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Abstract: In this work, a general class of discrete time bidirectional associative memory (BAM)
neural networks (NNs) is investigated. In this model, discrete and continuously distributed time
delays are taken into account. By utilizing this novel method, which incorporates the approach of
Kirchhoff’s matrix tree theorem in graph theory, Continuation theorem in coincidence degree theory
and Lyapunov function, we derive a few sufficient conditions to ensure the existence, uniqueness
and exponential stability of the periodic solution of the considered model. At the end of this work,
we give a numerical simulation that shows the effectiveness of this work.

Keywords: discrete-time BAMNNs; periodic solution; coincidence degree theory; exponential
stability; Krichhoff’s matrix tree theorem; time-varying delays

1. Introduction

Differential and difference dynamic models have been intensively investigated because of their
significance and applications in areas such as physics, mathematical biology and artificial neural
networks [1–12]. In 1988, Bart Kosko first proposed the Bidirectional associative memory neural
networks (BAMNNs) [13], a class of Recurrent neural networks which consist of two layers of
neurons, namely U-layer and V-layer; neurons in the U-layer are fully interconnected with the neuron
in the V-layer, moreover the connections between the neurons are no more when they are in the
same layer. Due to its potential applications in optimization [14,15], associative memories [16,17],
signal processing [18], pattern recognition [19], and so forth, BAM type NNs are attractive to many
researchers [20–22]. Furthermore, time delays are unavoidable due to various reasons such as finite
switching speed of amplifier circuit in electrical analog, sudden transmission of signals in NNs and
so on [23–25]. Time delays are often encountered in different types of NNs like Hopfield neural
networks [26], BAMNNs [27–31], inertial neural networks [32,33], cellular neural networks [34,35],
complex neural networks, and so forth [36–38]. It may generate unwanted dynamical response such
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as stability, instability, oscillation, chaotic, periodic and so forth. Moreover, convergence analysis of
BAMNNs have been a recent hot topic for research [21,39].

In practice, time delays are not mandatorily a constant; they may change over time and/or
depending on system parameters [40–44]. It is pointed out that most of the studies on delayed neural
networks (DNNs) have dealt with the stability issue of discrete time delay [21]. Moreover, NNs have a
spatial nature because their parallel pathways have various sizes and lengths of axons, which lead the
signal propagation to be no longer instantaneous but distributed during a certain period of time. This
behavior can be modeled as distributed delay [39,45]. Furthermore, NNs are the mathematical analog
of the human brain or biological NNs. Due to the potential application, NNs were applied in the field
of speech recognition, optimization, characteristic recognition, control, time series prediction and so
on. In the past few decades, NNs have attracted the considerable attention of researchers, among them
most of the considered results and works are in the sense of continuous time and few of them are in
discrete time [46]. Moreover, discrete time NNs are described in the application perspective in the
fields of engineering and more specifically, numerical simulation.

In many real-world phenomena, periodic motion is common, such as in the biological system, the
human brain oscillates periodically, the changing of climates in four seasons, waves and vibrations,
and so on. Recently, there has been an increasing number of researchers working on this periodicity
of NNs [22,47–50]. Until now, in the study of stability analysis of the NNs, the Lyapunov functional
approach played a vital role [51,52]. Moreover, the construction of Lyapunov functional for a large scale
system is not an easy job. To overcome this computational complexity, Li et al. [53] proposed the novel
graph-theoretic approach. The main advantage of this work is to construct a global Lyapunov function
for the large scale systems that are more related to the topological structure. Utilizing the achievements
of the pioneering works, a few researchers have initiated their work and applied this approach to their
research. For example, in Reference [54], the boundedness of the stochastic van der Pol oscillators
was studied by using graph theory and the Lyapunov functional method; in Reference [55], the
boundedness of the stochastic differential equations were studied by utilizing the novel approach;
in Reference [56] the stability of neural networks was studied with the help of the graph-theoretic
approach. However, the graph-theoretic approach is frequently used in the study of stability.

Motivated by the aforementioned works, we investigated the discrete time BAMNNs with mixed
time-varying delays which are exponentially stable and have a unique periodic solution. The main
contributions of this work are given below:

• According to the survey, there are few works on the exponential stability of periodic solution for
discrete time delayed BAMNNs(DDBAMNNs).

• In this manuscript, together with the discrete and continuously distributed delay, the existence
and periodic solution of discrete time BAMNNs is firstly proposed in the base of the graph
theoretic approach, which generalizes and improves on the existing literature.

• To avoid the complication of finding the Lyapunov function, we construct a suitable Lyapunov
function for a vertex system by using the results from graph theory.

• With the help of Lyapunov-Krasovkii functional and coincidence degree theory two types
of sufficient criteria are derived that are different from the various techniques in previous
works [22,49,57,58].

The rest of this work is organized as follows: in the next section we give the model description of
the proposed DDBAMNNs after which we provide the lemma, definition, and assumptions which
are used throughout this work. In Section 3, the existence of periodic solutions for DDBAMNNs
is achieved by employing the combination of degree theory and Kirchhoff’s matrix tree theorem.
In Section 4, by constructing the suitable Lyapunov function and the periodic solution conditions,
the exponential stability of discrete-time NNs is derived. At the end of this work, to show the exactness
of this work, we present a numerical simulation.



Mathematics 2019, 7, 1055 3 of 18

2. Preliminaries and Model Description

In this work, the set of all positive integers, non-negative integers and n-dimensional Euclidean
space are respectively indicated by Z+, Z+

0 and Rn, Rm×n be denote the set of all m× n real matrices.
The sets ST = {0, 1, 2, ..., T − 1} and S = {1, 2, ..., n}. The difference operator of f (x) be defined
as ∆ f (w) = f (w + 1) − f (w). Denote k, T ∈ Z+

0 , [a, b]Z = {a, a + 1, ..., b − 1, b}, |.| denotes the
Euclidean norm.

