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Abstract: This article is devoted to discussing the nondifferentiable minimax fractional programming
problem with type-I functions. We focus our study on a nondifferentiable minimax fractional
programming problem and formulate a higher-order dual model. Next, we establish weak, strong,
and strict converse duality theorems under generalized higher-order strictly pseudo (V, α, ρ, d)-type-I
functions. In the final section, we turn our focus to study a nondifferentiable unified minimax
fractional programming problem and the results obtained in this paper naturally unify. Further,
we extend some previously known results on nondifferentiable minimax fractional programming in
the literature.

Keywords: duality; support function; nondifferentiable; strictly pseudo (V, α, ρ, d)-type-I;
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1. Introduction

Minimax is a decision rule used in decision theory, game theory, statistics, and philosophy for
minimizing the possible loss for a worst case (maximum loss) scenario. In general, a minimax problem
can be formulated as

min
x ∈ X

max
i

fi(x), i = 1, 2, 3, ..., m,

where fi(x) is a function defined on the space X. Many minimax problems often arise in engineering
design, computer-aided-design, circuit design, and optimal control. Some of the problems arising in
engineering, economics, and mathematics are of the following form:

Minimize a function Θ(x) subject to x ∈ Ω, where Θ(x) is one of the following functions:

(a) Θ(x) = max
y∈H

f (x, y),

(b) Θ(x) = max
y∈H(x)

f (x, y),

(c) Θ(x) = max
y∈H1(x)

min
z∈H2(x)

f (x, y, z),

(d) Θ(x) = max
y1∈H11(x)

min
z1∈H21(x)

, ..., max
yk∈H1k(x)

min
zk∈H2k(x)

f (x, y1, ..., yk, z1, ..., zk),

where the sets H(x), Hi(x), Hij depend on x and H, Ω are given sets,

Mathematics 2019, 7, 1034; doi:10.3390/math7111034 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-8434-0907
https://orcid.org/0000-0002-2159-7710
https://orcid.org/0000-0002-2605-1119
http://dx.doi.org/10.3390/math7111034
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/11/1034?type=check_update&version=2


Mathematics 2019, 7, 1034 2 of 12

(e) Θ(x) = max
i

fi(x), i ∈ {1, 2, 3, ..., m}.

Such problems often appear in the engineering design theory. In recent years, much attention was
paid to the problems described. The minimax theory deals with the following problems:

(1) Necessary and sufficient conditions and their geometric interpretation [1,2];
(2) Steepest-descent directions and their applications to constructing numerical methods.

The problems have been widely discussed and studied for the function (a);
(3) Saddle points: The problem of finding saddle points is a special case of minimax problems

(see survey [3]);
(4) Optimal control problems with a minimax criterion function.

These facts indicate that minimax theory will continue to be an important tool for solving difficult
and interesting problems. In addition, minimax methods provide a paradigm for investigating
analogous problems. An exciting future with new unified theories may be expected. Optimization
problems, in which both a minimization and a maximization process are performed, are known
as minimax problems in the area of mathematical programming. For more details, we refer to
Stancu-Minasian [4]. Tanimoto [5] applied these optimality conditions to construct a dual problem and
established duality theorems. Many researchers have done work related to the same area [6–14].

Fractional programming is an interesting subject which features in several types of optimization
problems, such as inventory problem, game theory, and in many other cases. In addition, it can be used
in engineering and economics to minimize a ratio of functions between a given period of time and as a
utilized resource in order to measure the efficiency of a system. In these sorts of problems, the objective
function is usually given as a ratio of functions in fractional programming from (see [15,16]).

Motivated by various concepts of generalized convexity, Liang et al. [17] introduced the concept
of (F, α, ρ, d)-convex functions. Hachimi and Aghezzaf [18], with prior definitions of generalized
convexity, extended the concept further to (F, α, ρ, d)-type I functions and gave the sufficient optimality
conditions and mixed-type duality results for the multiobjective programming problem.

