ξ̂(x̃∗k , N− k) coincides with Ŝh(x̃∗k , N− k):

ξ̂(x̃∗k , N − k) = Ŝh(x̃∗k , N − k), k ∈ [1, N],

where Ŝh(x̃∗k , N− k) is the Shapley value, calculated using the resulting characteristic function V̄(S; x̃∗k , N− k),
S ⊆ I.

Suppose that in every truncated subgame Γc
k(x∗k , k, k + T̄), players choose the core C(x∗k , k, k + T̄)

as the cooperative solution, then each resulting imputation ξ̂(x∗, N − k) belongs to the core, defined
using the resulting characteristic function V̄(S, x̃∗k , N − k).

Theorem 6. Suppose that in every truncated subgame Γc
k(x∗k , k, k + T̄):

Mk(x∗, k, k + T̄) = C(x∗k , k, k + T̄),

where k ∈ {1, ..., N − T̄} , then for every ξk(x∗k , k, k + T̄) ∈ C(x∗k , k, k + T̄), the following is satisfied:

ξ̂(x̃∗k , N − k) ∈ Ĉ(x̃∗k , N − k), k ∈ [k, N],

where Ĉ(x̃∗k , N − k) is the core, calculated using the resulting characteristic function V̄(S, x̃∗k , N − k), S ⊆ I,
if this condition holds:

∑
i∈S

ξ̄k
i (x∗k,0, k, k + T̄)−V(S; x∗, k, k + T̄)

≥ ∑
i∈S

ξ̄k
i (x∗k,1, k + 1, k + T̄)−V(S; x∗, k + 1, k + T̄) ≥ 0, S ⊆ I.

(24)
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2.7. Random Information Horizon

In this section, we consider a case when the length of the information horizon is not fixed; this
means that the players may have certain information on truncated intervals [k, T̄k], but the length of
intervals is a random variable (see Figure 2). By T̄k, we denote the length of the information horizon in
the stage k. T̄k can take values from the interval [T̂k−1 + 1, N], where T̂k−1 is the realization of random
horizon T̄k−1 in the previous truncated subgame, in particular T̂0 = 0. It is worth mentioning that once
T̄k = N, then the updating procedure stops. T̄k is a discrete random variable. At the initial position
x0, the following probabilities are defined for realization on the interval [1, N]: {γ1, . . . , γN}. In the
position x1 (second position), the probabilities are recalculated in the following way:

γT̄k−1+1

∑N
ζ=T̄k−1+1 γζ

, . . . ,
γN

∑N
ζ=T̄k−1+1 γζ

.

The motion equation on the interval [k, T̄k] is:

xk+1 = fk(xk, uk
1, uk

2, ..., uk
n), (25)

x1,0 = x1 = x0.

The payoff function of player i ∈ {1, . . . , n} for the kth truncated subgame is:

E

{
T̄k

∑
ζ=k

gζ
i (xζ , uζ , xζ+1)

}
=

N

∑
T̄k=T̄k−1+1

γT̄k

∑N
j=T̄k−1+1 γj

T̄k

∑
ζ=k

gζ
i (xζ , uζ , xζ+1). (26)

Consider the noncooperative game model. In order to define the feedback Nash equilibrium in
this game, denote the Bellman function Vk

i (x, k) for the kth truncated subgame as follows:

Vk
i (x, k) = max

uk
i ,...,u

T̄k
i

 N

∑
T̄k=T̄k−1+1

γT̄k

∑N
j=T̄k−1+1 γj

T̄k

∑
ζ=k

gζ
i (xζ , uζ , xζ+1)|xk = x


with the set of strategies {uj

i = ψ
j
i , j = k, T̄k, i ∈ I}, then:

Vk
i (x, k) = max

uk
i ,...,u

T̄k
i

 N

∑
T̄k=T̄k−1+1

γT̄k

∑N
j=T̄k−1+1 γj

T̄k

∑
ζ=k

gζ
i (xζ , uζ , xζ+1)


=

N

∑
T̄k=T̄k−1+1

γT̄k

∑N
j=T̄k−1+1 γj

T̄k

∑
ζ=k

gζ
i (x∗ζ , ψζ , x∗ζ+1)

=
T̄k−1

∑
l=k

gl
i(x∗l , ψl , x∗l+1) +

N

∑
T̄k=T̄k−1+1

γT̄k

∑N
j=T̄k−1+1 γj

T̄k

∑
ζ=T̄k−1+1

gζ
i (x∗ζ , ψζ , x∗ζ+1),

where x∗k+1 = fk(x∗k , ψk(x∗k )).
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Figure 2. The length of each blue oval is the realization of the infinite horizon.

As in the theorem in [35], a feedback Nash equilibrium in the noncooperative case of each
truncated subgame with random horizon can be characterized as follows.

Theorem 7. A set of strategies {ψj
i , j = k, N, i ∈ I} provides a feedback Nash equilibrium solution to the

game (25), (26), if there exist functions Vk
i (x, j), for j ∈ {k, . . . , N} and i ∈ I, such that the following recursive

relations are satisfied:

V̂k
i (x, N) = max

uN
i

{
gN

i (x, ψN
1 , . . . , ψN

i−1, uN
i , ψN

i+1, . . . , ψN
n , f̃N(x, uN

i ))
}

,

V̂k
i (x, τ) = max

uτ
i

{
gτ

i (x, ψτ
1 , . . . , ψτ

i−1, uτ
i , ψτ

i+1, . . . , ψτ
n , f̃τ(x, uτ

i ))

+
∑N

j=τ+1 γj

∑N
j=τ γj

V̂k
i ( f̃τ(x, uτ

i ), τ + 1)

}
, for τ ∈ {T̄k−1 + 1, . . . , N − 1},

Vk
i (x, ν) = max

uν
i

{
gν

i (x, ψν
1 , . . . , ψν

i−1, uν
i , ψν

i+1, . . . , ψν
n, f̃ν(x, uν

i ))

+ Vk
i ( f̃ν(x, uν

i ), ν + 1)

}
, for ν ∈ k, T̄k−1,

Vk
i (x, T̄k−1 + 1) = V̂k

i (x, T̄k−1 + 1),

(27)

where f̃k(x, uk
i ) = fk(x, ψk

1, . . . , ψk
i−1, uk

i , ψk
i+1, . . . , ψk

n).

