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Abstract: Let Gy be a connected graph on n vertices and m edges. The R-graph R(Gy) of Gy is a graph
obtained from Gy by adding a new vertex corresponding to each edge of Gy and by joining each
new vertex to the end points of the edge corresponding to it. Let G; and G, be graphs on #n; and
ny vertices, respectively. The R-graph double corona G(()R) 0 {G1, Gy} of Gy, G and Gy, is the graph
obtained by taking one copy of R(Gy), n copies of G; and m copies of G, and then by joining the
i-th old-vertex of R(Gp) to every vertex of the i-th copy of G; and the j-th new vertex of R(Gp) to
every vertex of the j-th copy of G,. In this paper, we consider resistance distance in GéR) 0 {Gy, Gy }.
Moreover, we give an example to illustrate the correction and efficiency of the proposed method.

Keywords: graph; double corona; resistance distance; inverse

1. Introduction

All graphs considered in this paper are simple and undirected. A graph G whose vertex set
is V(G) = {v1,v2,...,v,} and edge set is E(G) = {ey,ep,...,em}, is denoted by (V(G),E(G)).
As we know, the conventional distance d;; is the length of a shortest path between vertices v; and
v;. Connected with practical applications, such as electrical network, Klein and Randi¢ introduced
resistance distance [1], which is the effective electrical resistance between two vertices if every edge is
replaced by a unit resistor, and is denoted by r;; for resistance distance between v; and v;. Some results
on resistance distance can be found in [2-4].

One of the main topics about resistance distance is to determine it in various graphs. Now one can
easily obtain resistance distance in wheels and fans [5], in subdivision-vertex join and subdivision-edge
join of graphs [6], in corona and the neighborhood corona graphs of two disjoint graphs [7], in H-Join
of Graphs Gi, Gy, . .., Gk [8]. Please turn to [9-15] for more detail.

Motivated by the above works, we consider resistance distance in double corona based on R-graph.
The R-graph of G, which is denoted by R(G), appeared in [16]. Moreover, R(G) is defined as the graph
obtained from G by adding a new vertex corresponding to each edge of G and by joining each new
vertex to the end points of the edge corresponding to it. Recently, in 2017, Barik and Sahoo introduced
the R-graph double corona of Gy, G and G, [17].

Definition 1 ([17]). Let Gg be a connected graph on n vertices and m edges. Let Gy and G, be graphs on ny
and ny vertices, respectively. The R-graph double corona of Gy, G1 and Gy, denoted by G((JR) 0 {Gy, Gy}, is the
graph obtained by taking one copy of R(Gy), n copies of Gy and m copies of Gy and then by joining the i-th

Mathematics 2019, 7, 92; doi:10.3390 /math7010092 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-9620-7692
http://www.mdpi.com/2227-7390/7/1/92?type=check_update&version=1
http://dx.doi.org/10.3390/math7010092
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 92 20f 13

old-vertex of R(Gy) to every vertex of the i-th copy of Gy and the j-th new vertex of R(Gy) to every vertex of the
j-th copy of Ga.

Example 1. Please refer to Example 3 of [17] for CAER) o {P3, P}, where P, and C,, are a path and a cycle with
n vertices. Moreover, one can refer to Example 2 for PZ(R) o{P, P}.

This paper will compute resistance distance in G(()R) 0 {Gy, Gy }. However, first of all, we turn the
readers” attention to some matrices associated with a graph G. The adjacency matrix Ag, which is
a n X n-matrix with entry a;; = 1 if v; and v; are adjacent in G and 4;; = 0 otherwise, the diagonal
matrix Dg with diagonal entries dg(v1),dg(v2),...,dg(v,) and the incidence matrix Mg which is
an X m-matrix with m;; = 1 (or 0) if vertex v; is (not) incident with e;. Moreover, the Laplacian matrix
Lg of Gis Dg — Ag. For more detail, please refer to [18,19].

Here we list some symbols. Let I,, denote the unit matrix of order n, 1, be the all-one column
vector of dimension n and J,x, be the all-one n x m-matrix. Recall that the Kronecker product
A ® B [20] of two matrices A = (a;j)mxn and B = (bjj)px, is an mp x ng-matrix obtained from A by
replacing every element a;; by a;;B. Moreover, (A ® B)(C ® D) = AC ® BD, whenever the products
AC and BD exist, which implies that (A® B) ™! = A~ @ B~L.