Graph theory [59]. A digraph G = (V, A) with a set of all vertices or nodes V = {1, 2, ..., l} as
a neuron and directed edges A ⊆ V×V the connection between them. A subgraph H = (VH , AH)

of a digraph G, if it has a same number of vertex set, that is, V = VH then it is known as a spanning
subgraph of G. If each arc (k, h) is assigned by a positive weight pkh then the digraph G is said to be
weighted digraph W(G). A set of all arcs of the digraph G with distinct vertices {P1, P2, ..., Pk} is said
to be a directed path P if {(Pk, Pk+1) : k = 1, 2, 3, ..., l − 1}. The directed path P is said to be a directed
cycle Q if Pk = P1. A unicyclic graph U in digraph G is a subgraph with a disjoint union of rooted
trees whose roots form a dicycle. We define the weighted matrix Z = (zkh)n×n of given weighted
digraph W with l vertices whose entry zkh > 0 if the weight of arc (k, h) exists, otherwise 0. G is said
to be strongly connected whenever for any two of distinct vertices, there is a dipath to each other. The
Laplacian matrix Lp of (G, A) is defined by −lkh for k 6= h and if k = h then it must be equal to ∑

i 6=k
lki.

Coincidence degree theory [60]. Let V and W be respectively the normed vector spaces, the
linear mapping L : domL → W satisfies dim kerL = co dim ker ImL < ∞ and ImL is closed in W,
is called the fredholm mapping of index zero, which implies that there exist projection P : V → V
and Q : W →W which are continuous such that ImP = kerL and ImL = ker Q = Im(I −Q), which
implies that L/domL ∪ kerP : (I − P)V → V is invertible, Kp : ImL → ker P and we denote L−1

p
by Kp. If Θ is an open bounded subset of V, the mapping N will be called L-Compact on Θ̄ if QNΘ̄
is bounded and Kp(I −Q)N : Θ̄ → V is compact, that is, KP ,Q = KP (I − Q). Since, ImQ ∼= kerL,
there exists an isomorphism J : ImQ → kerL.

A mathematical description of BAM Neural Networks are considered as follows:

uk(i + 1) = −akuk(i) +
l

∑
h=1

bkh fh(vh(i)) + Ik (1)

vk(i + 1) = −pkvk(i) +
l

∑
h=1

qkhgh(uh(i)) + Jk, h = 1, 2, 3, ...l

for l ≥ 2 to be the number of neurons in the first and second layers respectively; here, for k ∈ Z+
0 , uk(i)

and vk(i) ∈ Rn denotes the position of kth neuron at time i ∈ {1, 2, ..., m} ∈ Z+ in both layers and
(uk(i), vk(i)) = wk(i) ; A = diag{a1, a2, ..., an} > 0 and P = diag{p1, p2, ..., pn} > 0 be the self-feedback
matrices; in both layers B = (bkh)l×l and Q = (qkh)l×l in Rn×m which stands for the connection weight
matrices between kth and hth neuron; fh : Rn × Z+ → Rn and gh : Rn × Z+ → Rn be denotes the
neuronal activation functions and the output functions are represented by Ik and Jk.

As mentioned in the introduction, we introduce the discrete and continuously distributed delay
in BAM Neural Networks:

uk(i + 1) = −akuk(i) +
l

∑
h=1

bkh f1(vh(i)) +
l

∑
h=1

dkh f2(vh(i− τkh(i)))

+
l

∑
h=1

ekh f3(
∞

∑
ν=1

Mkh(ν)vh(i− ν)) + Ik
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vk(i + 1) = −pkvk(i) +
l

∑
h=1

qkhg1(uh(i)) +
l

∑
h=1

rkhg2(uh(i− ςkh(i))) (2)

+
l

∑
h=1

skhg3(
∞

∑
ϑ=1

Okh(ϑ)uh(i− ϑ)) + Jk; k = 1, 2, 3, ..., l

with Initial conditions,

uk(j) = ψ(j), ∀j ∈ [−τ, 0]Z, τ = max
1≤h≤l

{τkh}

vk(j) = χ(j), ∀j ∈ [−ς, 0]Z, ς = max
1≤h≤l

{ςkh}

where the set of real valued map ψ : [−τ, 0]Z → Rn and χ : [−ς, 0]Z → Rn. Here, τ(i), ς(i) and ν, ϑ

represent respectively the discrete and distributed delay in both layers with 0 ≤ τkh ≤ τ, 0 ≤ ςkh ≤ ς;
D = (dkh)l×l and R = (rkh)l×l ∈ Rm×n denotes the connection weight matrices of the discrete
activation function f2h(vh(i− τkh(i))) and g2h(vh(i− ςkh(i)));E = (ekh)l×l and S = (skh)l×l denotes

the connection weight matrices of the infinitely distributed activation function f3h(
∞
∑

ν=1
Mkh(ν)vh(i−

ν)) and g3h(
∞
∑

ϑ=1
Okh(ϑ)vh(i− ϑ)); where Mkh and Okh stands for the kernel function.

Assumption

(A1) For any h ∈ S and a continuous and bounded function fh(vh(.)) and gh(uh(.)) there exist
constants Lh, Nh such that

| fh(vh(.))| ≤ Lh|vh(.)|
|gh(uh(.))| ≤ Nh|uh(.)|, h = 1, 2, 3.

(A2) The Kernel function Mkh(ν), Okh(ϑ) ∈ R+,∀ν, ϑ ∈ Z is bounded.

(A3)
∞
∑

ν=1
Mkh(ν) = 1 and

∞
∑

ϑ=1
Nkh(ϑ) = 1

Lemma 1. See Reference [53] for l ≥ 2 then the upcoming identity holds

l

∑
k,h=1

ckakhFkh(wk(i), wh(i), i) = ∑
U∈U

W(U) ∑
(k,h)∈A(QU)

Fkh(wk(i), wh(i), i).

Here, for any k, h ∈ S, the cofactor of the kth diagonal element of the Laplacian matrix is expressed as
ck, Fkh(wk(i), wh(i), i) is an arbitrary function, U is the collection of all spanning unicyclic graphs of (G, A),
W(U) is the weight of U and QU denotes the directed cycle of Q. In addition, ck > 0 whenever (G, A) is
strongly connected.

Lemma 2 ([60]). The Fredholm mapping L of index zero and L-Compact N on Θ. Suppose

1. Lw 6= ΛLw, for all w ∈ ∂Θ ∩ kerL and Λ ∈ (0, 1).
2. QNw 6= 0, for all w ∈ ∂Θ ∩ kerL.
3. degBJQN , Θ ∩ ker L, 0 6= 0. where deg denotes the Brouwer degree.

which implies that Lw = Nw has at least one solution lying in DomL ∩ Θ̄.