Consider the case when all players agree to cooperate in each truncated subgame. To maximize
their expected joint payoff for the kth truncated subgame, we need to solve the following discrete time
dynamic programming problem:

E

{
∑
i∈I

T̄k

∑
ζ=k

gζ
i (xζ , uζ , xζ+1)

}
= ∑

i∈I

 N

∑
T̄k=T̄k−1+1

γT̄k

∑N
j=T̄k−1+1 γj

T̄k

∑
ζ=k

gζ
i (xζ , uζ , xζ+1)

 (28)

subject to (25).
As a noncooperative case, we can characterize an optimal solution for (25) and (28) as follows:
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Corollary 1. A set of strategies {φj
i , j = k, N, i ∈ I} provides an optimal cooperative strategies to the game

(25) and (28), if there exists function Wk
i (x, j), for j ∈ {k, . . . , N} and i ∈ I, such that the following recursive

relations are satisfied:

Ŵk
i (x, N) = max

uN
1 ,...,uN

n

{
∑
i∈I

gN
i (x, uN

1 , . . . , uN
n , fN(x, uN

1 , . . . , uN
n ))

}
,

Ŵk
i (x, τ) = max

uτ
1 ,...,uτ

n

{
∑
i∈I

[
gτ

i (x, uτ
1 , . . . , uτ

n, fτ(x, uτ
1 , . . . , uτ

n))
]

+
∑N

j=τ+1 γj

∑N
j=τ γj

Ŵk
i ( fτ(x, uτ

1 , . . . , uτ
n), τ + 1)

}
, for τ ∈ {T̄k−1 + 1, . . . , N − 1},

Wk
i (x, ν) = max

uν
1 ,...,uν

n

{
∑
i∈I

[
gν

i (x, uν
1, . . . , uν

n, fν(x, uν
1, . . . , uν

n))
]

+ Wk
i ( fν(x, uν

1, . . . , uν
n), ν + 1)

}
, for ν ∈ k, T̄k−1,

(29)

where Wk
i (x, T̄k−1 + 1) = Ŵk

i (x, T̄k−1 + 1).

Using the set of optimal strategies, {φj
i , j = k, N, i ∈ I} x∗k can be generated from (25), and we

obtain the corresponding cooperative trajectory.

3. Dynamic Oligopoly Marketing Model of Advertising

3.1. Initial Game Model

Consider an n-firm dynamic oligopoly marketing model of advertising defined on the closed
time interval [t0, T]. The solution for the noncooperative case of this model in differential form was
presented in [28]. In this paper, the model is transformed to the dynamic setting and studied for not
only the noncooperative case, but mainly for the cooperative case [36]. Advertising efforts as strategies
are used by firms to compete on the oligopoly market, and each firm tries to increase its market share
while competitors try to minimize it using their advertising efforts. Denote by xk

i the market share
of firm i ∈ I ≡ {1, ..., n} at stage k. The full list of notations is presented in the Table 1. The dynamic
oligopoly marketing model of advertising is defined as follows. Motion equation of firm i ∈ I or its
market share:xk+1

i = h( n
n−1 ρiuk

i

√
1− xk

i −
1

n−1 ∑j∈I ρjuk
j

√
1− xk

j )− (hδ− 1)xk
i + hδ 1

n ,

x0
i = z0

i ,
(30)

where z0
i is a positive constant.

The payoff function of firm i ∈ I in the dynamic game model or the profit of firm i ∈ I:

K0
i (x0, u0) =

N

∑
l=0

mixl
i − (ul

i)
2. (31)

Unlike the motion Equation (2) in the model example, here we use the discount rate r = 0. The main
reason is that we do not want to complicate the result of the model and show the difference between
the looking forward approach and the initial differential game first. The next thing is that we may
model the advertising process on the short time interval, i.e., with a small value of T.

In the table, the list of parameters of the model is presented.
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Table 1. List of variables and parameters.

Notation Explanation

xk
i ≤ 1 Market share of firm i ∈ I ≡ {1, ..., n} at stage k.

uk
i ≥ 0 Advertising effort rate of firm i ∈ I at stage k.

ρi > 0 Advertising effectiveness parameter of firm i ∈ I.
δ > 0 Churn parameter.

mi > 0 Industry sales multiplied by the per unit profit margin of firm i ∈ I.
C(uk

i ) Cost of advertising of firm i ∈ I at stage k, parameterized by (uk
i )

2.

The initial marketing game model is defined on the interval [0,N]. As in Section 2, suppose that
players have full information about the motion equations and payoff functions on the interval [k, k + T̄].
In order to construct a solution in the game model with dynamic updating, we use the notion of
truncated subgame Γk(xk,0, k, k + T̄).

The payoff function of firm i ∈ I in truncated subgame Γk(x0
k , k, k + T̄) has the form:

K̄k
i (xk,0

i , u) =
k+T̄

∑
j=k

mix
j
i − (uj

i)
2. (32)

In Expression (30), there is a logical consistency requirement that the market shares should satisfy:

∑
i∈I

xγ
i = 1, xγ

i ≥ 0, i ∈ I, γ = 0, N. (33)

3.2. Noncooperative Outcomes in a Truncated Subgame

Firstly, we consider the noncooperative case for each truncated subgame Γk(x0
k , k, k + T̄), k ∈

{0, . . . , N − T̄} with the initial condition x0
k . According to Theorem 1, the set of strategies {ūk,l

i ,
for i ∈ {1, ..., n}, l = 0, T̄ and k ∈ {0, ..., N − T̄}}, provides a feedback Nash equilibrium solution to
the game (30), (32) if there exist functions Vk

i (l, xk,l
i ), for i ∈ {1, ..., n}, l = 0, T̄ and k ∈ {0, ..., N − T̄}

in each truncated subgame Γk(x0
k , k, k + T̄), such that the following recursive relations are satisfied,

for each i ∈ I:

Vk
i (l, xk,l

i ) = max
uk,l

i

{
mix

k,l
i − (uk,l

i )2 + Vk
i (l + 1, xk,l+1

i )
}
= mix

k,l
i − (ūk,l

i )2 + Vk
i (l + 1, xk,l+1

i ).