This paper is divided into four sections. Section 2 contains definitions of higher-order strictly
pseudo (V, α, ρ, d)-type-I functions. In section 3, we concentrate our discussion on a nondifferentiable
minimax fractional programming problem and formulate the higher-order dual model. We establish
duality theorems under higher-order strictly pseudo (V, α, ρ, d)-type-I functions. In the final section,
we turn our attention to discuss a nondifferentiable mixed-type minimax fractional programming
problem and establish duality relations under the same assumptions.

2. Preliminaries and Definitions

Throughout this paper, we use S′ = {1, 2, ..., s}, M = {1, 2, ..., m} and (z, w, v, µ, p) ∈ Rn × Rn ×
Rn × Rm

+ × Rn.

Definition 1. Let Q be a compact convex set in Rn. The support function of Q is denoted by s(x|Q) and
defined by

s(x|Q) = max{xTy : y ∈ Q}.

The support function s(x|Q), being convex and everywhere finite, has a Clarke subdifferential [8], in the
sense of convex analysis. The subdifferential of s(x|Q) is given by

∂s(x|Q) =
{

z ∈ Q | zTx = s(x|Q)
}

.
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For any set S, the normal case to S at a point x ∈ S, denoted by NS(x) and denoted by

NS(x) =
{

y ∈ Rn : yT(z− x), ∀ z ∈ S
}

.

It is readily verified that for a compact convex set Q ∈ Rn, y ∈ NS(x) if and only if s(x|Q) = xTy or
equivalently, x is in the Clarke subdifferential of s at y.

Consider the following nondifferentiable minimax fractional programming problem (FP):

(FP) Minimize
ξ(x, y)
ζ(x, y)

= sup
y∈Y

f (x, y) + s(x|C)
g(x, y)− s(x|D)

,

subject to S = {x ∈ X : hj(x) + s(x|Ej) ≤ 0, j ∈ M},

where Y is a compact subject of Rm, f , g : X × Y → R and hj : X → R, i ∈ S′ are continuously
differentiable functions on Rn × Rm. f (x, y) + s(x|C) ≥ 0 and g(x, y)− s(x|D) > 0, ∀ x ∈ S. C, D,
and Ej, j ∈ M are compact convex sets in Rm, and s(x|C), s(x|D), and s(x|Ej), j ∈ M designate the
support functions of compact sets.

N(x) = {i ∈ S′ : hj(x) = 0},

Y(x) =
{

y ∈ Y :
f (x, y) + s(x|C)
g(x, y)− s(x|D)

= sup
z∈Y

f (x, z) + s(x|C)
g(x, z)− s(x|D)

}
and

K(x) =
{
(s, t, ỹ) ∈ N × Rs

+ × Rm : 1 ≤ s ≤ n + 1, t = (t1, t2, ..., ts) ∈ Rs
+

with
s

∑
i=1

ti = 1, ȳ = (ȳ1, ȳ2, ..., ȳs) and ȳi ∈ Y(x), i ∈ S
}

.

Assume that α : X × X → R+ \ {0}, η : X × X → Rn, ρ ∈ R and d : X × X → R (satisfying
d(x, y) = 0⇔ x = y). Let φ : X×Y → R and ψj : X → R be twice differentiable functions.

Definition 2. ∀ j ∈ M, [φ, ψj] is said to be higher-order (V, α, ρ, d)-type -I at x̄, if ∃ α, ρ, d, and η such that
∀ x ∈ S, yi ∈ Y(x), and p ∈ Rn, we have

φ(x, yi)− φ(x̄, yi)− G(x̄, yi, p) + pT∇pG(x̄, yi, p)

≥
〈

α(x, x̄){∇φ(x̄, yi) +∇pG(x̄, yi, p)}, η(x, x̄)
〉
+ ρid2(x, x̄), i ∈ S′

and

−ψj(x̄)− Kj(x̄, p) + pT∇pKj(x̄, p) ≥
〈

α(x, x̄){∇ψj(x̄) +∇pKj(x̄, p)}, η(x, x̄)
〉
+ ρjd2(x, x̄), j ∈ M.

