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Abstract: A fuzzy collaborative approach is proposed in this study to assess the suitability of a smart
health practice, which is a challenging task, as the participating decision makers may not reach
a consensus. In the fuzzy collaborative approach, each decision maker first applies the alpha-cut
operations method to derive the fuzzy weights of the criteria. Then, fuzzy intersection is applied to
aggregate the fuzzy weights derived by all decision makers to measure the prior consensus among
them. The fuzzy intersection results are then presented to the decision makers so that they can
subjectively modify the pairwise comparison results to bring them closer to the fuzzy intersection
results. Thereafter, the consensus among decision makers is again measured. The collaboration
process will stop when no more modifications are made by any decision maker. Finally, the fuzzy
weighted mean-centroid defuzzification method is applied to assess the suitability of a smart health
practice. The fuzzy collaborative approach and some existing methods have been applied to assess
the suitabilities of eleven smart health practices for a comparison. Among the compared practices,
only the fuzzy collaborative approach could guarantee the existence of a full consensus among
decision makers after the collaboration process, i.e., that the assessment results were acceptable to all
decision makers.

Keywords: smart health; fuzzy collaborative intelligence; fuzzy analytic hierarchy process; suitability

1. Introduction

The application of smart technologies to enhance mobile health care, i.e., so-called smart health,
has received a lot of attention [1,2]. As smart health practices are becoming more and more sophisticated,
how to recommend suitable smart health practices to a target population becomes a challenging
task. For example, Chen and Chiu [3] reviewed the literature and concluded that the most effective
smart health practices adopted smart mobile services, smart phones, smart glasses/spectacles/contact
lens, and smart surveillance cameras. Haymes et al. [4] applied behavior analysis to find out factors
that contributed to the success of smart health practices for individuals with intellectual disabilities.
Chiu and Chen [5] assessed the sustainable effectiveness of the adjustment mechanism of a ubiquitous
clinic recommendation system by modelling the improvement in the successful recommendation rate
as a learning process. Chen [6] put forward a hybrid methodology combining fuzzy geometric mean
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(FGM), alpha-cut operations (ACO), and fuzzy weighted mean (FWM) to evaluate the sustainability
of a smart health practice, in which FGM, ACO, and FWM were for aggregation, prioritization,
and assessment, respectively. Compared with earlier studies, the FGM-ACO-FWM method was
more precise because of the application of the exact solution technique ACO. However, whether
decision makers reached a consensus was not checked before aggregating their judgments, which was
problematic [7]. To resolve this problem, a fuzzy collaborative approach is proposed in this study.
In the fuzzy collaborative approach, decision makers’ judgments will be aggregated only after they
achieve a consensus.

A fuzzy collaborative approach is proposed in this study to evaluate the suitability of a smart
health practice. In the proposed methodology, multiple decision makers fulfill the assessment task
collaboratively. For each decision maker, ACO is applied to derive the fuzzy weights of criteria.
Then, fuzzy intersection (FI) (or the minimum t-norm) is applied to aggregate the fuzzy weights
derived by all decision makers. Obviously, the proposed methodology is a posterior-aggregation
fuzzy analytic hierarchy process (FAHP) method, while the FGM-ACO-FWM method proposed by
Chen [6] is an anterior-aggregation method. The FI results can be used to measure the prior consensus
among decision makers. If the FI results are wide, i.e., many possible values are acceptable to all
decision makers, then the consensus is high. Subsequently, the FI results are presented to decision
makers so that they can subjectively modify the pairwise comparison results to bring them closer to
the fuzzy intersection results. Thereafter, the consensus among decision makers is again measured.
The collaboration process will stop when no more modifications are made by any decision maker. At
last, based on the aggregation results, the FWM method [8] was applied to assess the suitability of
a smart health practice. The assessment result is defuzzified using the centroid-defuzzification (CD)
method for generating an absolute ranking.