2. Preliminaries

Let M be a matrix. If X is a matrix such that MXM = M, then X is a {1}-inverse of M, and X
is always denoted by M, Further assume that M is a square matrix. If X is the matrix satisfying
(1)MXM = M; (2)XMX = X; (3)MX = XM, then X = M* is the group inverse of M. It is well-known
that M* exists if and only if rank(M)=rank(M?), and M* is unique.

Let A be a real symmetric matrix. Obviously, A* exists and it is a {1}-inverse of A. In fact, assume
that U is an orthogonal matrix (i.e., uu’ = UuT™Uu = I) such that A = Udiag{A1, Az, - - - ,)\n}UT,
where Ay, Ay, -+, A, are eigenvalues of A. Then A* = Udiag{f(A1), f(A2),- - ,f(/\n)}LIT, where

1/A;, ifA; #0,
fA) = 0, ifA;=0.
inverse for the block matrices with an invertible subblock were given.

Moreover, in [21], the existence and the representation of the group

A B
c D
S =D — CA™'B. If §* exists, then

(1) M* exists if and only if R is invertible, where R = A? + BS™C and S™ = Ly_, — SS*;

Lemma 1 ([21]). Let M = ( ) be a m x m matrix, where A is an invertible n X n matrix,

(2) if M* exists, then M* = ( }Z( VTI ) , where

X =AR YA+ BS*C)R7 1A,

Y =AR (A + BS*C)R™'BS™ — AR"!BS*,

7 =S"CR Y(A +BS*C)R™'A - S*CR7'A,

W =S"CR™ (A + BS*C)R™!BS™ — S*CR'BS™ — S"CR'BS* + s*.

Please note that, the Laplacian matrix L(G) of a graph G is real symmetric. So L(G)* exists and
consequently, L(G){!} exists. The representations of L(G){!} were investigated in [6,11,22] under
different conditions. We list two in the next lemma.

Lemma 2 ([6,11,22]). Let L = ( ) be the Laplacian matrix of a connected graph. Assume that Ly

is nonsingular. Denote S = Ly — LIL;'L,. Then
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a ( L'+ L LSPLIL Y — L' LS

_sPLIL gt ) is a symmetric {1}-inverse of L;

-1

each column vector of L, 1s 1 or a zero vector, then 1S a symmetric -tnverse of L.
2) 1 h col Lris1 h (1) SO# ] Y jc {1}-i L

To compute the inverse of a matrix, the next lemma is useful.

A

Lemma 3 ([6]). Let M = ( c D

) be a nonsingular matrix. If A and D are nonsingular, then

Mol [ ATTHATIBSTICATE —ATIBST
B —s-1cA™t st ’

where S = D — CA~B is the Schur complement of A in M.

This paper is devoted to the compute of resistance distance in G(()R) 0 {Gy,Gz}. In [6], authors
obtained the formulae for resistance distance by elements of group inverse L(G)* or {1}-inverse

L(G){} of L(G), where G = G{M 0 {Gy, Go}.
Lemma 4 ([6]). Let G be a connected graph and (A);; be the (i, j)-entry of a matrix A. Then

r3i(G) = (L(G) )i + (L(G) 1) — (L(G) )y — (L(G) M)
= (L(G)")ii + (L(G)")jj = 2(L(G)")y

Keep Lemma 4 in mind, we only need to compute L(G)* or L(G){!}. Before calculating, we list
more preliminaries below.

Lemma 5 ([11]). For any graph G, L(G)*1 = 0.

Lemma 6 ([23]). Let G be a simple connected graph. Then its adjacency matrix A(G), diagonal matrix D(G)
and incidence matrix M(G) satisfy M(G)M(G)T = A(G) + D(G).

Lemma 7. Assume that A is symmetric and 0 is a simple eigenvalue. Let u be the unitary 0-eigenvector of A.
Then the group inverse A* is characterized as the unique singular matrix satisfying

AAY = APA =T —uu’.

Proof. Assume that A; is a non-zero eigenvalue of A and u; is the unitary A;-eigenvector of A, for
i=1,2,---,n—1.LetU = (ugup -+ u,_qu). Then

1 1 1
A = Udiag{A1, Ay, -+, Ay_1,00UT, A* = Udiag{ —, —, -, ——,0}U".
M A A1
Clearly, I — AA* = 1 — A*A and

0 0

I-A*A=U u'=u| - (0 e 0 1)UT:uuT.
0 0
1 1
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Lemma 8. Let M be a matrix and X be a {1}-inverse of M. If Xy is a matrix satisfying MXoM = 0, then
X — X is also a {1}-inverse of M.