Remark 1. In the above definition, if the inequalities appear as strict inequalities, then we say that [φ, ψj], ∀ j ∈
M is higher-order strict (V, α, ρ, d)-type-I.

Remark 2. If G(x̄, yi, p) =
1
2

pT∇2φ(x̄, yi)p and ρi = 0, ∀ i ∈ S′, then Definition 2 becomes α-type-I at x̄
given by [19].
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Definition 3. ∀ j ∈ M, [φ, ψj] is said to be higher-order pseudoquasi (V, α, ρ, d)-type -I at x̄, if ∃ α, ρ, d, and
η such that ∀ x ∈ S, yi ∈ Y(x), and p ∈ Rn, we have

φ(x, yi)− φ(x̄, yi)− G(x̄, yi, p) + pT∇pG(x̄, yi, p) < 0

⇒
〈

α(x, x̄){∇φ(x̄, yi) +∇pG(x̄, yi, p)}, η(x, x̄)
〉
+ ρid2(x, x̄) < 0, i ∈ S′

and

−ψj(x̄)− Kj(x̄, p) + pT∇pKj(x̄, p) ≤ 0⇒
〈

α(x, x̄){∇ψj(x̄) +∇pKj(x̄, p)}, η(x, x̄)
〉
+ ρjd2(x, x̄) ≤ 0, j ∈ M.

Remark 3. In Definition 3, if
〈

α(x, x̄){∇φ(x̄, ȳi) + pT∇pG(x̄, ȳi, p)}, η(x, x̄)
〉
+ ρid2(x, x̄) ≥ 0

⇒ φ(x, yi)− φ(x̄, yi)− G(x̄, yi, p) + pT∇pG(x̄, yi, p) > 0, i ∈ S′,

then [φ, ψj], ∀ j ∈ M is higher-order strictly pseudoquasi (V, α, ρ, d)-type-I.

Remark 4. If G(x̄, yi, p) =
1
2

pT∇2φ(x̄, yi)p and ρi = 0, ∀ i ∈ S′, then Definition 3 reduces to α-type-I at x̄,
given by [19].

Theorem 1 (Necessary condition). Ifx∗ is an optimal solution of problem (FP) satisfying < w, x >> 0, <

v, x > > 0, and ∇(hj(x∗)+ < uj, x∗ >), j ∈ N(x∗) are linearly independent, then ∃ (s∗, t∗, ȳ∗) ∈
K(x∗), w ∈ Rn, v ∈ Rn and µ∗ ∈ Rm

+ such that

s∗

∑
i=1

t∗i ∇
(

fi(x∗, ȳi)+ < w, x∗ >
gi(x∗, ȳi)− < v, x∗ >

)
+

m

∑
j=1

µ∗j∇(hj(x∗)+ < uj, x∗ >) = 0, (1)

m

∑
j=1

µ∗j (hj(x∗)+ < uj, x∗ >) = 0, (2)

t∗i > 0, i ∈ S
′∗,

s∗

∑
i=1

t∗i = 1, µ∗j ≥ 0, j ∈ M, (3)

< w, x∗ >= s(x∗|C), < v, x∗ >= s(x∗|D), < uj, x∗ >= s(x∗|Ej). (4)

3. Higher-Order Nondifferentiable Duality Model

The study of higher-order duality is more significant due to the computational advantage over
second- and first-order duality as it provides tighter bounds due to presence of more parameters. In the
present article, we formulate a new type of duality model for a nondifferentiable minimax fractional
programming problem and derive duality theorems under generalized convexity assumptions.
Additionally, we use the concept of support function as a nondifferentiable term. Consider the
following dual (HFD) of the problem (FP):

(HFD) max
(s,t,ȳ) ∈ K(z)

sup
(z,w,v,u,µ,p)∈H(s,t,ȳ)

s

∑
i=1

ti

[
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

]
+

m

∑
i=1

µj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
,
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where H(s, t, ȳ) represents the set of all (z, w, v, u, µ, p) such that

∇
s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+∇

m

∑
j=1

µj(hj(z)+ < uj, z >)

+
s

∑
i=1

ti∇pG(z, ȳi, p) +
m

∑
j=1

µj∇pKj(z, p) = 0, (5)

ti ≥ 0,
s

∑
i=1

ti = 1, µj ≥ 0, i ∈ S′, j ∈ M, (6)

(s, t, ỹ) ∈ K(z). (7)

Let T0 be the feasible set for (HFD).