The differences between our proposed methodology and some existing methods are summarized
in Table 1. Our proposed methodology is a posterior-aggregation method, while the method proposed
by Chen [6] is an anterior-aggregation method. In other words, our proposed methodology checks
the existence of a consensus among decision makers, while the method proposed by Chen [6] does
not. In addition, our proposed methodology derives the values of fuzzy weights, while the method
proposed by Chen [7] only approximates the values of fuzzy weights. As a result, our proposed
methodology is more precise and reliable than the method proposed by Chen [7].

Table 1. The differences between the proposed methodology and some existing methods. fuzzy
geometric mean (FGM), alpha-cut operations (ACO), and fuzzy weighted mean (FWM), fuzzy
intersection (FI).

Method Smart
Technology

Assessment
Method

Group Decision
Making Consensus Aggregation

Chen and Chiu [3] All Literature
review No - -

Haymes et al. [4] Not specified Behavior
analysis No - -

Chiu and Chen [5] Smart mobile
services

Learning curve
analysis No - -

Chen [6] All FGM-ACO-FWM Yes Not guaranteed Anterior-aggregation

Chen [7] All FGM-FI-FWM Yes Guaranteed Posterior-aggregation

Our proposed
methodology All ACO-FI-FWM Yes Guaranteed Posterior-aggregation

The remainder of this paper is organized as follows. Section 2 reviews previous works. Section 3
puts forward the fuzzy collaborative approach for assessing the suitability of a smart health practice.
Section 4 provides the results of applying the fuzzy collaborative approach to assess eleven smart
health practices, so as to choose the most suitable smart technology application. Three existing methods
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were also applied to these smart health practices for comparison. Finally, Section 5 presents concluding
remarks and lists a few topics worthy of further investigation.

2. Previous Work

Social media, mobile devices, and sensors are valuable for communicating health-related
information [9–11]. In particular, the applications of social networking apps to mobile health care are
prevalent. For example, Cook et al. [12] compared the average number of Twitter posts by people with
depression to that by people without depression, and found a significant difference. The survey done
by Reeder and David [13] revealed that the most prevalent applications of smart watches to mobile
health care included activity monitoring, heart rate monitoring, speech therapy adherence, diabetes
self-management, and the detection of seizures, tremors, scratching, eating, and medication-taking
behaviors. Mandal et al. [14] described the substitutable medical applications and reusable technologies
(SMART) project launched by Harvard Medical School and Boston Children’s Hospital jointly to
increase the portability of medical applications. Based on the infrastructure, several apps have been
designed. Hamidi [15] proposed a new standard for applying biometric technologies to fast identify
the user of a mobile health care service.

According to the survey of Cook et al. [12], due to advances in sensor and wireless communication
technologies, more than twenty-one types of sensors have been prevalent on mobile or wearable
devices, much more than those in the past [16]. Eklund and Forsman [17] designed a suit of smart
work clothes with embedded sensors for monitoring the heart rate and breathing of a worker, so as to
provide him/her suggestions to avoid musculoskeletal disorders.

There are a number of mobile health care studies focusing on special groups, e.g., people with
extremely bad vision [1], people with intellectual disabilities [4], and older adults [18]. According
to the survey by Liu et al. [18], the most suitable smart health practices for older adults adopted
smart homes and home-based health-monitoring technologies. Such applications were mostly used to
monitor the daily activities, cognitive decline, mental health, and heart conditions of older adults with
complex needs.

In the view of Eskofier et al. [19], the ability to walk was critical to the quality of life. For this
reason, smart shoes with embedded sensors were applied to monitor the gait and mobility of a user,
so as to support healthy living, complement medical diagnostics, and monitor therapeutic outcomes.
Smart technologies can be applied to fall detection, for which machine learning and decision tress
are the most prevalent data analysis techniques. In the view of Chen et al. [20], health monitoring
using traditional wearable devices was not sustainable because of the uncomfortableness of long-term
wearing, insufficient accuracy, etc. This problem is expected to be alleviated soon with rapid advances
in wearable technologies.

3. Methodology

The fuzzy collaborative approach proposed in this study is composed of three major parts: ACO,
FI, and FWM. A similar treatment was taken by Duman et al. [21] that combined fuzzy decision-making
trial and evaluation laboratory (DEMATEL), analytic network process (ANP), and an artificial neural
network (ANN). In addition, the fuzzy collaborative approach is a posterior-aggregation method.
Recently, Chen [6] proposed the FGM-ACO-FWM method for a similar purpose. The differences
between the two methods is highlighted by Figure 1. A recent survey of FAHP refers to [22].
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Figure 1. Comparison with a recent method.