Theorem 8. The payoff of players for each truncated subgame Γk(x0
k , k, k + T̄) in feedback Nash equilibrium on

the interval [k, k + T̄] has the following form:

Vk
i (l, xk,l

i ) = ∑
i∈I

Ãk,l
i xk,l

i + B̃k,l(i), i ∈ {1, ..., n}, k ∈ {0, ..., N − T̄}, l = 0, T̄,

where Ãk,l
i , B̃k,l(i) are determined from the relations:

Ãk,l
i = mi − (Ĝ

k,l+1
i Zi)

2 − Ãk,l+1
i (δh− 1),

Ãk,l
j = −2(Ĝ

k,l+1
j Zj)

2 − Ãk,l+1
j (δh− 1), j 6= i, j ∈ I \ i,

B̃k,l(i) = ∑
i∈I

[2(Ĝ
k,l+1
i Zi)

2 +
Ãk,l+1

i hδ

n
] + B̃k,l+1(i)− (Ĝ

k,l+1
i Zi)

2,

with initial conditions Ãk,T̄+1
i = B̃k,T̄+1(i) = 0, i ∈ {1, ..., n} , where Ĝk,l+1

i = nÃk,l+1
i − ∑j∈I Ãk,l+1

j ,

Zi =
hρi

2(n−1) , Ĝ
k,l+1
i = max

{
0, Ĝk,l+1

i

}
.
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The corresponding feedback Nash equilibrium strategies are:

ūk,l
i = Ĝ

k,l+1
i Zi

√
1− xk,l

i , k ∈ {0, ..., N − T̄} , i ∈ {1, ..., n} . (34)

Consider now the case of a random horizon for a truncated subgame. Suppose that the players
know certain information about the game structure, but the duration of this information being right
(or not changed) is unknown. Suppose that the probabilities are symmetric on the interval [1, N],
γ1 = · · · = γN = 1

N . In our model, the first truncated subgame starts at Stage 0. Invoking Theorem 7 for
the kth truncated subgame, if there exist continuously differentiable functions Vk

i (x, f ), i ∈ {1, . . . , n},
f ∈ {k, . . . , T̄k−1}, and V̂k

i (x, τ), for τ ∈ {T̄k−1 + 1, . . . , N}, such that the following recursive relations
are satisfied:

V̂k
i (x, N) = max

uN
i ≥0

{
mixN

i − (uN
i )2
}

,

V̂k
i (x, τ) = max

uτ
i ≥0

{
mixτ

i − (uτ
i )

2 +
N − τ

N − τ + 1
V̂k

i (xτ+1
i , τ + 1)

}
, for τ ∈ {T̄k−1 + 1, . . . , N − 1},

Vk
i (x, f ) = max

uν
i ≥0

{
mix

f
i − (u f

i )
2 + Vk

i (x f+1
i , f + 1)

}
, for f ∈ k, T̄k−1.

Vk
i (x, T̄k−1) = V̂k

i (x, T̄k−1),

(35)

then strategies ui, i ∈ I that maximize the right hand side of System (35) constitute the feedback Nash
equilibrium. The corresponding Bellman functions can be obtained as follows:

Theorem 9. The Bellman functions for the feedback Nash equilibrium of the kth truncated subgame in (35) are:

1.
V̂k

i (x, τ) = ∑
i∈I

Ak,τ
i xτ

i + Bk,τ(i), τ ∈ {T̄k−1 + 1, . . . , N − 1}, (36)

where Ak,τ
i = mi − (

N − τ

N − τ + 1
Yk,τ+1

i Zi)
2 − N − τ

N − τ + 1
Ak,τ+1

i (δh− 1),

Ak,τ
j = −2(

N − τ

N − τ + 1
Yk,τ+1

j Zj)
2 − N − τ

N − τ + 1
Ak,τ+1

j (δh− 1), j ∈ I \ i,

Bk,τ(i) = ∑
i∈I

[2(
N − τ

N − τ + 1
Yk,τ+1

i Zi)
2 +

N − τ

N − τ + 1
Ak,τ+1

i hδ

n
]

+
N − τ

N − τ + 1
Bk,τ+1(i)− (

N − τ

N − τ + 1
Yk,τ+1

i Zi)
2.

2.
Vk

i (x, f ) = ∑
i∈I

Ak, f
i x f

i + Bk, f (i), f ∈ {k, . . . , T̄k−1}, (37)

where Ak, f
i = mi − (Yk+1

i Zi)
2 − Ak, f+1

i (δh− 1),

Ak, f
j = −2(Yk, f+1

j Zj)
2 − Ak, f+1

j (δh− 1), j ∈ I \ i,

Bk, f (i) = ∑
i∈I

[2(Yk, f+1
i Zi)

2 +
Ak, f+1

i hδ

n
] + Bk, f+1(i)− (Yk, f+1

i Zi)
2

with initial conditions Ak,N
i = mi, Bk,N+1(i) = 0, i ∈ {1, ..., n}, Ak,N

j = 0, for j ∈ I \ i and Yk,t+1
i =

nAk,t+1
i −∑j∈I Ak,t+1

j , Yk,t+1
i = max

{
0, Yk,t+1

i

}
t ∈ {k, ..., N − 1}.
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3.3. Cooperative Outcomes in a Truncated Subgame

In this section, we focus on the cooperative setting, where all firms agree to cooperate in each
truncated subgame. Denote by Γc

k(x0
k , k, k + T̄) the truncated cooperative subgame on the interval

[k, k + T̄] with the initial condition x0
k . All firms aim to maximize their joint payoff:

∑
i∈I

K̄k
i (xk,0

i , u) = ∑
i∈I

k+T̄

∑
j=k

mix
j
i − (uj

i)
2. (38)

Suppose that the set of strategies {u∗,k,l
i , for i ∈ {1, ..., n}, l = 0, T̄ and k ∈ {0, ..., N − T̄}}, provides an

optimal control to the game (30), (38). Invoking Theorem 2.2, if there exist functions {Wk(l, xl
k), xl

k =

(xk,l
1 . . . . , xk,l

n )}, for i ∈ {1, ..., n}, l = 0, T̄ and k ∈ {0, ..., N − T̄} in each truncated subgame Γc
k(x0

k , k, k +
T̄), then the following recursive relations are satisfied:

Wk(l, xl
k) = max

uk,l
1 ,...,uk,l

n ≥0

{
∑
i∈I

mix
k,l
i − (uk,l

i )2 + Wk(l + 1, xl+1
k )

}
= ∑

i∈I
mix

k,l
i − (u∗,k,l

i )2 + Wk(l + 1, xl+1
k ).

Theorem 10. The maximum joint payoff of players for each truncated subgame
Γc

k(x0
k , k, k + T̄) has the following form:

Wk(l, xl
k) = ∑

i∈I
Ĉk,l

i xk,l
i + D̂k,l

i , (39)

where Ĉk,l
i , D̂k,l

i , i ∈ {1, ..., n}, k ∈ {0, ..., N − T̄}, l = 0, T̄ satisfy the relations:

Ĉk,l
i = mi − (Ḡ

k,l+1
i Zi)

2 − Ĉk,l+1
i (δh− 1),

D̂k,l
i = (Ḡ

k,l+1
i Zi)

2 +
Ĉk,l+1

i δh
n

+ Dk,l+1
i

with initial conditions Ĉk,T̄+1
i = 0, D̂k,T̄+1

i = 0, Ḡk,l+1
i = nĈk,l+1

i −∑j∈I Ĉk,l+1
j and Ḡ

k,l+1
i = max

{
0, Ḡk,l+1

i

}
.