Theorem 2 (Weak Duality). Let x ∈ S and (z, w, v, µ, s, t, ȳ, p) ∈ T0. Let

(i)
[

f (., ȳi)+ < w, . >
g(., ȳi)− < v, . >

, hj(.)+ < uj, . >
]

, i ∈ S′, j ∈ M be higher-order (V, α, ρ, d)- type -I at z,

(ii)
s

∑
i=1

tiρi +
m

∑
j=1

µjρj ≥ 0.

Then,

sup
y∈Y

(
f (x, y)+ < w, x >

g(x, y)− < v, x >

)
≥

s

∑
i=1

ti

[(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

]

+
m

∑
i=1

µj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
. (8)

Proof. We shall derive the result by assuming contrary to the above inequality. Suppose

sup
y∈Y

(
f (x, y)+ < w, x >

g(x, y)− < v, x >

)
<

s

∑
i=1

ti

[(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

]

+
m

∑
i=1

µj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
.

This implies(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
<

s

∑
i=1

ti

[(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

]

+
m

∑
i=1

µj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
, for all ȳi ∈ Y(x), i ∈ S′. (9)

Further, using ti ≥ 0, i ∈ S′ and
s

∑
i=1

ti = 1, we get

s

∑
i=1

ti

(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
<

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

)

+
m

∑
i=1

µj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
. (10)
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By inequality (7), we obtain

s

∑
i=1

ti

(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
<

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

)

+
m

∑
i=1

µj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
. (11)

By hypothesis (i), we get(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
−
(

f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
− G(z, ȳi, p) + pT∇pG(z, ȳi, p)

≥
〈

α(x, z)
{
∇
(

f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+∇pG(z, ȳi, p)

}
, η(x, z)

〉
+ ρid2(x, z), i ∈ S′ (12)

and
−hj(z)+ < uj, z > −Kj(z, p) + pT∇pKj(z, p)

≥
〈

α(x, z)
{
∇(hj(z)+ < uj, z >) +∇pKj(z, p)

}
, η(x, z)

〉
+ ρjd2(x, z), j ∈ M. (13)

Multiplying the first inequality by ti ≥ 0, i ∈ S′ and the second by µj ≥ 0, j ∈ M with
s

∑
i=1

ti = 1,

we get

s

∑
i=1

ti

[(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
−
(

f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
− G(z, ȳi, p) + pT∇pG(z, ȳi, p)

]

≥
〈

α(x, z)
{
∇

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+∇pG(z, ȳi, p)

}
, η(x, z)

〉
+

s

∑
i=1

tiρid2(x, z) (14)

and

−
m

∑
j=1

µj

(
hj(z)+ < uj, z > −Kj(z, p) + pT∇pKj(z, p)

)

≥
〈

α(x, z)
{
∇

m

∑
j=1

µj(hj(z)+ < uj, z >) +∇pKj(z, p)
}

, η(x, z)
〉
+

m

∑
j=1

µjρjd2(x, z). (15)

The above inequalities yield

s

∑
i=1

ti

[(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
−
(

f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)]
−

m

∑
j=1

µj(hj(z)+ < uj, z >)

−
{ s

∑
i=1

ti

(
G(z, ȳi, p)− pT∇pG(z, ȳi, p)