3.1. Deriving Fuzzy Weights for Each Decision Maker Using ACO

In the proposed methodology, a team of K decision makers is formed. First, each decision maker
compares the relative weights of criteria for assessing the suitability of a smart health practice in pairs.
The results are used to construct a fuzzy pairwise comparison matrix as

Ãn×n(k) = [̃ai j(k)]; i, j = 1 ∼ n; k = 1 ∼ K (1)

where

ãi j(k) =

 1 if i = j
1

ã ji(k)
otherwise ; i, j = 1 ∼ n; k = 1 ∼ K (2)

ãi j(k) is the relative weight of criterion i over criterion j judged by decision maker k. Equation (2)
is the reciprocal requirement. ãi j(k) are mapped to triangular fuzzy numbers (TFNs) satisfying
ai j2(k) = {1, 3, 5, 7, 9}, ai j1(k) = max(ai j2(k)− 4, 1), and ai j3(k) = min(ai j2(k)+ 4, 9) (see Figure 2). In this
way, the fuzzy weights derived by decision makers are more likely to overlap before collaboration.
However, that does not mean that the TFNs used in this study are better or more suitable than those
adopted in [23,24]. Regardless of which set of TFNs is used, decision makers can reach a consensus
after several rounds of collaboration using the proposed methodology. However, this is obviously
based on the assumption that all decision makers accept that these TFNs reflect their preferences.
If this assumption holds, in our view, it is more likely for each fuzzy judgment matrix to be consistent.
A positive comparison satisfies ãi j(k) ≥ 1.
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Subsequently, a fuzzy eigen analysis is performed to derive the fuzzy eigenvalue and eigenvector
of Ã [25,26]:

det(Ã(−)λ̃I) = 0 (3)

(Ã(−)λ̃I)(×)̃x = 0 (4)

where (−) and (×) indicates fuzzy subtraction and multiplication, respectively. However, solving the
two equations is a computationally intensive task. To address this, most of the past studies applied
approximation techniques such as FGM [27] and fuzzy extent analysis (FEA) [28]. In contrast, an exact
technique such as ACO is able to derive the values of λ̃ and x̃.

The α cut of a fuzzy variable y(α) = [yL(α), yR(α)] is an interval. In ACO, the fuzzy parameters
and variables in Equations (3) and (4) are replaced with their α cuts:

ai j(α) = [aL
ij(α), aR

ij(α)] (5)

λ(α) = [λL(α),λR(α)] (6)

x(α) = [xL(α), xR(α)]. (7)

Substituting (5–7) into (3–4) gives

det(A(α) − λ(α)I) = 0 (8)

(A(α) − λ(α)I)x(α) = 0. (9)

If the possible values of α are enumerated, e.g., every 0.1, then Equations (8) and (9) need to be
solved 10· 2Cn

2 + 1 times, from which the minimal and maximal results specify the lower and upper
bounds of the α cut [29–31]:

wi(α) = [wL
i (α), wR

i (α)]

= [min
∗

x∗i (α)
n∑

j=1
x∗j(α)

, max
∗

x∗i (α)
n∑

j=1
x∗j(α)

] (10)

where * can be L or R, indicating the left or right α cut of the variable, respectively. The pseudo code
for implementing ACO is shown in Figure 3.
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where * can be L or R, indicating the left or right  cut of the variable, respectively. The pseudo code 
for implementing ACO is shown in Figure 3.  