3. The Existence of Periodic Solution for DBAMNNs

In this section, for the given delayed BAM neural networks we derive the sufficient condition
for the existence of a periodic solution by using the continuation theorem and Krichhoff’s matrix tree
theorem.
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Theorem 1. Let us consider the following assumptions are true:

(P1) There exists a Lyapunov function vk(wk(i), i) such that

vk(wk(i), i) = vk(wk(i + T)), lim
|wk |→∞

vk(wk, i) = ∞ (3)

(P2) There exist the constants σk, γk, δk > 0 and the matrix (αkh)l×l , the arbitrary function Fkh(wk(i), wh(i), i),
for any λ ∈ (0, 1) such that

∆vk(wk(i), i) ≤ −σkvk(wk(i), i) + γkvk(wk(i−vkh(i)), i) +
l

∑
h=1

αkhFkh(wk(i), wh(i), i) + δk (4)

where vkh(i) = max
k,h
{τkh(i), ζkh(i)}.

(P3) Along with each dicycle C of a weighted strongly connected directed graph (G, A) such that

∑
(p,q)∈E(CQ)

Fpq(wk(i), wh(i), i) ≤ 0 (5)

(P4) Suppose that

−a1u1(i) +
l

∑
h=1

b1h f1(vh(i)) +
l

∑
h=1

d1h f2(vh(i− τkh(i))) +
l

∑
h=1

e1h f3(
∞
∑

ν=1
M1h(ν)vh(i− ν)) + I1(t)

...

−anun(i) +
l

∑
h=1

bnh f1(vh(i)) +
l

∑
h=1

dnh f2(vh(i− τkh(i))) +
l

∑
h=1

enh f3(
∞
∑

ν=1
Mnh(ν)vh(i− ν)) + In(t)

−p1v1(i) +
l

∑
h=1

q1h g1(uh(i)) +
l

∑
h=1

r1h g2(uh(i− ςkh(i))) +
l

∑
h=1

e1h g3(
∞
∑

ϑ=1
M1h(ϑ)uh(i− ϑ)) + J1(t)

...

−pnvn(i) +
l

∑
h=1

qnh g1(uh(i)) +
l

∑
h=1

rnh g2(uh(i− ςkh(i))) +
l

∑
h=1

enh g3(
∞
∑

ϑ=1
Mnh(ϑ)uh(i− ϑ)) + Jn(t)


= S(w)w (6)

where (S(w))2n×2n is a non-singular matrix. Then (2) has at least one T-Periodic solution.

Proof. For notation convenience denote

w(i) = (w1(i), w2(i), ..., wn(i))T = (u1(i), u2(i), ..., un(i), v1(i), v2(i), ..., vn(i))T ∈ R2n.

Let us consider

V = W = {w = {w(i)} : w(i) ∈ R2n, n ∈ N} = pm

and pT ⊂ pm which denotes the subspace of all T-periodic sequence equipped with norm

‖w‖ =
l

∑
k=1

(
max
i∈ST
|uk(i)|+ max

i∈ST
|vk(i)|

)
for any w(i) ∈ pT . Clearly, pT is a finite dimensional Banach space. Define a map L : DomL ⊂ V → V and
N : V → V by Lw(i) = ∆Nw(i) and
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Nw(i) = N


w1(i)
w2(i)

...
wn(i)



=



−a1u1(i)+
l

∑
h=1

b1h f1(vh(i))+
l

∑
h=1

d1h f2(vh(i−τkh(i)))+
l

∑
h=1

e1h f3(
∞
∑

ν=1
M1h(ν)vh(i−ν))+I1(t)

...
−anun(i)+

l
∑

h=1
bnh f1(vh(i))+

l
∑

h=1
dnh f2(vh(i−τkh(i)))+

l
∑

h=1
enh f3(

∞
∑

ν=1
Mnh(ν)vh(i−ν))+In(t)

−p1v1(i)+
l

∑
h=1

q1hg1(uh(i))+
l

∑
h=1

r1hg2(uh(i−ςkh(i)))+
l

∑
h=1

e1hg3(
∞
∑

ϑ=1
M1h(ϑ)uh(i−ϑ))+J1(t)

...
−pnvn(i)+

l
∑

h=1
qnhg1(uh(i))+

l
∑

h=1
rnhg2(uh(i−ςkh(i)))+

l
∑

h=1
enhg3(

∞
∑

ϑ=1
Mnh(ϑ)uh(i−ϑ))+Jn(t)


(7)

Then,

ImL =
{

w = {w(i)} ∈ pT :
T−1

∑
i=0

w(i) = 0
}

KerL =
{

w = {w(i)} ∈ pT : w(i) = constant ∈ R2n, i ∈ Z
}

which is closed in W and dimKerL = 2n = dim ImL < +∞. It is easy to verify that ImL and KerL are a
closed linear subspace of pT and

pT = KerL⊕ ImL

Since ImL is closed in W and it has a finite dimensional, hence L is a Fredholm mapping of index zero.
Let us define a projector P and Q as follows, P : V ∩ DomL → kerL and Q : V → V/ImL.

Pw =
1
T

T−1

∑
i=0

w(i), Qw =
1
T

T−1

∑
i=0

w(i), ∀w ∈ V

Pw = Qw =
1
T



T−1
∑

i=0
w1(i)

T−1
∑

i=0
w2(i)

...
T−1
∑

i=0
wn(i)


Hence,

ImP = KerL, ImL = KerQ = Im(I −Q).

Furthermore, the generalized inverse of L, Kp : ImL → KerP ∩ DomL. is defined as

Kp(w) =
T−1

∑
i=0

w(i)− 1
T

T−1

∑
i=0

(T − i)w(i)



Mathematics 2019, 7, 1055 7 of 18

Clearly,

QNw =



1
T

T−1
∑

i=0

[
−a1u1(i)+

l
∑

h=1
b1h f1(vh(i))+

l
∑

h=1
d1h f2(vh(i−τkh(i)))+

l
∑

h=1
e1h f3(

∞
∑

ν=1
M1h(ν)vh(i−ν))+I1(t)

]
...