)
−

m

∑
j=1

µj(Kj(z, p)− pT∇pKj(z, p))
}

≥
〈

α(x, z)
{ s

∑
i=1

ti∇
(

f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+

m

∑
j=1

µj(∇hj(z)+ < uj, z >) +
s

∑
i=1

ti∇pG(z, ȳi, p)

+
m

∑
j=1

µj∇pKj(z, p)
}

, η(x, z)
〉
+

( s

∑
i=1

tiρi +
m

∑
j=1

µjρj

)
d2(x, z).
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The above inequality together with (11), α(x, z) > 0, and hypothesis (ii) yield〈 s

∑
i=1

ti∇
(

f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+

m

∑
j=1

µj∇(hj(z)+ < uj, z >)

+
s

∑
i=1

ti∇pG(z, ȳi, p) +
m

∑
j=1

µj∇pKj(z, p), η(x, z)
〉

< 0, (16)

which contradicts (5). This completes the proof.

Theorem 3 (Strong duality). Suppose the set
{
∇(hj(x∗)+ < uj, x∗ >)

}
j∈N(x∗)

is linearly independent.

Let an optimal solution of (FP) be x∗, further, suppose

G(x∗, ȳ∗i , 0) = ∇p∗G(x∗, ȳ∗i , 0) = 0, i ∈ S
′∗, (17)

Kj(x∗, 0) = ∇p∗Kj(x∗, 0) = 0, j ∈ M. (18)

Then, there exist (s∗, t∗, ȳ∗) ∈ K(x∗) and (x∗, w∗, v∗, u∗, ν∗, s∗, t∗, ȳ∗, p∗) ∈ H(s∗, t∗, ȳ∗) such that
(x∗, w∗, v∗, µ∗, s∗, t∗, ȳ∗, p∗ = 0) ∈ T0 and the objectives have the equal values. Moreover, if all the conditions
of Weak duality theorem hold for any (z, w, v, µ, s, t, ȳ, p) ∈ T0, then (x∗, w∗, v∗, u∗, µ∗, s∗, t∗, ȳ∗, p∗ = 0) is
an optimal solution of (HFD).

Proof. By Theorem 1, ∃ (s∗, t∗, ȳ∗) ∈ K(x∗) such that

s∗

∑
i=1

t∗i ∇
(

f (x∗, ȳi)+ < w, x∗ >
g(x∗, ȳi)− < v, x∗ >

)
+

m

∑
j=1

µ∗j∇(hj(x∗)+ < uj, x∗ >) = 0, (19)

m

∑
j=1

µ∗j (hj(x∗)+ < uj, x∗ >) = 0, (20)

t∗i ≥ 0, i ∈ S′,
s

∑
i=1

t∗i = 1, µ∗j ≥ 0, j ∈ M, (21)

< w, x∗ >= s(x∗|C), < v, x∗ >= s(x∗|D), < uj, x∗ >= s(x∗|Ej), j ∈ M, (22)

which, from (17) and (18), imply (x∗, w∗, v∗, µ∗, s∗, t∗, ȳ∗, p∗ = 0) ∈ T0 and the problems (FP) and
(HFD) have the same objective value. The point (x∗, w∗, v∗, µ∗, s∗, t∗, ȳ∗, p∗ = 0) is an optimal solution
for (HFD) follows from Theorem 2. This completes the proof.

Theorem 4 (Strict converse duality). Suppose that x∗ and (z∗, w∗, v∗, ν∗, s∗, t∗, ȳ∗, p∗) are the optimal
solutions of (FP) and (HFD), respectively. Let

(i)
[

f (., ȳ∗i )+ < w∗,>
g(., ȳ∗i )− < v∗, . >

, hj(.)+ < u∗j >

]
, i ∈ S′, j ∈ M be higher-order strictly (V, α, ρ, d)- type -I and

the set {∇hj(x∗)+ < u∗j , . >, j ∈ N(x∗)} be linearly independent,

(ii)
s∗

∑
i=1

t∗i ρ∗i +
m

∑
j=1

µ∗j ρ∗j ≥ 0.