Proof. Please note that M(X — Xg)M = MXM — MXoM = M —0 = M. Thus, X — Xy isa {1}-inverse
of M. O

3. Main Results

In this section, G = GéR) o {Gy, Gy}, where Gy is a connected r-regular graph on n vertices
V(Go) = {v1,v2,...,0,} and m edges E(Gy) = {e1,e2,...,em}, and Gy, G, are graphs on n; vertices
V(G1) = {u1,up, ..., uy, } and ny vertices V(Gy) = {wy, wy, ..., wy, }. We give a {1}-inverse of L(G)
in Theorem 1. However, before Theorem 1, we show the labeling rule of vertices of G.

(1) Fori =1,2,...,m, label the n, vertices of the i-th copy of G, with

V(Gz)l — {wgl—l)n2+1,w§l—l)nz+2 win2 .

yeees Wy
(2)Forj=1,2,...,n, label the n; vertices of the j-th copy of G; with

- mny+(j—1)ny+1  mny+(j—1)ny+2 mny+jny
V(Gl)]‘— {ul ,M2 ,...,unl }

(3) Label the m new-vertices of R(Gy) corresponding to edges of E(Gy) with

ye ey

mny+nny+1 mny+nng+2 m(ny+1)+nng
{e] /€5 em .

(4) Label the n old-vertices V(Ggy) = {v1,v,...,0,4} of R(Gy) with

m(ny+1)+nny+1 _m(np+1)+nnq+2 m(ny+1)+n(ny+1)
{Ul 102 oo, 0 }

Thus,

V(G) =V(G2)1U---UV(G)mUV(G1)1U---UV(Gy)n

U {e1l11n2+nn1+1, o ,e%(m—&-l)—i—nnl} U {01111(n2+1)+nn1+1, o U}rfln(nz—l—l)—&-n(nl—&-l)}'
Theorem 1. The following matrix is a {1}-inverse of L(G),
Iy ® ((LGz+In2)’1+%]nzxn2) 0 1w ®1,, 0
0 In® (Lg, + In,) ! 0 0
3In ®@1% 0 w0
0 0 0 0
%Mg;o ® 1”2
L®1 2 . (1 r ;1
W%Mgm gLGo <2MGO ® 1n2 I, ® 1n1 EMGO L, |.
0

I
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14T 1aqT T# 1T T4
=M ML LT M M- L
Moreover, denote 277Go %Lé (%MGO In) = 6 160# Go™Co 3 2G0# Go
I, 0 s LTt Mg sL
3™Gy 0 37Go
X X . .
1T1 12) . Then the second term in the above matrix is
X12 XZZ

X11 @ Jugxny X122 @ Jugxn, X111y, X2 @1,

X{z ® ]nl XMy X22 b2 ]nl X1 Xsz & 1n1 X22 X 1n1
X11 ® l'lez X2 ® 13;1 X11 X1
xL o1l X @15, X% Xo

(R

50f13

Proof. By the definition, it is easy to show that G = G )o {Gy, Gy} is connected. Furthermore, from
the vertex-labeling rule of G, we know that all the diagonal matrix D¢, the adjacency matrix Ag and
the Laplacian matrix L¢ are partitioned (m + n +2) x (m + n + 2)-matrices. Particularly, the Laplacian

matrix of G is

Im ® (Lg, + In,) 0 —Iy ® 1y, 0
Lo 0 I ® (Lg, + Iny) 0 I, ®1y,
G= . T _mT
Iy ®1,, 0 (24 n3) Iy, Mg,
0 —IL, ®1% —Mg, 2Dg, — Ag, + n1ln,

We proceed via the following steps.

Step 1. To use Lemma 2, we further divide L into blocks Lg = < . >, where

LI L
L1 = Im ® (LGZ + I”Z) 0 .
! 0 L@ (Lo, +1Iny) |’
L= "M@ 0 R U e R 0 .
0 ~L®l, | 7 0 ~L®1l )’
L= (24 n2) Iy —M{,
_MGO ZDGO — AGO + nqly,
Clearly, L; ' = In® (Ley +Iny) ™ 0
T 0 Li®(Lg, + 1)t )

Step 2. Please note that Lg 1, = 0. So (LG1 + Iy, )1y, = 1,,, which shows that
(Lg, + In)) "1y = 1ny.