1
T

T−1
∑

i=0

[
−anun(i)+

l
∑

h=1
bnh f1(vh(i))+

l
∑

h=1
dnh f2(vh(i−τkh(i)))+

l
∑

h=1
enh f3(

∞
∑

ν=1
Mnh(ν)vh(i−ν))+In(t)

]
1
T

T−1
∑

i=0

[
−p1v1(i)+

l
∑

h=1
q1hg1(uh(i))+

l
∑

h=1
r1hg2(uh(i−ςkh(i)))+

l
∑

h=1
e1hg3(

∞
∑

ϑ=1
M1h(ϑ)uh(i−ϑ))+J1(t)

]
...

1
T

T−1
∑

i=0

[
−pnvn(i)+

l
∑

h=1
qnhg1(uh(i))+

l
∑

h=1
rnhg2(uh(i−ςkh(i)))+

l
∑

h=1
enhg3(

∞
∑

ϑ=1
Mnh(ϑ)uh(i−ϑ))+Jn(t)

]


and Kp(I −Q)Nw are continuous. Since V and W are finite dimensional Banach space and Kp(I −Q)N is
continuous. By using Ascoli-Arzela’s theorem we can show that QN (Θ) and Kp(I −Q)NΘ are relatively
compact for any open bounded set Θ ∈ V. Hence N is compact on Θ. In the view of (1) the operation equation

Lw = ΛN

for some Λ ∈ (0, 1).

∆w(i) = Λ



−(1+a1)u1(i)+
l

∑
h=1

b1h f1(vh(i))+
l

∑
h=1

d1h f2(vh(i−τkh(i)))+
l

∑
h=1

e1h f3(
∞
∑

ν=1
M1h(ν)vh(i−ν))+I1(t)

...
−(1+an)un(i)+

l
∑

h=1
bnh f1(vh(i))+

l
∑

h=1
dnh f2(vh(i−τkh(i)))+

l
∑

h=1
enh f3(

∞
∑

ν=1
Mnh(ν)vh(i−ν))+In(t)

−(1+p1)v1(i)+
l

∑
h=1

q1hg1(uh(i))+
l

∑
h=1

r1hg2(uh(i−ςkh(i)))+
l

∑
h=1

e1hg3(
∞
∑

ϑ=1
M1h(ϑ)uh(i−ϑ))+J1(t)

...
−(1+pn)vn(i)+

l
∑

h=1
qnhg1(uh(i))+

l
∑

h=1
rnhg2(uh(i−ςkh(i)))+

l
∑

h=1
enhg3(

∞
∑

ϑ=1
Mnh(ϑ)uh(i−ϑ))+Jn(t)


(8)

Let us consider the global Lyapunov function

V(w(i)) =
l

∑
k=1

ckvk(wk(i)) (9)

where ck indicate the cofactor of kth diagonal element of Lp and

∆V(w) =
l

∑
k=1

ck∆vk(wk(i))

≤ Λ
l

∑
k=1

ck[−σk|wk(i)|2 + αk|wk(i−vkh(i))|2 +
l

∑
h=1

Fkh(wk(i), wh(i)) + δk]

≤ Λ
l

∑
k=1

ck[−
σk
ηk

Vk(wk(i)) +
αk
γk

Vk(wk(i−vkh(i))) +
l

∑
h=1

Fkh(wk(i), wh(i)) + δk]

≤ −Λ
l

∑
k=1

ck
σk
ηk

Vk(wk(i)) + Λ
l

∑
k,h=1

ck
αk
γk

Vk(wk(i−vkh(i))) + Λ
l

∑
k=1

ckFkh(wk(i), wh(i))

+Λ
l

∑
k=1

ckδk.
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where, w(i) is T-periodic solution which implies V(w(i)) is also a T-periodic function.

0 ≤ −Λ
l

∑
k=1

ck
σk
ηk

T−1

∑
i=0

Vk(wk(i)) + Λ
l

∑
k=1

ck
αk
γk

T−1

∑
i=0

Vk(wk(i−vkh(i))) + Λ
l

∑
k,h=1

ck

×
T−1

∑
i=0

Fkh(wk(i), wh(i)) + ΛT
l

∑
k=1

ckδk

From assumption

≤ −Λ
l

∑
k=1

ck
σk
ηk

T−1

∑
i=0

Vk(wk(i)) + Λ
l

∑
k=1

ck
αk
γk

T−1

∑
i=0

Vk(wk(i−vkh(i))) + ΛT
l

∑
k=1

ckδk

≤ −Λσ
T−1

∑
i=0

V(w(i)) + Λα
T−1

∑
i=0

V(w(i−vkh(i))) + ΛT
l

∑
k=1

ckδk

< 0.

Here,

c = min
k
{ck}; σ = min

k
{σk

ηk
}; α = min

k
{ αk

γk
};

lim
w→∞

∆V(w) < 0

This contradicts a T-periodic function V(w(i)). Therefore, there exists B > 0 which is separate from the
selection of Λ, so that the solution of Lw = Λw, which satisfies ‖w‖ < B. Denotes

Θ = {w ∈ B : ‖w‖ < B}.

Then, we know that Lw 6= ΛNw, Λ ∈ (0, 1) for w ∈ KerL ∩ ∂Θ So, we obtain

QNw = Λ



1
T

T−1
∑

i=0

{
−(1+a1)u1(i)+

l
∑

h=1
b1h f1(vh(i))+

l
∑

h=1
d1h f2(vh(i−τkh(i)))+

l
∑

h=1
e1h f3(

∞
∑

ν=1
M1h(ν)vh(i−ν))+I1(t)

}
...

1
T

T−1
∑

i=0

{
−(1+an)un(i)+

l
∑

h=1
bnh f1(vh(i))+

l
∑

h=1
dnh f2(vh(i−τkh(i)))+

l
∑

h=1
enh f3(

∞
∑

ν=1
Mnh(ν)vh(i−ν))+In(t)

}
1
T

T−1
∑

i=0

{
−(1+p1)v1(i)+

l
∑

h=1
q1hg1(uh(i))+

l
∑

h=1
r1hg2(uh(i−ςkh(i)))+

l
∑

h=1
e1hg3(

∞
∑

ϑ=1
M1h(ϑ)uh(i−ϑ))+J1(t)

}
...

1
T

T−1
∑

i=0

{
−(1+pn)vn(i)+

l
∑

h=1
qnhg1(uh(i))+

l
∑

h=1
rnhg2(uh(i−ςkh(i)))+

l
∑

h=1
enhg3(

∞
∑

ϑ=1
Mnh(ϑ)uh(i−ϑ))+Jn(t)

}


6= 0

Let us define a identity mapping I : ImQ → KerL. Then for any (w, µ) ∈ Θ ∈ [0, 1].