The optimal cooperative strategies for each truncated subgame have the form:

u∗,k,l
i = Ḡ

k,l+1
i Zi

√
1− xk,l

i , ∀i ∈ I.

Denote the solution of (39) with optimal strategies u∗ involved with the cooperative trajectory,
x∗,lk = (x∗,k,l

1 , . . . , x∗,k,l
n ), l = 0, T̄. The cooperative trajectory in each truncated subgame can be

calculated using (30) as follows, k ∈ {0, . . . , N − T̄}:

x∗,k,l+1
i = 2nḠ

k,l+1
i Z2

i (1− x∗,k,l
i )−∑

j∈I
2Ḡ

k,l+1
j Z2

j (1− x∗,k,l
j )− (hδ− 1)x∗,k,l

i +
hδ

n
.

So far, we have formalized the case when all firms cooperate in the game model with dynamic
updating and fixed information horizon. Hence, we start to study the case when the information
horizon is random, where T̄1 has symmetric probabilities on the interval [1, N], γ1 = · · · = γN = 1

N .
In the kth cooperative truncated subgame, if there exist functions Wk(x, f ), for i ∈ {1, . . . , n}, f ∈
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{k, . . . , T̄k−1}, and Ŵk(x, τ), for τ ∈ {T̄k−1 + 1, . . . , N}, such that the following recursive relations
are satisfied:

Ŵk(x, N) = max
uN

1 ,...,uN
n

{
∑
i∈I

mixN
i − (uN

i )2

}
,

Ŵk(x, τ) = max
uτ

1 ,...,uτ
n

{
∑
i∈I

mixτ
i − (uτ

i )
2 +

N − τ

N − τ + 1
Ŵk(xτ+1

i , τ + 1)

}
,

for τ ∈ {T̄k−1 + 1, . . . , N − 1},

Wk(x, f ) = max
u f

1 ,...,u f
n

{
∑
i∈I

mix
f
i − (u f

i )
2 + Wk(x f+1

i , f + 1)

}
, for f ∈ k, T̄k−1,

Wk
i (x, T̄k−1) = Ŵk

i (x, T̄k−1),

(40)

then the strategies {u∗,k,l
i , for i ∈ {1, ..., n}, l = 0, T̄ and k ∈ {0, ..., N − T̄}} are optimal.

The value function can be obtained as follows:

Theorem 11. The Bellman functions of the kth cooperative truncated subgame in (40) are:

1.
Ŵk(x, τ) = ∑

i∈I
C̃k,τ

i xτ
i + D̃k,τ

i , τ ∈ {T̄k−1 + 1, . . . , N − 1}, (41)

where C̃k,τ
i = mi − (

N − τ

N − τ + 1
Ĝ

k,τ+1
i Zi)

2 − N − τ

N − τ + 1
C̃k,τ+1

i (δh− 1),

D̃k,τ
i = (

N − τ

N − τ + 1
Ĝ

k,τ+1
i Zi)

2 +
N − τ

N − τ + 1
C̃k,τ+1

i hδ

n
+

N − τ

N − τ + 1
D̃k,τ+1

i ;

2.
Wk

i (x, f ) = ∑
i∈I

C̃k, f
i x f

i + D̃k, f
i , f ∈ {k, . . . , T̄k−1}, (42)

where C̃k,l
i = mi − (Ĝ

k,l+1
i Zi)

2 − C̃k,l+1
i (δh− 1),

D̃k,l
i = (Ĝ

k,l+1
i Zi)

2 +
C̃k,l+1

i δh
n

+ Dk,l+1
i ,

with initial conditions C̃k,N
i = mi, D̃k,N

i = 0, i ∈ {1, ..., n}, Ĝk,t+1
i = nC̃k,t+1

i −∑j∈I C̃k,t+1
j , Ĝ

k,t+1
i =

max
{

0, Ĝk,t+1
i

}
, t ∈ {k, ..., N − 1}.

3.4. Characteristic Function in a Truncated Subgame

Using the characteristic function formula (14), we define the characteristic function for each
truncated subgame:

Vk(S; x∗,0k ) =


∑i∈I Kk

i (x∗,0k ; u), S = I,

Ṽk(S, x∗,0k ), S ⊂ I,

0, S = ∅,

(43)

where Ṽk(S, x∗,0k ) is defined as the total payoff of players from coalition S in feedback Nash equilibrium
uNE = (ū1, ..., ūn) in the game with the following set of players: coalition S (acting as one player) and
players from the set I \ S, i.e., in the game with |I \ S|+ 1 players.
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Suppose that the Bellman function for coalition S ⊆ I and players i ∈ I \ S in truncated subgame
Γc

k(x0
k , k, k + T̄) has the following form:

Vk(S, x0
k) = ∑

i∈I
C̃k,0

i xk,0
i + Ēk,0, S ⊆ I

Vk({i} , x0
k) = ∑

i∈I
Âk,0

i xk,0
i + B̂(i)k,0, i ∈ I \ S,

then the corresponding system of Bellman equations will have the form:

Vk(S, x0
k) = max

uk
i ,∀i∈S

{
∑
i∈S

[mix
k,0
i − (uk

i )
2] + Vk(S, x1

k)

}
,

Vk({i} , x0
k) = max

uk
i

{
mix

k,0
i − (uk

i )
2 + Vk({i} , x1

k)
}

, ∀i ∈ I \ S,

Vk(S, xT̄+1
k ) = 0,

Vk({i} , xT̄+1
k ) = 0.

(44)

4. Numerical Simulation for a Dynamic Advertising Game Model with Updating

We consider a specific three firm oligopoly case n the stage interval N = 8, with fixed information
horizon T̄ = 2. In order to illustrate our model, let the parameters for each firm be ρ = [0.4, 0.5, 0.3], h =

0.4, δ = 0.09, m = [0.6, 1, 1.2] and with the initial conditions z0 = [0.3, 0.5, 0.2].
Figures 3 and 4 show the feedback Nash equilibrium strategies for each firm in the noncooperative

case and cooperative strategies in the cooperative case respectively for both the initial game model
and the game model with the looking forward approach.
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Figure 3. The feedback Nash equilibrium of the noncooperative case in the initial game (solid line)
and the feedback Nash equilibrium of noncooperative case in the game model with dynamic updating
(dashed line).
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Figure 4. Optimal cooperative strategies in the cooperative case of the initial game (solid line) and
optimal cooperative strategies in the cooperative game model with dynamic updating (dashed line).