FOR each value of  
  FOR the two  cuts of the first positive comparison 
    …… 
      FOR the two  cuts of the last positive comparison 
        Derive the maximal eigenvalue and weight from ( )A  
        IF the derived maximal eigenvalue < the minimum of the fuzzy maximal eigenvalue THEN 
          UPDATE the minimum of the fuzzy maximal eigenvalue to the derived maximal eigenvalue 
        END IF 
        IF the derived maximal eigenvalue > the maximum of the fuzzy maximal eigenvalue THEN 
          UPDATE the maximum of the fuzzy maximal eigenvalue to the derived maximal eigenvalue 
        END IF 
        FOR each fuzzy weight 
          IF the derived weight < the minimum of the fuzzy weight THEN 
            UPDATE the minimum of the fuzzy weight to the derived weight 
          END IF 
          IF the derived weight > the maximum of the fuzzy weight THEN 
            UPDATE the maximum of the fuzzy weight to the derived weight 
          END IF 
        END LOOP 
      END LOOP 
    …… 
  END LOOP 
END LOOP 

Figure 3. Pseudo code for implementing ACO.
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Based on λ̃, Satty [23] suggested evaluating the consistency among fuzzy pairwise comparison
results as

Consistency index : C̃.I.(m) =
λ̃max(m) − n

n− 1
(11)

Consistency ratio : C̃.R.(m) =
C̃.I.(m)

R.I.
(12)

where R.I. is the randomized consistency index.

3.2. Aggregating the Fuzzy Weights by All Decision Makers Using FI

After the negotiation process, the FI result of the fuzzy weights derived by all decision makers is
adopted to represent their consensus [32–36]. When a consensus among all decision makers does not
exist, an alternative is to seek for the consensus among only some of the decision makers [37].

The membership function of the FI result is given by

µF̃I({w̃i(k)}
(x) = min

k
(µw̃i(k)(x)) (13)

as shown in Figure 4. If the TFNs for linguistic terms have narrow ranges, fuzzy weights may not
overlap and F̃I({w̃i(k)}) will be an empty (null) set, as illustrated in Figure 5.
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Alternatively, F̃I({w̃i(k)}) can be represented with its α cut as

FIL({w̃i(k)})(α) = max
k

(wL
i (k)(α)) (14)

FIR({w̃i(k)})(α} = min
k

(wR
i (k)(α)) (15)

as illustrated in Figure 6.
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If decision makers are of unequal importance levels, FI is not suitable. To address this issue, the
fuzzy weighted intersection (FWI) can be sought for instead.

Definition 1. Let w̃i(1) ~ w̃i(K) be the fuzzy weights derived by K decision makers. The importance of
decision maker k is ω(k). Then the fuzzy weighted intersection (FWI) of fuzzy weights, indicated with
F̃WI({w̃i(k)|k = 1 ∼ K)} is expected to meet the following requirements:

(i) F̃WI({w̃i(k)}) = w̃i(g) if ωg = 1 for some g: If a decision maker is absolutely important, then the value
of w̃i is determined solely by the decision maker.

(ii) F̃WI({w̃i(k)}) = F̃I({w̃i(k)}) if ωk = 1/K ∀ k: If all decision makers are equally important, then the
value of w̃i is determined by the consensus among the decision makers.

(iii)
∣∣∣µF̃WI(x) − µw̃i(g1)

(x)
∣∣∣≥∣∣∣µF̃WI(x) − µw̃i(g2)

(x)
∣∣∣ if ωg1 ≤ ωg2 ∀ g1 , g2: If decision maker g2 is more

important than decision maker g1, then the value of w̃i is closer to the value derived by decision maker g2

than to that by decision maker g1.

In theory, there are numerous possible FWI operators. A FWI operator considers the membership
function value, rather than the value, of a fuzzy weight, which is obviously distinct from the common
aggregator such as FWM.

3.3. Assessing the Suitability of a Smart Health Practice Using FWM

Subsequently, FWM is applied to assess the suitability of a smart health practice, for which the FI
result provides the required fuzzy weights:

S̃q =

n∑
i=1

(F̃I({w̃i(k)})(×)p̃qi)

n∑
i=1

F̃I({w̃i(k)})
(16)

where S̃q is the suitability of the q-th smart health practice; p̃qi is the performance of the q-th smart health
practice in optimizing the i-th criterion. A FWM problem is not easy to solve because the dividend
and divisor of Equation (16) are dependent [8]. Nevertheless, for comparison, only the dividend of
Equation (16) needs to be calculated, since the divisor is the same for all alternatives:

S̃q =
n∑

i=1

(F̃I({w̃i(k)})(×)p̃qi). (17)
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The α cut of S̃q is defined as the interval [SL
q , SR

q ] that can be derived as

SL
q (α) =

n∑
i=1

(FIL({w̃i(k)})(α)pL
qi(α)) (18)

SR
q (α) =

n∑
i=1

(FIR({w̃i(k)})(α)pR
qi(α)) (19)

according to the alpha-cut operations. The assessment result is then defuzzified using the prevalent
CD method [38]. However, the alpha-cut operations method takes samples uniformly along the y-axis,
as illustrated in Figure 7, while the CD method distributes samples evenly along the x-axis. To resolve
this inconsistency, a possible way is to divide the range of S̃q into Γ equal intervals:

S̃q = {[
Γ − η+ 1

Γ
SL

q (0) +
η− 1

Γ
SR

q (0),
Γ − η

Γ
SL

q (0) +
η

Γ
SR

q (0)]|η = 1 ∼ Γ} (20)

as illustrated in Figure 8. The center of the η-th interval is indicated with Cq(η):

Cq(η) = 1
2 (

Γ−η+1
Γ SL

q (0) +
η−1

Γ SR
q (0) +

Γ−η
Γ SL

q (0) +
η
Γ SR

q (0))

=
2Γ−2η+1

2Γ SL
q (0) +

2η−1
2Γ SR

q (0)
(21)

Cq(η) can be determined by interpolating the two closest values of S̃q:

µS̃q
(Cq(η)) =

Cq(η)− max
S∗q(α)≤Cq(η)

S∗q(α)

( min
S∗q(α)≥Cq(η)

S∗q(α)− max
S∗q(α)≤Cq(η)

S∗q(α))
· min

S∗q(α)≥Cq(η)
α

+

min
S∗q(α)≥Cq(η)

S∗q(α)−Cq(η)

( min
S∗q(α)≥Cq(η)

S∗q(α)− max
S∗q(α)≤Cq(η)

S∗q(α))
· max

S∗q(α)≤Cq(η)
α

(22)

where * can be R or L. Then, the centroid of S̃q is the derived as follows:

COG(S̃q) =

Γ∑
η=1

(µS̃q
(Cq(η))Cq(η))

Γ∑
η=1

µS̃q
(Cq(η))

. (23)
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4. Application

With advances in transportation, sensing, and communication technologies, smart health becomes
a critical issue [39]. There have been a number of smart health practices, however, and how to
choose the most suitable smart health practice is a challenging task. To fulfill this task, the proposed
methodology has been applied to assess and compare the suitabilities of eleven smart health practices.
Chen [6] evaluated the sustainability of a smart health practice, in which five criteria—unobtrusiveness,
supporting online social networking, compliance with related medical laws, the size of the health care
market, and the correct identification of a user’s need and situation, were considered. Compared with
sustainability, suitability is a shorter-term concept. For this reason, the following five criteria were
considered in this study instead [6,40–48]:

(1) C1: unobtrusiveness,
(2) C2: supporting online social networking,
(3) C3: cost effectiveness,
(4) C4: availability of mobile health care facilities, and
(5) C5: correct, reliable, and robust identification of a user’s need and situation.

In addition, two less relevant smart health practices, smart connected vehicles and smart defense
technologies, were excluded from the experiment. The proposed methodology was applied as follows.

First, a team of three decision makers, including an information management professor,
a computer-aided industrial design professor, and an ambient intelligence (AmI) decision maker,
was formed. Each decision maker compared the relative weights of criteria in pairs. The results are
summarized in Table 2.

Table 2. The results of pairwise comparisons.