IQNw =



1
T

T−1
∑

i=0

{
−(1+a1)u1(i)+

l
∑

h=1
b1h f1(vh(i))+

l
∑

h=1
d1h f2(vh(i−τkh(i)))+

l
∑

h=1
e1h f3(

∞
∑

ν=1
M1h(ν)vh(i−ν))+I1(t)

}
...

1
T

T−1
∑

i=0

{
−(1+an)un(i)+

l
∑

h=1
bnh f1(vh(i))+

l
∑

h=1
dnh f2(vh(i−τkh(i)))+

l
∑

h=1
enh f3(

∞
∑

ν=1
Mnh(ν)vh(i−ν))+In(t)

}
1
T

T−1
∑

i=0

{
−(1+p1)v1(i)+

l
∑

h=1
q1hg1(uh(i))+

l
∑

h=1
r1hg2(uh(i−ςkh(i)))+

l
∑

h=1
e1hg3(

∞
∑

ϑ=1
M1h(ϑ)uh(i−ϑ))+J1(t)

}
...

1
T

T−1
∑

i=0

{
−(1+pn)vn(i)+

l
∑

h=1
qnhg1(uh(i))+

l
∑

h=1
rnhg2(uh(i−ςkh(i)))+

l
∑

h=1
enhg3(

∞
∑

ϑ=1
Mnh(ϑ)uh(i−ϑ))+Jn(t)

}
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Define,

F(w, µ) = µw− (1− µ)IQNw, (w, µ) ∈ Θ× [0, 1].

= µ


w1(i)
w2(i)

...
wn(i)

− 1− µ

T



1
T

T−1
∑

i=0

{
−(1+a1)u1(i)+

l
∑

h=1
b1h f1(vh(i))+

l
∑

h=1
d1h f2(vh(i−τkh(i)))+

l
∑

h=1
e1h f3(

∞
∑

ν=1
M1h(ν)vh(i−ν))+I1(t)

}
...

1
T

T−1
∑

i=0

{
−(1+an)un(i)+

l
∑

h=1
bnh f1(vh(i))+

l
∑

h=1
dnh f2(vh(i−τkh(i)))+

l
∑

h=1
enh f3(

∞
∑

ν=1
Mnh(ν)vh(i−ν))+In(t)

}
1
T

T−1
∑

i=0

{
−(1+p1)v1(i)+

l
∑

h=1
q1hg1(uh(i))+

l
∑

h=1
r1hg2(uh(i−ςkh(i)))+

l
∑

h=1
e1hg3(

∞
∑

ϑ=1
M1h(ϑ)uh(i−ϑ))+J1(t)

}
...

1
T

T−1
∑

i=0

{
−(1+pn)vn(i)+

l
∑

h=1
qnhg1(uh(i))+

l
∑

h=1
rnhg2(uh(i−ςkh(i)))+

l
∑

h=1
enhg3(

∞
∑

ϑ=1
Mnh(ϑ)uh(i−ϑ))+Jn(t)

}


For µ ∈ (0, 1).

degB{JQN , Θ ∩ KerL, 0} = Sgn(det(G(0))) 6= 0

Hence, all the conditions in the continuation theorem are satisfied. Then (2) has T-periodic solution.

Remark 1. Suppose that the digraph (G, A) is balanced, then the following equation possess

l

∑
k,h=1

akhFkh(wk(i), wh(i)) =
1
2 ∑

U∈U
W(U) ∑

(k,h)∈A(QU)

[
Fkh(wk(i), wh(i))

+Fhk(wh(i), wk(i))
]
. (10)

Extending the condition, (5) into

∑
(k,h)∈QU

[Fkh(wk(i), wh(i)) + Fhk(wh(i), wk(i))] ≤ 0. (11)

Corollary 1. Let (G, A) be a balanced digraph. If we put (10) instead of (4) in the place of akhFkh(wk(i), wh(i))
then the system (2) has T-periodic solution.

Remark 2. For each k, h, there exists functions Rk(wk) and Rh(wh) such that

Fkh(wk(i), wh(i)) ≤ Rk(wk(i))− Rh(wh(i)). (12)

At that point

∑
(k,h)∈QU

[Rk(wk(i))− Rh(wh(i))] ≤ 0. (13)

Corollary 2. The determination of existence theorem holds whenever we replace (4) by (11).

Remark 3. For DDBAMNNs (2), we construct a global Lyapunov function V =
l

∑
k=1

ckvi, and that is closely

connected to the topological structure. However, the construction of Lyapunov function for delayed system is a
difficult one. Hence, we design vi = v(1)k (i) + v(2)k (i) + v(3)k (i), which is useful for solving this type problem.
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4. Uniqueness and Exponential Stability of Periodic Solution

Definition 1. The system (2) with T-periodic solution u∗(i) and v∗(i) is said to be exponentially stable if there
is a constant κ > 0 and ρ > 1 such that

|u(i)− u∗(i)|2 + |v(i)− v∗(i)|2 ≤ ρiκ

(
sup

s∈Z[−τ,0]
‖u(i)− u∗(i)‖2 + sup

s∈Z[−ς,0]
‖v(i)− v∗(i)‖2

)

Moreover, exponentially stable implies the uniqueness of T-periodic solution u∗(i) and v∗(i).

Theorem 2. Let us consider the condition (A1)− (A3), if

max
{

ρ|ak|2 + ρ
l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν) + ρ
l

∑
k=1
|dhk|2L2

2 + ρ
l

∑
k=1
|qhk|2N2

1 , ρ|pk|2 + ρ
l

∑
h=1

s2
khN2

3

×
∞

∑
ϑ=1

Okh(ϑ) + ρ
l

∑
k=1
|rhk|2N2

2 + ρ
l

∑
k=1
|bhk|2L2

1

}
> 1

then the system (2) is exponential stability and it is unique.