Figures 5 and 6 show the dynamics of players’ market shares corresponding to the feedback Nash
equilibrium strategies for each firm in the noncooperative case and the dynamics of market shares
corresponding to the optimal cooperative strategies in the cooperative case respectively for both the
initial game and the game model with dynamic updating.
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Figure 5. Noncooperative trajectory in the initial game (solid line) and resulting noncooperative
trajectory (dashed line) in the game model with dynamic updating.
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Figure 6. Cooperative trajectory in the initial game (solid line) and resulting cooperative trajectory
(dashed line) in the game model with dynamic updating.

Figures 7 and 8 show the optimal payoff of each firm in the noncooperative case and the
characteristic function of the cooperative case for coalitions: {1, 2}, {1, 3}, and {2, 3}, respectively, for
both the initial game model and the game model with dynamic updating.
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Figure 7. Noncooperative outcomes in the initial game (solid line) and resulting noncooperative
outcomes (dashed line) in the game model with dynamic updating.
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Figure 8. Characteristic function in the initial game model (solid line) and resulting characteristic
function (dashed line) in the game model with dynamic updating.

Figure 9 shows the difference between the resulting Shapley value and the Shapley value in the
initial game model. As we can see from above, the resulting Shapley value of the game with moving
information horizon changed more steadily over stages rather than the Shapley value of the initial
game. It can be seen that the competition among the companies was more fierce in the initial game
rather than in the game with a moving information horizon, considering market shares in Figure 6 and
advertising expenditure in Figure 7. The Shapley value of each company barely changed in the last
stage, which means that the profit of each company did not change much, as is shown in Figure 9.
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Figure 9. Shapley value in the initial game model (solid line) and the resulting Shapley value (dashed
line) in the game model with dynamic updating.
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Suppose that the realization of the game information horizon: T̄1 = 2, T̄2 = 5, T̄3 = 8. Figure 10
shows the difference of the resulting noncooperative trajectory with a fixed information horizon and a
random information horizon, respectively.
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Figure 10. The resulting noncooperative trajectory with a fixed information horizon (dashed line) and
the resulting noncooperative trajectory with a random information horizon (solid line).

Figure 11 shows the difference between the resulting noncooperative outcomes of each firm in the
noncooperative case with the fixed information horizon and random information horizon approaches.
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Figure 11. The resulting noncooperative outcomes with a fixed information horizon (dashed line) and
the resulting noncooperative outcomes with a random information horizon (solid line).

Figure 12 shows the difference between the resulting cooperative trajectory with fixed and random
information horizons.
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Figure 12. The resulting cooperative trajectory with a fixed information horizon (dashed line) and the
resulting cooperative trajectory with a random information horizon (solid line).

5. Conclusions

In this paper, a novel approach was presented for defining the solution in the dynamic game
model, where information updated dynamically. Here, players did not have full information about the
game structure through the whole time interval on which the game was defined, but they had certain
information about the game structure on a fixed interval, namely the information horizon. As the time
evolved, information about the game structure updated. Moreover, a random information horizon was
considered for this approach. Therefore, the approach can be used to perform more realistic modeling
of real-life conflict processes.

The dynamic oligopoly marketing model of advertising was considered, and the corresponding
numerical example was used to illustrate the comparison between the initial dynamic marketing
model and the corresponding model with dynamic updating. Besides, the comparison between the
looking forward approach with a fixed information horizon and the looking forward approach with a
random information horizon was presented.

Author Contributions: Methodology, O.P.; formal analysis, L.S.; investigation, Y.L.; supervision, H.G.

Funding: The work of first author is supported by Postdoctoral International Exchange Program of China and
funded by Russian Foundation for Basic Research (RFBR) according to the research project No. 18-00-00727
(18-00-00725). The work of last author is supported by National Natural Science Foundation of China (71571108).

Acknowledgments: Great thanks to Lihong Shi who while working in Huawei found time to contribute to
this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Proof of Theorem 4

It is necessary to prove that the following conditions are satisfied:

n

∑
i=1

ξ̂i(x̃∗k , N − k) = V̄(I; x̃∗k , N − k), (A1)

ξ̂i(x̃∗k , N − k) ≥ V̄({i}; x̃∗k , N − k), i ∈ I. (A2)
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Denote function

y(k) =

{
N − T̄ + 1, k = 1, N − T̄,

k, k = N − T̄ + 1, N.

According to Definition 8, the right hand side of (A1) can be rewritten as:

n

∑
i=1

ξ̂i(x̃∗k , N − k) =
n

∑
i=1

N

∑
j=k

β̂
j
i(x̃∗k )

=
n

∑
i=1

[ N−T̄

∑
j=k

(ξ̄
j
i(x∗j,0, j, j + T̄)− ξ̄k

i (x∗j,1, j + 1, j + T̄))

+
N

∑
j=y(k)

(ξ̄N−T̄
i (x∗N−T̄,j−N+T̄ , j, N)− ξ̄N−T̄

i (x∗N−T̄,j+1−N+T̄ , j + 1, N))
]

=
N−T̄

∑
j=k

[
V(I; x∗j,0, j, j + T̄)−V(I; x∗j,1, j + 1, j + T̄)

]
+

N

∑
j=y(k)

[
V(I; x∗N−T̄,j−N+T̄ , j, N)−V(I; x∗N−T̄,j+1−N+T̄ , j + 1, N)

]
.

(A3)

The right hand side of (A3) is equal to V̄(I; x̃∗k , N − k) according to Definition 11; therefore, (A1) is
correct. Now, consider (A2), where the left hand side can be rewritten as:

ξ̂i(x̃∗k , N − k) =
N−T̄

∑
j=k

(ξ̄
j
i(x∗j,0, j, j + T̄)− ξ̄k

i (x∗j,1, j + 1, j + T̄))

+
N

∑
j=y(k)

(ξ̄N−T̄
i (x∗N−T̄,j−N+T̄ , j, N)− ξ̄N−T̄

i (x∗N−T̄,j+1−N+T̄ , j + 1, N)).