C1 C2 C3 C4 C5

C1 1 (1, 5, 9), (3, 7, 9),
(3, 7, 9)

(1, 1, 5), (1, 5, 9),
(1, 1, 5)

(3, 7, 9), (5, 9, 9),
(1, 1, 5)

(1, 5, 9), (1, 5, 9),
(1, 3, 7)

C2 - 1 (1, 1, 5), (1, 4, 8),
(1, 3, 7)

(3, 7, 9), (1, 3, 7),
(1, 1, 5) -

C3 - - 1 - (1, 5, 9), (1, 4, 8),
(1, 5, 9)

C4 - - (1, 1, 5), (1, 3, 7),
(1, 1, 5) 1 (3, 7, 9), (1, 5, 9),

(1, 3, 7)

C5 - (1, 3, 7), (1, 5, 9),
(1, 4, 8) - - 1

Each decision maker applied ACO to derive fuzzy eigenvalues and the fuzzy weights of criteria.
The results are summarized in Figures 9 and 10, respectively. In our view, if the linguistic terms
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adopted in the proposed methodology reflected the preferences of decision makers, it was more likely
for their fuzzy judgment matrixes to be consistent. To ensure this, the fuzzy consistency index C̃.I.(k)
should be less than the threshold of 0.1 for each decision maker, by requesting:

µC̃.I.(k)(0.1) ≥ 0 ∀ k (24)

According to the experimental results, Condition (23) was successfully satisfied. In contrast, if the
commonly adopted linguistic terms were adopted, C̃.I.(k) was always greater than 0.1. This result
supported the suitability of the linguistic terms adopted in the proposed methodology.
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Figure 10. Fuzzy weights derived by decision makers.

In this experiment, decision makers were equally important. Therefore, FI was considered effective
for aggregating the fuzzy weights derived by all decision makers. The results are shown in Figure 11.
The results showed that a prior consensus has been achieved among decision makers regarding the
values of each fuzzy weight.
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Figure 11. The FI results.

The FI results were presented to decision makers for them to consider when modifying their
pairwise comparison results. The modified pairwise comparison results are summarized in Table 3.
ACO was again applied to derive fuzzy weights for each decision maker. Then, FI was applied to
measure the consensus among decision makers after collaboration. The results are summarized in
Figure 12. After collaboration, the FI results became wider, showing a higher consensus since more
possible values were acceptable to all decision makers. Taking w̃4 as an example, the FI results before
and after collaboration are compared in Figure 13. The collaboration stopped because no decision
maker made any further modification.

Table 3. The modified pairwise comparison results.

C1 C2 C3 C4 C5

C1 1 (1, 5, 9), (3, 7, 9),
(3, 7, 9)

(1, 1, 5), (1, 3, 7),
(1, 1, 5)

(3, 7, 9), (1, 5, 9),
(1, 1, 5)

(1, 5, 9), (1, 5, 9),
(1, 3, 7)

C2 - 1 (1, 1, 5), (1, 1, 5),
(1, 3, 7)

(3, 7, 9), (1, 5, 9),
(1, 1, 5) -

C3 - - 1 - (1, 5, 9), (1, 4, 8),
(1, 5, 9)

C4 - - (1, 1, 5), (1, 3, 7),
(1, 1, 5) 1 (3, 7, 9), (1, 4, 8),

(1, 3, 7)

C5 - (1, 3, 7), (1, 5, 9),
(1, 4, 8) - - 1



Mathematics 2019, 7, 1180 13 of 20
Mathematics 2019, 7, x FOR PEER REVIEW 13 of 20 

 

      

      

      
Figure 12. The FI results after collaboration. 

 
Figure 13. The FI results of 4w  before and after collaboration. 

The suitabilities of eleven smart health practices were assessed. To this end, the performances of 
these smart health practices in optimizing the five criterion were evaluated by the same decision 
makers using the following linguistic terms [3]: 

Very poor: (0, 0, 1), 
Poor: (0, 1, 2), 
Moderate: (1.5, 2.5, 3.5), 
Good: (3, 4, 5), and 
Very good: (4, 5, 5). 

The evaluations by decision makers were aggregated in a similar way. Specifically speaking, 
decision makers were asked to modify their evaluations slightly until these evaluations overlapped. 

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

m(
FI

(w
1)

)

FI(w1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

m(
FI

(w
2)

)

FI(w2)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

m(
FI

(w
3)

)

FI(w3)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

m(
FI

(w
4)

)

FI(w4)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

m(
FI

(w
5)

)

FI(w5)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

m(
FI

(w
5)

)

FI(w5)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4

m(
FI

(w
4)

)

FI(w4)

before
collaboration
after
collaboration

Figure 12. The FI results after collaboration.
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Figure 13. The FI results of w̃4 before and after collaboration.