Furthermore,
13;1 (LG1 + Inl)_llnl =n.

Similarly, we have 1,{2(LG2 + In,) 11, = ny. Keep these in mind and recall the Kronecker

product. Then

L2TL1_1L2 ( In® 1Zz(LG2 + Iny) My 0 >

0 Iy @17 (Lg, + In,) M1y,

nzlm 0
0 n I, '
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From this result, it follows that

2 I -ML
S=1Ly—LIL'L, = (2+ 712) L Go _ [ mm 0
_MGO 2DG0 — AGO -+ Tl]Inl 0 nily,

[ 2l ~M(,
—~Mg, 2Dg,—Ag, )’

Since S is real symmetric, S* exists.
Step 3. Here we computer s* by Lemma 1. Please note that MGOM(T;0 = Dg, + Ag,- We denote

1
So = 2Dg, — Ag, — Mg, (21m> M{,.

Then Sy = 3Lg,. Consequently, S exists and in fact, S§ = %LEO. Denote I, — SoSh by ST.

Combing with Lemma 7, we have

1
Sz)T =1, — LGOLEO = ;]nxn‘

Please note that ( 1---1 ) Mg, =2 ( 1---1 ) and Mgoln = 21,. So, we further have

1 1
R =4Iy, + MEO (n]nxn> Mg, =4 <Im + n]mxm) .

Therefore, it is easy to obtain that

_ 1 1
R = Z (Im_n_'_m]mxm) .

Please note that G is r-regular. So Mg 1, = r1;,. Moreover, L‘éoln = 0 according to Lemma 5.

In general, by Lemma 1, we finally have st = ( XY ) , Where

z W
1 1 1 1 1
X =2ny (Im — M]Wm> 2 <Im + 3M£0L’2§0MG0> 1 <Im — Wmem) 21,
1 1 R 1
=5 (Im - n+m]mxm> <Im + 3MG0LG0MGO) (Lﬂ - W]mxm)
1 1. 1 & 2n+m
= E (Iﬂ’l + gMGOLGOMGO - (n +m)2]m><m) 7
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Y :21,,& (Im — n+1m]””’"> 2 <1m + ;M(T;OLEOMGO> 411 <1m - i m]'”xm) (-Mgo)%hm
— zzmi <1m — nim]"‘x’”> (—Még)%Léo
-7 (Im - Hlmfmm) (Im n ;MEOLEOMGO> (Im - njiﬂfmxm) ML o
3 (Im - njmfmxm) ML Lt
:%M(T;OLEO - % (Im + %M(T;OLEOMGO - Mmem> MG, T
=3MELE, — gt e

1 1 1 1 1 1
Z :E]”X”(_MGO)ZL (Im - Wn]mxm) 2 (Im + SMEOLEOMGO) Z (Im - "+ m]mxm) 21y

2 1 1
- gLEO(_MGO)ZL <Im - n+m]m><m) 21y
1 # 1 1. 7 4 2n+m
:gL(G) Mg, — E]"X”MGO <Im + gMGULGUMGO - m}mxm
1 & n
:gLGOMGO - W]nxmz
and
1 1 1 1 1 1 1
w :;]"X"(_MGO)Z (Im - n+m]m><m) 2 (Im + gMEOLéUMGO) 1 (Im - ner]mxm) (—M(T;O)E]nxn
2 1 1 1
- gLéO(_MGO)Z <Im - n+m]m><m) (_MEU)Z]nxn
1 1 1 2 2
- Z]”Xn(_MGU)i (Im - m]mxm) (_MEO)EUEO + EUEO
1 1 1 1 2
:ﬁ]nxm (Im - n+m]m><m) (Im + gMgoLéOMGO) (Im - n+m}mxm> Jmxn + ELEO
2.y m
=356 T 2wy mpr

Therefore, we have

1( 1, 0 IMI \ 2 1
# m 2 G, #

+ 1 —Jmxm 0 . n ]
Z(n—i—m) 0 Tuxen 2(n+m>2 (m4n)x (m+n):
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Step 4. In this step, we compute —LflLZS#, —S#LZTLlf1 and L;lLZS#LZTLfl.