Then, z∗ = x∗.
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Proof. Suppose contrary to the result that z∗ 6= x∗. From Theorem 3, we have

sup
y∈Y

(
f (x∗, y∗)+ < w∗, x∗ >
g(x∗, y∗)− < v∗, x∗ >

)
≤

s∗

∑
i=1

t∗i

(
f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
i=1

µ∗j (hj(z∗)+ < u∗j , z∗ >

−
s∗

∑
i=1

t∗i

(
G(z∗, ȳ∗i , p∗)− p∗T∇p∗G(z∗, ȳ∗i , p∗)

)
+

m

∑
i=1

µ∗j (Kj(z∗, p∗)− p∗T∇p∗Kj(z∗, p∗)). (23)

Thus, we obtain(
f (x∗, y∗i )+ < w∗, x∗ >
g(x∗, y∗i )− < v∗, x∗ >

)
≤

s∗

∑
i=1

t∗i

(
f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
i=1

µ∗j (hj(z∗)+ < u∗j , z∗ >)

−
s∗

∑
i=1

t∗i

(
G(z∗, ȳ∗i , p∗)− p∗T∇p∗G(z∗, ȳ∗i , p∗)

)
+

m

∑
i=1

µ∗j (Kj(z∗, ȳ∗i , p∗)

−p∗T∇p∗Kj(z∗, ȳ∗i , p∗)), for all ȳ∗i ∈ Y(x∗), i ∈ S
′∗. (24)

Following on the lines of Theorem 2, we get

s∗

∑
i=1

t∗i

(
f (x∗, y∗i )+ < w∗, x∗ >
g(x∗, y∗i )− < v∗, x∗ >

)
≤

s∗

∑
i=1

t∗i

(
f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
i=1

µ∗j (hj(z∗)+ < u∗j , z∗ >)

−
s∗

∑
i=1

t∗i

(
G(z∗, ȳ∗i , p∗)− p∗T∇p∗G(z∗, ȳ∗i , p∗)

)
+

m

∑
i=1

µ∗j (Kj(z∗, p∗)− p∗T∇p∗Kj(z∗, p∗)). (25)

From hypothesis (i), we have(
f (x∗, ȳ∗i )+ < w∗, x∗ >
g(x∗, ȳi)∗− < v∗, x∗ >

)
−
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
− G(z∗, ȳ∗i , p∗) + p∗T∇p∗G(z∗, ȳ∗i , p∗)

>

〈
α(x∗, z∗)

{
∇
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+∇p∗G(z∗, ȳ∗i , p∗)

}
, η(x∗, z∗)

〉
+ ρ∗i d2(x∗, z∗), i ∈ S

′∗

and

−(hj(z∗)+ < u∗j , z∗ >)− Kj(z∗, p∗) + p∗T∇p∗Kj(z∗, p∗)

>

〈
α(x∗, z∗)

{
∇(hj(z∗)+ < u∗j , z∗ >) +∇p∗Kj(z∗, p∗)

}
, η(x∗, z∗)

〉
+ ρ∗j d2(x∗, z∗), j ∈ M.

Multiplying the first inequality by t∗i ≥ 0, i ∈ S′ and the second by µ∗j ≥ 0, j = 1 ∈ M with
s∗

∑
i=1

t∗i = 1, we get

s∗

∑
i=1

t∗i

[
f (x∗, ȳ∗i )+ < w∗, x∗ >
g(x∗, ȳ∗i )− < v∗, x∗ >

−
f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

]
−

s∗

∑
i=1

t∗i

(
G(z∗, ȳ∗i , p∗)

+ p∗T∇p∗G(z∗, ȳ∗i , p∗)
)
>

〈
α(x∗, z∗)

{ s∗

∑
i=1

t∗i ∇
(

f (z∗, ȳ∗i )+ < w∗, x∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)