The suitabilities of eleven smart health practices were assessed. To this end, the performances
of these smart health practices in optimizing the five criterion were evaluated by the same decision
makers using the following linguistic terms [3]:

Very poor: (0, 0, 1),
Poor: (0, 1, 2),
Moderate: (1.5, 2.5, 3.5),
Good: (3, 4, 5), and
Very good: (4, 5, 5).

The evaluations by decision makers were aggregated in a similar way. Specifically speaking,
decision makers were asked to modify their evaluations slightly until these evaluations overlapped.
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Then, the evaluations by all decision makers were averaged. The results are summarized in Table 4.
It can be seen that none of the smart health practices dominated the others, causing difficulty in
choosing from them. In addition, it was noteworthy that the cost effectiveness of smart phones was
high, while that of smart watches was low, due to the fact that smart phones were much more prevalent
than smart watches. Therefore, a decision maker did not consider buying his/her smart phone as an
additional investment.

Table 4. Performances of eleven smart technologies along five dimensions.

Smart Health Practice C1
(Unobtrusiveness)

C2
(Online Social
Networking)

C3
(Cost Effectiveness)

C4
(Availability of
Mobile Health
Care Facilities)

C5
(Correct, Reliable,

and Robust
Identification)

Smart body analyzers (1.00, 2.00, 3.00) (1.00, 2.00, 3.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.50, 3.50, 4.50)
Smart clothes (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.50, 3.50, 4.50)
Smart glasses (0.00, 1.00, 2.00) (3.33, 4.33, 5.00) (0.00, 1.00, 2.00) (2.00, 3.00, 4.00) (2.50, 3.50, 4.50)

Smart mobile services (3.67, 4.67, 5.00) (3.67, 4.67, 5.00) (3.67, 4.67, 5.00) (3.67, 4.67, 5.00) (3.33, 4.33, 5.00)
Smart motion sensors (2.00, 3.00, 4.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (3.67, 4.67, 5.00)

Smart phones (3.67, 4.67, 5.00) (3.67, 4.67, 5.00) (2.50, 3.50, 4.50) (3.67, 4.67, 5.00) (3.67, 4.67, 5.00)
Smart smoke alarms (2.00, 3.00, 4.00) (0.00, 1.00, 2.00) (1.00, 2.00, 3.00) (2.00, 3.00, 4.00) (3.67, 4.67, 5.00)

Smart toilets (1.00, 2.00, 3.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.00, 3.00, 4.00)
Smart watches (3.67, 4.67, 5.00) (2.50, 3.50, 4.50) (1.00, 2.00, 3.00) (3.67, 4.67, 5.00) (3.67, 4.67, 5.00)

Smart wheelchairs (2.50, 3.50, 4.50) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.00, 3.00, 4.00) (2.00, 3.00, 4.00)
Smart wigs (2.00, 3.00, 4.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (0.00, 1.00, 2.00) (2.50, 3.50, 4.50)

FWM was applied to assess the suitability of each smart health practice, for which the fuzzy
collaborative FAHP approach provided the required fuzzy weights. The results are summarized in
Figure 14.
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Figure 14. FWM results.

For generating an absolute ranking, CD was applied to defuzzify the fuzzy suitability of each
smart health practice. The results are summarized in Table 5.



Mathematics 2019, 7, 1180 16 of 20

Table 5. Defuzzification results.

Smart Health Practice Defuzzified Suitability

Smart body analyzers 2.10
Smart clothes 1.52
Smart glasses 2.40
Smart mobile services 4.64
Smart motion sensors 2.45
Smart phones 4.54
Smart smoke alarms 2.91
Smart toilets 1.86
Smart watches 4.17
Smart wheelchairs 2.79
Smart wigs 2.33

According to the experimental results,

(1) Smart mobile services were the most suitable smart health practice, while smart clothes were still
the least suitable smart health practice, owing to their obtrusiveness.