Proof. On the basis of Theorem 1, the system (2) has at least one T-periodic solution. Let

w∗(i) = (u∗1(i), u∗2(i), ..., u∗n(i), v∗1(i), v∗2(i), ..., v∗n(i))
T

be denotes the T-Periodic solution of (2). Then we have,

u∗k (i + 1) = −aku∗k (i) +
l

∑
h=1

bkh f1(v∗h(i)) +
l

∑
h=1

dkh f2(v∗h(i− τkh(i)))

+
l

∑
h=1

ekh f3(
∞

∑
ν=1

Mkh(ν)v∗h(i− ν)) + Ik

v∗k (i + 1) = −pkv∗k (i) +
l

∑
h=1

qkhg1(u∗h(i)) +
l

∑
h=1

rkhg2(u∗h(i− ςkh(i)))

+
l

∑
h=1

skhg3(
∞

∑
ϑ=1

Okh(ϑ)u∗h(i− ϑ)) + Jk (14)

for i ∈ {0, 1, ..., T}, k ∈ L.

Let

xk(i) = uk(i)− u∗k (i) yk(i) = vk(i)− v∗k (i)
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Then, we have

x∗k (i + 1) = −akx∗k (i) +
l

∑
h=1

bkh
(

f1(vh(i))− f1(v∗h(i))
)
+

l

∑
h=1

dkh
(

f2(vh(i− τkh(i)))

− f2(v∗h(i− τkh(i)))
)
+

l

∑
h=1

ekh

(
f3(

∞

∑
ν=1

Mkh(ν)vh(i− ν))− f3(
∞

∑
ν=1

Mkh(ν)

×v∗h(i− ν))
)
+ Ik

y∗k (i + 1) = −pky∗k (i) +
l

∑
h=1

qkh

(
g1(uh(i))− g1(u∗h(i))

)
+

l

∑
h=1

(
rkhg2(uh(i− ςkh(i)))

−rkhg2(u∗h(i− ςkh(i)))
)
+

l

∑
h=1

skh

(
g3(

∞

∑
ϑ=1

Okh(ϑ)uh(i− ϑ))− g3(
∞

∑
ϑ=1

Okh(ϑ)

×u∗h(i− ϑ))
)
+ Jk (15)

Denote the Lyapunov function as vk(i) = v(1)k (i) + v(2)k (i) + v(3)k (i) and the cofactor of kth diagonal
element of Lp is ck. Let us define a global Lyapunov function

V(i) =
l

∑
k=1

ckvk(i) (16)

Here,

v(1)k (i) =
1
2

ρi|xk(i)|2 +
1
2

ρi|yk(i)|2

v(2)k (i) =
1
2

ρi
l

∑
h=1

d2
khL2

2

i−1

∑
ξ=i−τkh(i)

|xh(ξ)|2 +
1
2

ρi
l

∑
h=1

r2
khN2

2

i−1

∑
ξ=i−ςkh(i)

|yh(ξ)|2

v(3)k (i) =
1
2

ρi
l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν)
i−1

∑
r=i−ν

|xh(r)|2 +
1
2

ρi
l

∑
h=1

s2
khN2

3

∞

∑
ϑ=1

Okh(ϑ)
i−1

∑
r=i−ϑ

|yh(r)|2
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From Assumption I, we get

∆v(1)k (i) =v(1)k (i + 1)− v(1)k (i)

=
1
2

ρi{ρx2
k(i + 1)− x2

k(i)
}
+

1
2

ρi{ρy2
k(i + 1)− y2

k(i)
}

=
1
2

ρi
{

ρ
(
| − akxk(i) +

l

∑
h=1

bkh f1(vh(i))−
l

∑
h=1

bkh f1(v∗h(i)) +
l

∑
h=1

dkh f2(vh(i− τkh(i)))−
l

∑
h=1

dkh

× f2(v∗h(i− τkh(i))) +
l

∑
h=1

ekh f3

∞

∑
ν=1

Mkh(ν)vh(i− ν)−
l

∑
h=1

ekh f3(
∞

∑
ν=1

Mkh(ν)v∗h(i− ν)) + Ik|2
)}

+
1
2

ρi
{

ρ
(
| − pky∗k (i) +

l

∑
h=1

qkhg1(uh(i))−
l

∑
h=1

qkhg1(u∗h(i)) +
l

∑
h=1

rkhg2(uh(i− ςkh(i)))−
l

∑
h=1

rkh

× g2(u∗h(i− ςkh(i))) +
l

∑
h=1

skhg3(
∞

∑
ϑ=1

Okh(ϑ)uh(i− ϑ))−
l

∑
h=1

skhg3(
∞

∑
ϑ=1

Okh(ϑ)u∗h(i− ϑ)) + Jk|2
)

− 1
2
|xk|2 −

1
2
|yk|2

}
≤ρi

{1
2
(ρ|ak|2 − 1)|xk(i)|2 +

1
2

ρ
l

∑
h=1
|bkh|2L2

1|yh(i)|2 + ρ
1
2

l

∑
h=1
|dkh|2L2

2|yh(i− τkh(i))|2 +
1
2

ρ
l

∑
h=1
|ekh|2

× L2
3

∞

∑
ν=1
|Mkh(ν)|2|yh(i− ν)|2 + 1

2
ρ|Ik|2 +

1
2
(ρ|pk|2 − 1)|yk(i)|2 +

1
2

ρ
l

∑
h=1
|qkh|2N2

1 |xh(i)|2 +
1
2

ρ

×
l

∑
h=1
|rkh|2N2|xh(i− ςkh(i))|2 +

1
2

ρ
l

∑
h=1
|skh|2N3

∞

∑
ϑ=1
|Okh(ϑ)|2|xh(i− ϑ)|2 + 1

2
ρ|Jk|2

}
≤ρi

{1
2

l

∑
h=1

(ρ|ak|2 − 1)|xk(i)|2 +
1
2

l

∑
h=1

(ρ|pk|2 − 1)|yk(i)|2 +
1
2

ρ
l

∑
h=1
|rkh|2N2|xh(i− ζkh(i))|2 +

1
2

ρ

×
l

∑
h=1
|dkh|2L2

2|yh(i− τkh(i))|2 +
1
2

ρ
l

∑
h=1
|ekh|2L2

3

∞

∑
ν=1
|Mkh(ν)|2|yh(i− ν)|2 + 1

2
ρ|Ik|2 +

1
2

ρ
l

∑
h=1
|skh|2

× N3

∞

∑
ϑ=1
|Okh(ϑ)|2|xh(i− ϑ)|2 + 1

2
ρ|Jk|2 + ρ|qkh|2N2

1 |xh(i)|2 + ρ|bkh|2L2
1|yh(i)|2

}

(17)