—L'LyS* :(
1 Iu®1,, 0

1
Yo m 0

In ® (Lg, + In,) " n,

0 gt
0 In® (Lg, + Iny) 11y

Im ® 11’!2 0
0  Li®1l,

I}’l ® 1}’[1

_]mnzxm 0

]nnlxn

and similarly, we would have that

~s*LyLt =s* <

Iy ® 152 (LG2 + Iﬂz)_l

ot n® 15, 0
0 I ® 1%,

_1
2

Furthermore,

1
Li'LS*LiL! =5 <

1
+2(114—141) 0

(

1
+2(n+m) 0

Im®]n2><n2 0
0 0 +

In®15, 0
0 0

1 T
L[ 2Ma,
Iy

_]mxmnz 0

)i

]nxnnl

I, ® 1,

_]mnzxmn2 0

]711’11 Xnmnq

1aqgT
iMGO ® 1”2

2, (1
)2 (e

n
- 2(11 n m)z ](mn2+nn1)><(m+n)r

0
0 Iy @1 (Lg, 4 In,) ™ )

1
L42&30 <2MG0 ® 152 In® 121)

1 T
2 MGO ® 1”2

n
W](m+n)><(mnz+nn1)'

2 1
) 3 LG, <2MG0 ®1r, Iy ®1§1)

n
- W](mnfrnn] )x (mny+nny)*

Step 5. Since L is the Laplacian matrix of G = G(()R) o {Gy, Gy}, we have

T
LeLn(ny+1)tn(m+1) = 00 Lyguyr1)tn(m+1 L6 = 0,

which shows that L /1, +1)+n(n,+1)Lc = 0. Moreover,

_]mnzxmnz 0 _]mnzxm 0
0 Jnnyscnn 0 Juny xn
L 1 1 1 L
“l -Jwxmm 0 —Juxm O ¢
0 Juxnmny 0 Juxn
0 0 0 0
0 0 0 0
= LG
2fmxmny 2 mxnn;  —2Imxm  —2Jmxn
7 Jnxcmny TInxnnl uxm Juxn
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So from Lemmas 2 and 8, we know that the following matrix is also a symmetric {1}-inverse
of LG ,

In ® (Lg, + Iny) 7t 0 0 0 In @ Juyxn, 0 In®1, O
0 Li®(Lg,+1n,)™t 0 0 L1 0 0 0 0
0 0 00 2| Lu®1l, 0 L, 0
0 0 00 0 0 0 0
1
ng;O@an
I, ®1, 2 ., (1
%Mgol LG, | 3Ma, ®1 p @15 2MG0 I ).
In
1aqgT LagT 7# LagT 1#
1M IMT 1% Mg, IMLIL Xy X
2 Go 27# 1 — 6 Go ~'Gp 0 3 Go Gy 11 12
Denote ( I, >3LG0 (zMGo In) ( %LEOMGO 27 ) by (Xsz X )

Then

14T
iMGO ® 1”2
L®l, |2
14T 2
2 Mg, 3
Iy
X11 @ Jugxny X122 @ Juoxnm, X11 @1y, X2 @1,
X{Z ® ]l’l] XNy X22 ® ]n1><n1 X{z ® 17’11 X22 ® 1}’11
X1 @1y, X1 ®1,, X1 X12
xL o1l Xp @15, x% Xo

1 1
# T
LGO <2MG0 ®1Vl In ®1n1 2M Il’l)

Therefore, we complete the proof of Theorem 1. [

21y -M(,

Please note that
—Mg, 2Dg, — Ag,

) is just the Laplacian matrix of G(()R). So, from Step 3,
we obtain the group inverse of L(G((]R) ).

Corollary 1. Let Gy be a connected r-regular graph on n vertices and m edges, whose incidence matrix is

Mg,. Then
o/ 721 0 o0 I, 37Go\ 270
+# Jmxm 0 ,L]
2(n+m) 0 Jnxn 2(n + m)2’ (mam)x(mn):

Next we consider two special situations of G o {G1,Gy}. By choosing G, as a null-graph,
we would reduce G = G )o {G1, Gy} to R-vertex corona Gy ® Gp [24]. If Gy is a null-graph, then

G = G o {G1, Gy} reduces to R-edge corona Gy © G [24]. Thus, from Theorem 1, we obtain
a {1}-inverse of L(Gyp ® G1) and L(Gy © Gy).