(2) The suitabilities of the eleven smart health practices were ranked. The results are shown in
Figure 15. The ranking results of the sustainabilities of these smart health practices, retrieved from
Chen [6], are also presented in this figure for comparison. Obviously, there are some differences
between the two results. For example, the suitability of smart body analyzers was low, but its
suitability was high, showing the great potential of smart body analyzers in the future.
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Figure 15. Comparing the suitability and sustainability of each smart technology application.

(3) In the experiment, decision makers modified their fuzzy judgment results just once to achieve
a higher consensus, yet this was not always the case since modifications were subjectively made.
It was possible for decision makers to undergo many rounds of collaboration before achieving
a higher consensus. To tackle this problem, a mechanism for facilitating the collaboration process
among decision makers should be designed.

(4) The efficiency of ACO was a problem to the application of the fuzzy collaborative approach,
and needed to be enhanced somehow, e.g., by applying a genetic algorithm. In previous studies,
there were two major ways of combining genetic algorithms with fuzzy analytic hierarchy analysis.
The first way obtains the weights of criteria by using fuzzy analytic hierarchy analysis, which
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designs the fitness function of the genetic algorithm to compare various alternatives. The second
way solves a multi-objective optimization problem with a genetic algorithm to obtain multiple
Pareto-optimal solutions, and then performs a fuzzy analytic hierarchy analysis to set the weights
of the objective functions to further compare these Pareto-optimal solutions. The motive for
applying a genetic algorithm in this study is different from those in previous studies.

(5) Three existing methods, fuzzy ordered weighted average (FOWA), fuzzy geometric mean
(FGM)-FWM, and the fuzzy extent analysis (FEA)-weighted average (WA) method proposed by
Chang [29], were also applied to assess the suitability of each smart health practice for comparison.
In FOWA, the moderately optimistic strategy was adopted. In FGM-FWM, fuzzy weights were
approximated using FGM and expressed in terms of TFNs. In FEA-WA, since the weights
estimated using FEA were crisp, WA, rather than FWM, was applied to assess the suitability of
each smart health practice. Finally, the suitabilities of all smart health practices were ranked.
The ranking results using various methods are compared in Figure 16. In sum, these methods
came to the same conclusions about the suitabilities of smart mobile services and smart phones.
In contrast, the suitabilities of other smart health practices assessed using different methods were
not the same.
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5. Conclusions

Smart health is the context-aware complement of mobile health within a smart city [49]. In the
past work, a great deal of effort has been made to promote the smart health in a city or region [50].
However, assessing the suitability of a smart health practice is still a challenging task because the
applied smart technology is still evolving. To this end, several group-based decision-making FAHP
methods have been devised. However, the prerequisite for such group-based decision-making FAHP
methods is the existence of a consensus among the participating decision makers, which has rarely
been checked. To address this issue, this study puts forward a fuzzy collaborative approach that is
the joint application of ACO, FI, and FWM. In particular, FI is applied to assess the consensus among
decision makers before the collaboration process. The FI results are presented to decision makers,
so that they can subjectively modify the pairwise comparison results to bring them closer to the FI
results. Thereafter, the consensus among decision makers is again measured. The collaboration process
continues until no further modifications are made by decision makers. Last, the FWM-CD method is
applied to assess the suitability of a smart health practice.
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To elaborate the effectiveness of the fuzzy collaborative approach, we assessed the suitabilities of
eleven smart health practices. According to the experimental results, the following conclusions were
drawn:

(1) Smart mobile services and smart clothes were evaluated as the most suitable and the least suitable
smart health practices, respectively.

(2) The suitabilities of smart mobile services and smart phones evaluated using various methods
were identical. In contrast, the suitabilities of other smart health practices, assessed using various
methods, differed.

(3) Among the compared methods, only the fuzzy collaborative approach could guarantee the
existence of a consensus among decision makers. In other words, only the results assessed using
the fuzzy collaborative approach were acceptable to all decision makers.

Smart technologies are still evolving. Therefore, the suitability of a smart health practice needs to
be re-assessed in the near future. In addition, other types of methods can also be applied to assess the
suitability of a smart health practice.
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