∆v(2)k (i) =v(2)k (i + 1)− v(2)k (i)

=ρi
{1

2
ρ

l

∑
h=1
|dkh|2L2

2

i

∑
ξ=i+1−τkh(i+1)

|xh(ξ)|2 +
1
2

ρ
l

∑
h=1
|rkh|2N2

2

i

∑
ξ=i+1−ςkh(i+1)

|yh(ξ)|2

− 1
2

l

∑
h=1
|dkh|2L2

2

i−1

∑
ξ=i−τkh(i)

|xh(ξ)|2 −
1
2

l

∑
h=1
|rkh|2N2

2

i−1

∑
ξ=i−ςkh(i)

|yh(ξ)|2
}

Since, 1 < τkh(i + 1) < τkh(i) + 1 and 1 < ςkh(i + 1) < ςkh(i) + 1

≤ρi
{1

2
ρ

l

∑
h=1
|dkh|2L2

2

i

∑
ξ=i−τkh(i)

|xh(ξ)|2 +
1
2

ρ
l

∑
h=1
|rkh|2N2

2

i

∑
ξ=i−ςkh(i)

|yh(ξ)|2 −
1
2

l

∑
h=1
|dkh|2L2

2

×
i−1

∑
ξ=i−τkh(i)

|xh(ξ)|2 −
1
2

l

∑
h=1
|rkh|2N2

2

i−1

∑
ξ=i−ςkh(i)

|yh(ξ)|2
}

=ρi
{1

2
ρ

l

∑
h=1
|dkh|2L2

2|xh(i)|2 +
1
2

ρ
l

∑
h=1
|dkh|2L2

2

i−1

∑
ξ=i−τkh(i)

|xh(ξ)|2 +
1
2

ρ
l

∑
h=1
|rkh|2N2

2 |yh(i)|2
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+
1
2

ρ
l

∑
h=1
|rkh|2N2

2

i−1

∑
ξ=i−ςkh(i)

|yh(ξ)|2 −
1
2

l

∑
h=1
|dkh|2L2

2

i−1

∑
ξ=i−τkh(i)

|xh(ξ)|2 −
1
2

l

∑
h=1
|rkh|2N2

2

×
i−1

∑
ξ=i−ςkh(i)

|yh(ξ)|2
}

≤ρi
{1

2
ρ

l

∑
h=1
|dkh|2L2

2|xh(i)|2 +
1
2

ρ
l

∑
h=1
|rkh|2N2

2 |yh(i)|2
}

(18)

v3(i) =
1
2

ρi
l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν)
i−1

∑
r=i−ν

|xk(r)|2 +
1
2

ρi
l

∑
h=1

s2
khN2

3

∞

∑
ϑ=1

Okh(ϑ)
i−1

∑
r=i−ϑ

|yk(r)|2

∆v(3)k (i) =ρi
{1

2
ρ

l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν)
i

∑
r=i−ν+1

|xk(r)|2 +
1
2

ρ
l

∑
h=1

s2
khN2

3

∞

∑
ϑ=1

Okh(ϑ)
i

∑
r=i−ϑ+1

|yk(r)|2

− 1
2

l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν)
i−1

∑
r=i−ν

|xk(r)|2 −
1
2

l

∑
h=1

s2
khN2

3

∞

∑
ϑ=1

Okh(ϑ)
i−1

∑
r=i−ϑ

|yk(r)|2
}

(19)

Substitute (17)–(19) this in (16) , we obtain,

∆vk(i) ≤ρi

{
1
2

l

∑
h=1

(ρ|ak|2 − 1)|xk(i)|2 +
1
2

l

∑
h=1

(ρ|pk|2 − 1)|yk(i)|2 +
1
2

ρ
l

∑
h=1
|rkh|2N2

2 |xh(i− ζkh(i))|2

+
1
2

ρ
l

∑
h=1
|dkh|2L2

2|yh(i− τkh(i))|2 +
1
2

ρ
l

∑
h=1
|ekh|2L2

3

∞

∑
ν=1
|Mkh(ν)|2|yh(i− ν)|2 + 1

2
ρ|Ik|2

+
1
2

ρ
l

∑
h=1
|skh|2N2

3

∞

∑
ϑ=1
|Okh(ϑ)|2|xh(i− ϑ)|2 + 1

2
ρ|Jk|2 +

1
2

ρ
l

∑
h=1
|dkh|2L2

2|xh(i)|2

+
1
2

ρ
l

∑
h=1
|rkh|2N2

2 |yh(i)|2 +
1
2

ρ
l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν)
i

∑
r=i−ν+1

|xk(r)|2

+
1
2

ρ
l

∑
h=1

s2
khN2

3

∞

∑
ϑ=1

Okh(ϑ)
i

∑
r=i−ϑ+1

|yk(r)|2 −
1
2

l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν)
i−1

∑
r=i−ν

|xk(r)|2

− 1
2

l

∑
h=1

s2
khN2

3

∞

∑
ϑ=1

Okh(ϑ)
i−1

∑
r=i−ϑ

|yk(r)|2 + ρ
l

∑
h=1
|qkh|2N2

1 |xh(i)|2 + ρ
l

∑
h=1
|bkh|2L2

1|yh(i)|2
}

≤1
2

ρi

{
l

∑
h=1

(ρ|ak|2 + ρ
l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν)ρ
l

∑
k=1
|dhk|2L2

2 + ρ
l

∑
k=1
|qhk|2N2

1 − 1)|xk(i)|2

+
l

∑
h=1

(ρ|pk|2 + ρ
l

∑
h=1

s2
khN2

3

∞

∑
ϑ=1

Okh(ϑ)ρ
l

∑
k=1
|rhk|2N2

2 + ρ
l

∑
k=1
|bhk|2L2

1 − 1)|yk(i)|2

+ ρ
l

∑
h=1
|rkh|2N2

2 |xh(i− ζkh(i))|2 + ρ
l

∑
h=1
|dkh|2L2

2|yh(i− τkh(i))|2 + ρ|Ik|2 + ρ|Jk|2
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+
{