(A4)

(A2) is fulfilled for each stage, if for k = 1, N, the following condition is satisfied:

ξ̄
j
i(x∗j,0, j, j + T̄)− ξ̄k

i (x∗j,1, j + 1, j + T̄) ≥

V({i}; x∗j,0, j, j + T̄)−V({i}; x∗j,1, j + 1, j + T̄), j = k, N − T̄,

ξ̄N−T̄
i (x∗N−T̄,j−N+T̄ , j, N)− ξ̄N−T̄

i (x∗N−T̄,j+1−N+T̄ , j + 1, N) ≥

V({i}; x∗N−T̄,j−N+T̄ , j, N)−V({i}; x∗N−T̄,j+1−N+T̄ , j + 1, N), j = N − T̄ + 1, N.

(A5)

Fulfillment of Condition (A5) implies the fulfillment of the condition for each truncated subgame
k = {1, . . . , N − T̄}:

ξk
i (x∗k,l , k + l, k + T̄)− ξk

i (x∗k,l+1, k + l + 1, k + T̄) ≥

V({i}; x∗k,l , k + l, k + T̄)−V({i}; x∗k,l+1, k + l + 1, k + T̄), l = 0, T̄, i ∈ I.
(A6)

The theorem is proven.

Appendix A.2. Proof of Theorem 5

Due to Definition 8 and (17), the resulting imputation is calculated using the Shapley values
Shk(x∗k , k, k + T̄) in each truncated subgame:
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ξ̂(x∗k , N − k) =
N−T̄

∑
j=k

[Shj(x∗j,0, j, j + T̄)− Shj(x∗j,1, j + 1, j + T̄)]

+
N

∑
j=y(k)

[ShN−T̄(x∗N−T̄,j−N+T̄ , j, N)− ShN−T̄(x∗N−T̄,j+1−N+T̄ , j + 1, N)]

= ∑
S⊂I,i∈S

(|I| − |S|)!(|S| − 1)!
|I|!

{
N−T̄

∑
j=k

[(V(S; x∗j,0, j, j + T̄)

−V(S \ i; x∗j,0, j, j + T̄))− (V(S; x∗j,1, j + 1, j + T̄)−V(S \ i; x∗j,1, j + 1, j + T̄))]

+
N

∑
j=y(k)

[(V(S; x∗N−T̄,j−N+T̄ , j, N)−V(S \ i; x∗N−T̄,j−N+T̄ , j, N))

− (V(S; x∗N−T̄,j+1−N+T̄ , j + 1, N)−V(S \ i; x∗N−T̄,j+1−N+T̄ , j + 1, N))]

}

= ∑
S⊂I,i∈S

(|I| − |S|)!(|S| − 1)!
|I|!

{
N−T̄

∑
j=k

[(V(S; x∗j,0, j, j + T̄)

−V(S; x∗j,1, j + 1, j + T̄))− (V(S \ i; x∗j,0, j, j + T̄)−V(S \ i; x∗j,1, j + 1, j + T̄))]

+
N

∑
j=y(k)

[(V(S; x∗N−T̄,j−N+T̄ , j, N)−V(S; x∗N−T̄,j+1−N+T̄ , j + 1, N))

− (V(S \ i; x∗N−T̄,j−N+T̄ , j, N)−V(S \ i; x∗N−T̄,j+1−N+T̄ , j + 1, N))]

}
,

(A7)

Ŝh(x∗k , N − k) is the Shapley value, calculated using the resulting characteristic function
V̄(S, x̃∗k , N − k):

Ŝh(x∗k , N − k)

= ∑
S⊂I,i∈S

(|I| − |S|)!(|S| − 1)!
|I|! (V̄(S; x̃∗k , N − k)− V̄(S \ i; x̃∗k , N − k))

= ∑
S⊂I,i∈S

(|I| − |S|)!(|S| − 1)!
|I|!

{
N−T̄

∑
j=k

[(V(S; x∗j,0, j, j + T̄)

−V(S; x∗j,1, j + 1, j + T̄))− (V(S \ i; x∗j,0, j, j + T̄)−V(S \ i; x∗j,1, j + 1, j + T̄))]

+
N

∑
j=y(k)

[(V(S; x∗N−T̄,j−N+T̄ , j, N)−V(S; x∗N−T̄,j+1−N+T̄ , j + 1, N))

− (V(S \ i; x∗N−T̄,j−N+T̄ , j, N)−V(S \ i; x∗N−T̄,j+1−N+T̄ , j + 1, N))]

}
.

(A8)

Comparing (A7) with (A8), the theorem is proven.

Appendix A.3. Proof of Theorem 6

The statement of the theorem is satisfied when the following two statements are true:

1. If players in every truncated subgame choose the imputation ξk(x∗k , k, k + T̄) ∈ C(x∗k , k, k + T̄)
calculated using V(S; x∗, k, k+ T̄) for k ∈ {1, ..., N − T̄} , then the resulting imputation ξ̂(x̃∗k , N− k)
belongs to core Ĉ(x̃∗k , N − k), calculated using the resulting characteristic function V̄(S, x̃∗k , N − k).

2. Core Ĉ(x̃∗k , N − k) should not contain imputation ξ̂(x̃∗k , N − k), for which it is impossible to find
the set of imputations in truncated subgame ξk(x∗k , k, k + T̄) ∈ C(x∗k , k, k + T̄).
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For the first statement, if the set of imputations ξk(x∗k , k, k + T̄) satisfies the system of inequalities:

∑
i∈S

ξk
i (x∗k,0, k, k + T̄) ≥ V(S; x∗, k, k + T̄), S ⊆ I, (A9)

for k ∈ {1, ..., N − T̄} , i ∈ I, then the resulting imputation ξ̂(x̃∗k , N − k) satisfies the system of
inequalities:

∑
i∈S

ξ̂i(x̃∗k , N − k) ≥ V̄(S, x̃∗k , N − k). (A10)

Substitute the expression for ξk
i (x∗k,0, k, k + T̄) into the left hand side of (A10). To the right hand side of

(A10), substitute (22). It shows that for every S ⊆ I, k ∈ {1, ..., N − T̄}, the fulfillment of (24) leads to
the fulfillment of (A9); hence, (A10) is satisfied. The first statement is proven.

For the second statement, any ξ̂(x̃∗k , N − k) ∈ Ĉ(x̃∗k , N − k), k ∈ {1, ..., N − T̄}, the following
inequalities are satisfied in the set of imputations ξk

i (x∗k,0, k, k + T̄),i ∈ {1, ..., n},k ∈ {1, ..., N − T̄}:

∑
i∈S

[ N−T̄

∑
j=k

(ξ
j
i(x∗j,0, j, j + T̄)− ξk

i (x∗j,1, j + 1, j + T̄))

+
N

∑
j=y(k)

(ξN−T̄
i (x∗N−T̄,j−N+T̄ , j, N)− ξN−T̄

i (x∗N−T̄,j+1−N+T̄ , j + 1, N))

]

≥
N−T̄

∑
j=k

(V(S; x∗j,0, j, j + T̄)−V(S; x∗j,1, j + 1, j + T̄))

+
N

∑
j=y(k)

(V(S; x∗N−T̄,j−N+T̄ , j, N)−V(S; x∗N−T̄,j+1−N+T̄ , j + 1, N)).