+
s∗

∑
i=1

t∗i ∇p∗G(z∗, ȳ∗i , p∗)
}

, η(x∗, z∗)
〉
+

s∗

∑
i=1

t∗i ρid2(x∗, z∗) (26)
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and

−
m

∑
j=1

µ∗j (hj(z∗)+ < u∗j , z∗ > −Kj(x∗, p∗) + p∗T∇p∗Kj(z∗, p∗)

>

〈
α(x∗, z∗)

{ m

∑
j=1

µ∗j∇(hj(z∗)+ < u∗j , z∗ >) +
m

∑
j=1

µ∗j∇p∗Kj(x∗, p∗)
}

, η(x∗, z∗)
〉
+

m

∑
j=1

µ∗j ρjd2(x∗, z∗). (27)

The above inequalities yield

s∗

∑
i=1

t∗i

[(
f (x∗, ȳ∗i )+ < w∗, x∗ >
g(x∗, ȳ∗i )− < v∗, x∗ >

)
−
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)]
−

m

∑
j=1

µ∗j (hj(z∗)+ < u∗j , z∗ >)

−
m

∑
j=m

µ∗j (Kj(x∗, p∗) − p∗T∇p∗Kj(x∗, p∗)) −
s∗

∑
i=1

t∗i

(
G(z∗, ȳ∗i , p∗) − p∗T∇p∗G(z∗, ȳ∗i , p∗)

)
−

m

∑
j=1

µ∗j

(
hj(z∗)+ < u∗j , z∗ > −Kj(z∗, p∗) + p∗T∇p∗Kj(z∗, p∗)

)

>

〈
α(x∗, z∗)

[ s∗

∑
i=1

t∗i ∇
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
j=1

µ∗j (∇hj(z∗)+ < u∗j , z∗ >)

+

{ s∗

∑
i=1

t∗i ∇p∗G(z∗, ȳ∗i , p∗) +
m

∑
j=1

µ∗j∇p∗Kj(z∗, p∗)
}]

, η(x∗, z∗)
〉
+

( s

∑
i=1

t∗i ρ∗i +
m

∑
j=1

µ∗j ρ∗j

)
d2(x∗, z∗).

It follows from (11), α(x∗, z∗) > 0, and hypothesis (ii) that

s∗

∑
i=1

t∗i

(
f (x∗, ȳ∗i )+ < w∗, x∗ >
g(x∗, ȳ∗i )− < v∗, x∗ >

)
>

s∗

∑
i=1

t∗i

(
f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
j=1

µ∗j (hj(z∗)+ < u∗j , z∗ >)

−
s∗

∑
i=1

t∗i

(
G(z∗, ȳ∗i , p∗) + p∗T∇p∗G(z∗, ȳ∗i , p∗)

)
−

m

∑
j=1

µ∗j

(
Kj(z∗, p∗) + p∗T∇p∗Kj(z∗, p∗)

)
,

which contradicts (25). Hence, z∗ = x∗.

4. Mixed-Type Higher-Order Duality Model

Consider the following higher-order unified dual (HMFD) to (FP):

(HMFD) max
(s,t,ȳ) ∈ K(z)

sup
(z,w,v,µ,p) ∈ H(s,t,ȳ)

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+ ∑

j∈J0

µj(hj(z)+ < uj, z >)

+
s

∑
i=1

ti

(
G(z, ȳi, p)− pT∇pG(z, ȳi, p)

)
+ ∑

j∈J0

µj

(
Kj(z, p)− pT∇pKj(z, p)

)
,

where H(s, t, ȳ) represents the set of all (z, w, υ, , µ, p) such that

∇
s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+∇

m

∑
j=1

µj(hj(z)+ < uj, z >)

+
s

∑
i=1

ti∇pG(z, ȳi, p) +
m

∑
j=1

µj∇pKj(z, p) = 0, (28)

∑
j∈Jβ

µj(hj(z)+ < uj, z >) + ∑
j∈Jβ

µj(Kj(z, p)− pT∇pKj(z, p)) ≥ 0, β = 1, 2, ..., r, (29)
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ti ≥ 0,
s

∑
i=1

ti = 1, µj ≥ 0, i ∈ S′, j ∈ M, (30)

where Jβ ⊆ M, β = 0, 1, 2, ..., r with
⋃r

β=0 Jβ = M and Jβ
⋂

Jγ = φ, if β 6= γ. Let W0 be the feasible set
for (HMFD).