ρ
l

∑
h=1
|dkh|2L2

2 + ρ
l

∑
h=1
|qkh|2N2

1
}
|xh(i)|2 −

{
ρ

l

∑
k=1
|dhk|2L2

2 + ρ
l

∑
k=1
|qhk|2N2

1
}
|xk(i)|2

+
{

ρ
l

∑
h=1
|rkh|2N2

2 + ρ
l

∑
h=1
|bkh|2L2

1
}
|yh(i)|2 −

{
ρ

l

∑
k=1
|rhk|2N2

2 + ρ
l

∑
k=1
|bhk|2L2

1
}
|yk(i)|2

}

≤1
2

ρi

{[
ρ|ak|2 + ρ

l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν) + ρ
l

∑
k=1
|dhk|2L2

2 + ρ
l

∑
k=1
|qhk|2N2

1 + ρ|pk|2

+ ρ
l

∑
h=1

s2
khN2

3

∞

∑
ϑ=1

Okh(ϑ) + ρ
l

∑
k=1
|rhk|2N2

2 + ρ
l

∑
k=1
|bhk|2L2

1 − 2
]
(|xk(i)|2 + |yk(i)|2)

+ ρ
l

∑
h=1

(|rkh|2N2
2 + |dkh|2L2

2)(|xh(i− ζkh(i))|2 + |yh(i− τkh(i))|2)

+
{

ρ
l

∑
h=1
|dkh|2L2

2 + ρ
l

∑
h=1
|qkh|2N2

1
}
|xh(i)|2 −

{
ρ

l

∑
k=1
|dhk|2L2

2 + ρ
l

∑
k=1
|qhk|2N2

1
}
|xk(i)|2

+
{

ρ
l

∑
h=1
|rkh|2N2

2 + ρ
l

∑
h=1
|bkh|2L2

1
}
|yh(i)|2 −

{
ρ

l

∑
k=1
|rhk|2N2

2 + ρ
l

∑
k=1
|bhk|2L2

1
}
|yk(i)|2 + ρ|Ik|2 + ρ|Jk|2

}

From, Theorem 1, ∆v(i) < 0.

∆v(i) < 0 ⇒ v(i) ≤ v(0)

v(i) ≥ 1
2
|xk(i)|2 +

1
2
|yk(i)|2 +

1
2

l

∑
h=1

d2
khL2

2|xh(i)|2 +
1
2

l

∑
h=1

r2
khN2

2 |yh(i)|2

and

v(0) ≥ 1
2
|xk(0)|2 +

1
2
|yk(0)|2 +

1
2

l

∑
h=1

d2
khL2

2|xh(0)|2 +
1
2

l

∑
h=1

r2
khN2

2 |yh(0)|2 +
1
2

l

∑
h=1

e2
khL2

3

∞

∑
ν=1

Mkh(ν)

×
−1

∑
ξ=0−τkh(0)

|xh(0)|2 +
1
2

l

∑
h=1

s2
khN2

3

∞

∑
ϑ=1

Okh(ϑ)
−1

∑
ξ=0−ςkh(0)

|yh(0)|2

v(i) ≤ v(0) ≤ 1
2

l

∑
h=1

(
e2

khL2
3
) 0

∑
−τkh

|xk|2 +
1
2

l

∑
h=1

(
s2

khN2
3
) 0

∑
−ςkh

|yk|2

|xk(i)|2 + |yk|2 ≤ 1
2

l

∑
h=1

κ
(

sup
γ∈(−τ,0)

|xk(i)|2 + sup
γ∈(−ς,0)

|yk|2
)

Here, κ = max{e2
khL2

3, s2
khN2

3}. Hence, the periodic solution of given system (2) is exponential stable.

5. Illustrative Example

In this section, to show the exactness of this proposed work a numerical simulation is presented.
In this example, we consider two-dimensional DBAMNNs with discrete and distributed delays of
two neurons.

Example 1. The discrete time BAMNNs with mixed time varying delays are considered as follows
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uk(i + 1) =− Auk(i) +
l

∑
h=1

B f1(vh(i)) +
l

∑
h=1

D f2(vh(i− τkh(i))) (20)

+
l

∑
h=1

E f3(
∞

∑
ν=1

M(ν)vh(i− ν)) + Ik

vk(i + 1) =− Pvk(i) +
l

∑
h=1

Qg1(uh(i)) +
l

∑
h=1

Rg2(uh(i− ςkh(i)))

+
l

∑
h=1

Sg3(
∞

∑
ϑ=1

O(ϑ)uh(i− ϑ)) + Jk

Here,

A =

(
0.5 0
0 0.01

)
, B =

(
−1.02 1.3

0.5 0.6

)
, D =

(
0.03 0.3
0.02 0.4

)
E =

(
1.03 0.01
0.5 0.6

)

P =

(
0.02 0

0 0.1

)
Q =

(
0.03 0.5
0.1 −0.6

)
, R =

(
−0.5 0.3
0.5 0.04

)
, S =

(
0.3 0.3
0.2 0.4

)

and

f1(vh(i)) =− 0.1 sin vh(i); f2(vh(i− τkh(i))) = −0.8 sin vh(i− τkh(i)); f3(vh(i− ν)) = −0.1 cos vh(i− ν);

g1(uh(i)) =− 0.1 sin uh(i); g2(uh(i− ςkh(i))) = 0.5 sin(vh(i− ςkh(i))); g3(vh(i− ϑ)) = −0.1euh(i−ϑ);

τkh(i) =ςkh(i) = 0.25i + 2; Mkh = 0.05ei; Okh = 0.5ei;

From our observations, all the conditions in Theorems 1 and 2 are satisfied for Lipschizt constant 1 and
ρ = 1. Hence the DDBAMNNs (2) has a unique 2π-periodic solution which is exponentially stable. These facts
are also supported by the illustrative numerical simulations, see Figure 1.
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Figure 1. The state response u(i) and v(i) of (20).
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6. Conclusions

In this manuscript, we have studied the existence, uniqueness and exponential stability of a
periodic solution of discrete time BAMNNs with discrete and infinitely distributed delays. By using
the global Lyapunov functional, coincidence degree theory combined with Krichhoff’s matrix tree
theorem, the sufficient conditions are derived. It should be noted that the method and techniques
presented in this manuscript are more precisely variations on existing methods like the LMI approach,
the method of the variation of parameters and so on. At the end of this work, we have given two
examples to conclude and justify our main results.
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