(A11)

If there exists one set of imputations ξk
i (x∗k,0, k, k + T̄), i ∈ {1, ..., n}, k ∈ {1, ..., N − T̄} in (A11) for

which the inequalities (A9) are not satisfied, this unsatisfied inequalities will lead to the following
condition for k ∈ {1, ..., N − T̄} being satisfied:

∑
i∈S

ξk
i (x∗k,0, k, k + T̄)−V(S; x∗, k, k + T̄) < 0, (A12)

which contradicts (24), so the theorem is proven.

Appendix A.4. Proof of Theorem 8

The Bellman equation for firm i ∈ I is given by:

Vk
i (l, xk,l

i ) = max
uk

i≥0

{
mix

k,l
i − (uk,l

i )2 + Vk
i (l + 1, xk,l+1

i ))
}

.

Invoking (30) and Vk
i (l, xk,l

i ) = ∑i∈I Ãk,l
i xk,l

i + B̃k,l(i), for i ∈ I, l = 0, T̄ and k ∈ {0, ..., N}, the above
Bellman equation becomes:

∑
i∈I

Ãk,l
i xk,l

i + B̃k,l(i) = max
uk

i≥0

{
mix

k,l
i − (uk

i,l)
2 + ∑

i∈I
Ãk,l+1

i xk,l+1
i + B̃k,l+1(i)

}

= max
uk

i≥0

{
∑
i∈I

Ãk,l+1
i [h(

n
n− 1

ρiu
k,l
i

√
1− xk,l

i −
1

n− 1 ∑
j∈I

ρju
k,l
j

√
1− xk,l

j )

− (hδ− 1)xk,l
i + hδ

1
n
] + B̃k,l+1(i) + mix

k,l
i − (uk,l

i )2

}
.

(A13)



Mathematics 2019, 7, 1239 27 of 31

Performing the indicated maximization in the above yields:

−2uk,l
i +

hρi
n− 1

nÃk,l+1
i

√
1− xk,l

i −
hρi

n− 1

√
1− xk,l

i ∑
j∈I

Ãk,l+1
j = 0,

for i ∈ I, l = 0, T̄ and k ∈ {0, ..., N − T̄}, then the feedback Nash equilibrium strategy of firm i ∈ I can
be obtained in the form:

ūk,l
i = max

{
0, [nÃk,l+1

i −∑
j∈I

Ãk,l+1
j ]

hρi
2(n− 1)

√
1− xk,l

i

}

=
hρi

√
1− xk,l

i

2(n− 1)
max

{
0, nÃk,l+1

i −∑
j∈I

Ãk,l+1
j

}
.

Anticipating that the controls will be shown to be positive, substituting it into (A13), collecting the
terms together, then the parameters Ãk,l

i and B̃k,l(i) can be expressed as:

Ãk,l
i = mi − (Ĝ

k,l+1
i Zi)

2 − Ãk,l+1
i (δh− 1),

Ãk,l
j = −2(Ĝ

k,l+1
j Zj)

2 − Ãk,l+1
j (δh− 1), j 6= i, j ∈ I \ i,

B̃k,l(i) = ∑
i∈I

[2(Ĝ
k,l+1
i Zi)

2 +
Ãk,l+1

i hδ

n
] + B̃k,l+1(i)− (Ĝ

k,l+1
i Zi)

2,

where Ĝk,l+1
i = nÃk,l+1

i −∑j∈I Ãk,l+1
j , Ĝ

k,l+1
i = max

{
0, Ĝk,l+1

i

}
, Zi =

hρi
2(n−1) .

Appendix A.5. Proof of Theorem 9

Consider the Bellman function in the last stage, in the stage N. Performing the indicated
maximization in it yields:

ψN
i = 0, for i ∈ I.

Invoking (36) and V̄k
i (xN

i , N) = mixN
i , the second equation in (35) becomes:

∑
i∈I

Ak,τ
i xτ

i + Bk,τ(i) = max
uτ

i

{
mixτ

i − (uτ
i )

2 +
N − τ

N − τ − 1
(∑

i∈I
Ak,τ+1

i xτ+1
i + Bk,τ+1(i))

}
.

Performing the indicated maximization in the above yields:

−2(uτ
i ) +

N − τ

N − τ − 1
(

hρi
n− 1

nAk,τ+1
i

√
1− xk,τ

i −
hρi

n− 1

√
1− xk,τ

i ∑
j∈I

Ak,τ+1
j ) = 0

for i ∈ I and τ ∈ {T̄k−1 + 1, . . . , N − 1}, then the feedback Nash equilibrium strategy of firm i ∈ I can
be obtained in the form:

ψτ
i = max

{
0,

N − τ

N − τ − 1
(nAk,τ+1

i −∑
j∈I

Ak,τ+1
j )

hρi
2(n− 1)

√
1− xk,τ

i

}

=
N − τ

N − τ − 1

hρi

√
1− xk,τ

i

2(n− 1)
max

{
0, nAk,τ+1

i −∑
j∈I

Ak,τ+1
j

}
.
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Anticipating that the controls will be shown to be positive, substituting it into the second equation in
(35), collecting the terms together, the parameters Ak,τ

i and Bk,τ(i) can be expressed as:

Ak,τ
i = mi − (

N − τ

N − τ + 1
Yk,τ+1

i Zi)
2 − N − τ

N − τ + 1
Ak,τ+1

i (δh− 1),

Ak,τ
j = −2(

N − τ

N − τ + 1
Yk,τ+1

j Zj)
2 − N − τ

N − τ + 1
Ak,τ+1

j (δh− 1), j ∈ I \ i,

Bk,τ(i) = ∑
i∈I

[2(
N − τ

N − τ + 1
Yk,τ+1

i Zi)
2 +

N − τ

N − τ + 1
Ak,τ+1

i hδ

n
]

+
N − τ

N − τ + 1
Bk,τ+1(i)− (

N − τ

N − τ + 1
Yk,τ+1

i Zi)
2.