ME LE Mg iML L# Xy X
Corollary 2. Denote | © 1 Gy, 0 3G 0 ) by oo
< LGU MGO 3 LGO X12 X22
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(1) The following matrix is a {1}-inverse of L(Gy ® Gy),

Li®(Lg,+ 1)t 0 0 X0 @ Juyxmy Xip @1y Xoo @ 1y
0 3L 0 | + X1 @17, X1 X1z
0 0 0 X @1, x5 X2

(2) The following matrix is a {1}-inverse ofL(G((]R) o Gy),

Im® ((LGZ+In2)71+%]ﬂ2><n2) %Im®1n2 0 X11®]n2><n2 X]] ®1n2 X]2®11’l2
3In @ 1] 3L o |+ X1T1 ® 1% XlTl X12
0 0 0 X ® lnz X1y X2

Example 2. Compute resistance distance in G = PZ(R> o {Py, P, }, see the following Figure 1.

5 4
9 8
\ /
\ /
\ /
N %
\ /
AN /
6 \\ // 3
1 2

Figure 1. P\X) o {P,, P,}.

2 -1
Step1. Lg, + In, = Lg, + In, = ( ) So

-1 2
1(2 1
-1 -1
(LGZ + 1"2) = (Lcl + I”]) = g < 1 2 > 7
In ® (L, + Iny) ! 0 00 (21
I 00
0 Li®(Le, +In,)™t 0 0 3930 1 2
and -
0 0 0 0 0 0 0
0 0 00 0 0 0
In® ]n2><nz 0 In® 1n2 0 ]2><2 0 1z 0
0 0 0 0 0 0 0 0
Step 2. 1 =1
PE2 el 0o L, 0| 2 17 o0 1 0
0 0 0 0 0 0 0 0

Step 3. Mg, = ( 1 ) and Lg, = ( _11 _11 ) Hence

1 1( 1 -1 1({ 1 -1 1 0
# _ = # — —
Le, = 1l 4(-1 1>’LG0MG° 4(-1 1)(1) (0)'

Moreover,
ME LE, = (00), M{ LE Mg, = 0.
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Therefore,
1MT L# M 1MT L# 0 0
§LG0MG[) §LGO O 6 _1 1
and
1T
EMGO ® 1”2
L ®1, 2 . (1 . ;1
%Mg;ol gLGO iMGO ®11’12 Il’l ® 11,!1 EMGO In
Iy
02x2 024 021 022
1 1 -1 -1 1 -1
1 1 -1 -1 1 -1
1 1
B Ooa 5| 1 4
o -1 -1 1 1 -1 1
01x2 014 0 O1x2
1 1 -1 -1 1 -1
1 1
O2x2 5 ( -1 -1 1 1 ) e
Step 4. From the above and Theorem 1, we know that
2 1
: ( 1 2 ) + 3 Jax2 02x2 02x2 115
2 1 _
022 3 ( 1 2 ) + t2x2 2 x2 Ox1
_ 2 1
02x2 Zax2 3 ( 1 2 ) +1ihs O %
T 012 O1x2 :
1 1 -1 -1
1 1 1
022 3 ( 1 ) 3 < 11 > O2x1 <

-1 1
-1 1
O1x2

1 -1
-1 1

110f13

)

is a {1}-inverse of Lg. From it, we have the matrix whose ij-entry is resistance distance between

vertices o' and v/, for detail,
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2 2 4 4
0322223 2 3
2 2 4 4
S 02222 3 2 ¢
2 4 2 4
220 322 3 % 3
2 4 2 4
2.2 3022 3 % 3
2 4 4 2
22220 % 3 3 3
2 4 4 2
2222 70 3 3 3
2 24 4 44 4022
3 333 3 3 3 3
442 2 44 2 2
3 333333 3
4 44 4 22 2 2
3 3333333

4. Conclusions

The resistance distance which is the effective electrical resistance, has wide application. For this
reason, it was widely explored by so many authors. Among topics on resistance distance, its calculation
plays an important role. As a continuation of this topic, in this paper, we compute resistance distance
inG = G(()R) 0 {Gy, Gz }. As we known, there exists relationship between resistance distance and group
inverse L(G)* or {1}-inverse L(G){!} of L(G). Therefore, we aim to find a {1}-inverse L(G)!} of
L(G), and finally give one in Theorem 1. At the end of this paper, we give an example to illustrate the
correction and efficiency of the proposed method.
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