Theorem 5 (Weak duality). Let x ∈ S and (z, w, v, µ, s, t, ȳ, p) ∈W0. Let

(i)
[ s

∑
i=1

ti

(
f (., ȳi)+ < w, . >
g(., ȳi)− < v, . >

)
+ ∑

j∈J0

µj(hj(.)+ < uj, . >), ∑
j∈Jβ

µj(hj(.)+ < uj, . >)

]
, β = 1, 2, ..., r be

higher-order pseudoquasi (V, α, ρ, d)-type -I ,

(ii)
s

∑
i=1

tiρi +
m

∑
j=1

µjρj ≥ 0.

Then,

sup
y∈Y

(
f (x, y)+ < w, x >

g(x, y)− < v, x >

)
≥

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z > w
g(z, ȳi)− < v, x >

)
+ ∑

j∈J0

µj(hj(z)+ < uj, z >)

+
s

∑
i=1

ti

(
G(z, ȳi, p)− pT∇pG(z, ȳi, p) + ∑

j∈J0

µj(Kj(z, p)− pT∇pKj(z, p)). (31)

Proof. Proof follows on the lines of Theorem 2.

Theorem 6 (Strong duality). Suppose the set
{
∇(hj(x∗)+ < uj, x∗ >)

}
j∈N(x∗)

is linearly independent.

Let an optimal solution of (FP) be x∗, further, suppose

G(x∗, ȳ∗i , 0) = ∇p∗G(x∗, ȳ∗i , 0) = 0, i ∈ S
′∗, (32)

Kj(x∗, 0) = ∇p∗Kj(x∗, 0) = 0, j ∈ M. (33)

Then, ∃ (s∗, t∗, ȳ∗) ∈ K(x∗) and (x∗, w∗, v∗, u∗, ν∗, s∗, t∗, ȳ∗, p∗) ∈ H(s∗, t∗, ȳ∗) such
that (x∗, w∗, v∗, µ∗, s∗, t∗, ȳ∗, p∗ = 0) ∈ W0 and the two objectives have the equal values.
In addition, if all the conditions of Weak duality theorem hold for any (z, w, v, µ, s, t, u∗, ȳ, p) ∈ W0,
then (x∗, w∗, v∗, µ∗, u∗, s∗, t∗, ȳ∗, p∗ = 0) is an optimal solution of (HMFD).

Proof. The proof can be obtained following the lines of Theorem 3.

Theorem 7 (Strict converse duality). Let x∗ and (z∗, w∗, v∗, ν∗, s∗, u∗, t∗, ȳ∗, p∗) be the optimal solutions of
(FP) and (HMFD), respectively. Let

(i)
[

f (., ȳ∗i )+ < w∗,>
g(., ȳ∗i )− < v∗,>

+ ∑
j∈J0

µ∗j [hj+ < u∗j ,>], ∑
j∈Jβ

µ∗j [hj+ < u∗j ,>]

]
, β = 1, 2, ..., r be higher-order

strictly pseudo (V, α, ρ, d)- type -I and ∇(hj(x∗)+ < u∗j , x∗ >), j ∈ N(x∗) be linearly independent,

(ii)
s∗

∑
i=1

t∗i ρi +
m

∑
j=1

µ∗j ρj ≥ 0.

Then, z∗ = x∗.

Proof. The proof can be derived following the steps of Theorem 4.
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5. Conclusions

In this paper, we discussed higher-order duality theorems for two types of dual models of
nondifferentiable minimax fractional programming problems under strictly pseudo (V, α, ρ, d)-type-I
functions. The question arises as to whether the second/higher-order duality theorems developed in
this paper hold for the complex minimax fractional programming problem. This will orient the future
task of the authors.
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