In the stage f ∈ {k, . . . , T̄k−1}, performing the indicated maximization in the third equation in (35)
yields:

ψ
f
i = max

{
0, (nAk, f+1

i −∑
j∈I

Ak, f+1
j )

hρi
2(n− 1)

√
1− xk, f

i

}

=
hρi

√
1− xk, f

i

2(n− 1)
max

{
0, nAk, f+1

i −∑
j∈I

Ak, f+1
j

}
.

Anticipating that the controls will be shown to be positive, substituting it into the third equation in
(35), collecting the terms together, then the parameters Ak, f

i and Bk, f (i) can be expressed as:

Ak, f
i = mi − (Yk+1

i Zi)
2 − Ak, f+1

i (δh− 1),

Ak, f
j = −2(Yk, f+1

j Zj)
2 − Ak, f+1

j (δh− 1), j ∈ I \ i,

Bk, f (i) = ∑
i∈I

[2(Yk, f+1
i Zi)

2 +
Ak, f+1

i hδ

n
] + Bk, f+1(i)− (Yk, f+1

i Zi)
2,

where Yk,t+1
i = nAk,t+1

i −∑j∈I Ak,t+1
j , Yk,t+1

i = max
{

0, nAk,t+1
i −∑j∈I Ak,t+1

j

}
, t ∈ {k, ..., N − 1}.

Appendix A.6. Proof of Theorem 10

The Bellman equation for the cooperative setting is given by:

Wk(l, xk,l
i ) = max

uk,l
1 ,...,uk,l

n
∑
i∈I

{
mix

k,l
i − (u∗,k,l

i )2 + Wk(l + 1, xk,l+1
i )

}
. (A14)

Substituting (39) into (A14):

Wk(l, xl
k) = max

uk,l
1 ,...,uk,l

n
∑
i∈I

{
mix

k,l
i − (u∗,k,l

i )2 + Wk(l + 1, xl+1
k )

}
⇒∑

i∈I
Ĉk,l

i xk,l
i + D̂k,l

i = max
uk

1,...,uk
n

{
∑
i∈I

[mix
k,l
i − (uk,l

i )2] + ∑
i∈I

Ĉk,l+1
i xk,l+1

i + D̂k,l+1
i

}
,

(A15)

Wk(T̄ + 1, xT̄
k ) = 0.

Substitute the right hand side of (30) to (A15). Performing the indicated maximization in (A15)
yields:

−2uk
i + (nĈk,l+1

i −∑
j∈I

Ĉk,l+1
j )

hρi

√
1− xk,l

i

n− 1
= 0.
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Optimal cooperative strategies can be obtained in the form:

u∗,k,l
i = max

0, (nĈk,l+1
i −∑

j∈I
Ĉk,l+1

j )
hρi

√
1− xk,l

i

2(n− 1)


=

hρi

√
1− xk,l

i

2(n− 1)
max

{
0, nĈk,l+1

i −∑
j∈I

Ĉk,l+1
j

}

for i ∈ I, l = 0, T̄ and k ∈ {0, ..., N} .
Anticipating the cooperative strategies will be shown to be positive, substituting it into (A15),

hence Ĉk,l
i and D̂k,l

i are defined as:

Ĉk,l
i = mi − (Ḡ

k,l+1
i Zi)

2 − Ĉk,l+1
i (δh− 1),

D̂k,l
i = (Ḡ

k,l+1
i Zi)

2 +
Ĉk,l+1

i δh
n

+ Dk,l+1
i .

Appendix A.7. Proof of Theorem 11

Consider the Bellman function in the last stage, that is in the stage N. Performing the indicated
maximization in it yields:

φN
i = 0, f or i ∈ I.

Invoking (41) and W̄k
i (xN

i , N) = ∑i∈I mixN
i , then the second equation in (40) becomes:

∑
i∈I

C̃k,τ
i xτ

i + D̃k,τ
i = max

uτ
1 ,...,uτ

n

{
∑
i∈I

mixτ
i − (uτ

i )
2 +

N − τ

N − τ + 1
(C̃k,τ+1

i xτ+1
i + D̃k,τ+1

i )

}
.

Performing the indicated maximization in the above yields:

−2(uτ
i ) +

N − τ

N − τ − 1
(

hρi
n− 1

nC̃k,τ+1
√

1− xk,τ
i −

hρi
n− 1

√
1− xk,τ

i ∑
j∈I

C̃k,τ+1
j ) = 0

for i ∈ I and τ ∈ {T̄k−1 + 1, . . . , N − 1}, then the feedback Nash equilibrium strategy of firm i ∈ I can
be obtained in the form:

φτ
i = max{0,

N − τ

N − τ − 1
(nC̃k,τ+1

i −∑
j∈I

C̃k,τ+1
j )

hρi
2(n− 1)

√
1− xk,τ

i }

=
N − τ

N − τ − 1

hρi

√
1− xk,τ

i

2(n− 1)
max{0, nC̃k,τ+1

i −∑
j∈I

C̃k,τ+1
j }.

Anticipating that the controls will be shown to be positive, substituting this into the second equation
in (40), collecting the terms together, then the parameters C̃k,τ

i and D̃k,τ
i can be expressed as:

C̃k,τ
i = mi − (

N − τ

N − τ + 1
Ĝ

k,τ+1
i Zi)

2 − N − τ

N − τ + 1
C̃k,τ+1

i (δh− 1),

D̃k,τ
i = (

N − τ

N − τ + 1
Ĝ

k,τ+1
i Zi)

2 +
N − τ

N − τ + 1
C̃k,τ+1

i hδ

n
+

N − τ

N − τ + 1
D̃k,τ+1

i .
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For stage f ∈ {k, . . . , T̄k−1}, performing the indicated maximization in third equation of (40) yields:

φ
f
i = max

{
0, (nC̃k,τ+1

i −∑
j∈I

C̃k,τ+1
j )

hρi
2(n− 1)

√
1− xk, f

i

}

=
hρi

√
1− xk, f

i

2(n− 1)
max

{
0, nC̃k,τ+1

i −∑
j∈I

C̃k,τ+1
j

}
.

Anticipating that the controls will be shown to be positive, substituting this into the third equation in
(40), collecting the terms together, then the parameters C̃k, f

i and D̃k, f
i can be expressed as:

C̃k,l
i = mi − (Ĝ

k,l+1
i Zi)

2 − C̃k,l+1
i (δh− 1),

D̃k,l
i = (Ĝ

k,l+1
i Zi)

2 +
C̃k,l+1

i δh
n

+ Dk,l+1
i ,

where Ĝk,t+1
i = nC̃k,t+1

i −∑j∈I C̃k,t+1
j , Ĝ

k,t+1
i = max

{
0, Ĝk,t+1

i

}
, t ∈ {k, ..., N − 1}.
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