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Abstract

:

The sedenions form a 16-dimensional Cayley-Dickson algebra. In this paper, we introduce the Tribonacci and Tribonacci-Lucas sedenions. Furthermore, we present some properties of these sedenions and derive relationships between them.
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1. Introduction


The Tribonacci sequence {Tn}n≥0 and the Tribonacci-Lucas sequence {Kn}n≥0 are defined by the third-order recurrence relations:


Tn=Tn−1+Tn−2+Tn−3,T0=0,T1=1,T2=1,



(1)




and:


Kn=Kn−1+Kn−2+Kn−3,K0=3,K1=1,K2=3



(2)




respectively. The Tribonacci concept was introduced by 14-year-old student M.Feinberg [1] in 1963. The basic properties of it were given in [2,3,4,5,6,7,8,9,10,11,12], and Binet’s formula for the nth number was given in [13].



The sequences {Tn}n≥0 and {Kn}n≥0 can be extended to negative subscripts by defining:


T−n=−T−(n−1)−T−(n−2)+T−(n−3)








and:


K−n=−K−(n−1)−K−(n−2)+K−(n−3)








for n=1,2,3,…, respectively. Therefore, recurrences (1) and (2) hold for all integers n.



By writing Tn−1=Tn−2+Tn−3+Tn−4, substituting for Tn−2 in (1), and eliminating Tn−2 and Tn−3 between this recurrence relation and the recurrence relation (1), a useful alternative recurrence relation is obtained for n≥4:


Tn=2Tn−1−Tn−4,T0=0,T1=T2=1,T3=2.



(3)







Extension of the definition of Tn to negative subscripts can be proven by writing the recurrence relation (3) as:


T−n=2T−n+3−T−n+4.











Note that T−n=Tn−12−Tn−2Tn (see [4]).



Next, we present the first few values of the Tribonacci and Tribonacci-Lucas numbers with positive and negative subscripts:


n012345678910…Tn01124713244481149…T−n001−102−314−85…Kn313711213971131241443…K−n3−1−15−5−111−15323−41…











It is well known that for all integers n, the usual Tribonacci and Tribonacci-Lucas numbers can be expressed using Binet’s formulas:


Tn=αn+1(α−β)(α−γ)+βn+1(β−α)(β−γ)+γn+1(γ−α)(γ−β)



(4)




and:


Kn=αn+βn+γn








respectively, where α,β, and γ are the roots of the cubic equation x3−x2−x−1=0. Moreover,


α=1+19+3333+19−33333,β=1+ω19+3333+ω219−33333,γ=1+ω219+3333+ω19−33333








where:


ω=−1+i32=exp(2πi/3),








is a primitive cube root of unity. Note that we have the following identities:


α+β+γ=1,αβ+αγ+βγ=−1,αβγ=1.











The generating functions for the Tribonacci sequence {Tn}n≥0 and Tribonacci-Lucas sequence {Kn}n≥0 are:


∑n=0∞Tnxn=x1−x−x2−x3and∑n=0∞Knxn=3−2x−x21−x−x2−x3.











We now present some properties of the Tribonacci and Tribonacci-Lucas numbers.

	
We have [3]:


Nn=Tn+1TnTn−1Tn+Tn−1Tn−1+Tn−2Tn−2+Tn−3TnTn−1Tn−2








and:


tr(Nn)=Kn=Tn+2Tn−1+3Tn−2=3Tn+1−2Tn−Tn−1,Cn=−Tn2+2Tn−12+3Tn−22−2TnTn−1+2TnTn−2+4Tn−1Tn−2








where:


N=110101100,








tr(.) is the trace operator and Cn is defined by:


Cn=αnβn+αnγn+βnγn








which is the sum of the determinants of the principal minors of order two of Nn.



	
We have [4]:


Tn−13−1=2Tn−2Tn−1Tn+Tn−3Tn−1Tn+1−Tn−22Tn+1−Tn−3Tn2=Tn−2(2Tn−1Tn−Tn+1)+Tn−3(Tn2−Tn−1Tn+1).











	
Tribonacci numbers satisfy the following equality [12]:


Tk+n=TkKn−Tk−nCn+Tk−2n.
















In this paper, we define Tribonacci and Tribonacci-Lucas sedenions in the next section and give some properties of them. Before giving their definition, we present some information on Cayley-Dickson algebras.



The algebras C (complex numbers), H (quaternions), and O (octonions) are real division algebras obtained from the real numbers R by a doubling procedure called the Cayley-Dickson process (construction). By doubling R (dim 20=1), we obtain the complex numbers C (dim 21=2); then, C yields the quaternions H (dim 22=4); and H produces octonions O (dim 23=8). The next doubling process applied to O then produces an algebra S (dim 24=16) called the sedenions. This doubling process can be extended beyond the sedenions to form what are known as the 2n-ions (see for example [14,15,16]).



Next, we explain this doubling process.



The Cayley-Dickson algebras are a sequence A0,A1,… of non-associative R-algebras with involution. The term “conjugation” can be used to refer to the involution because it generalizes the usual conjugation on the complex numbers. For a full explanation of the basic properties of Cayley-Dickson algebras, see [14]. Cayley-Dickson algebras are defined inductively. We begin by defining A0 to be R. Given An−1, the algebra An is defined additively to be An−1×An−1. Conjugation in An is defined by:


(a,b)¯=(a¯,−b)








multiplication is defined by:


(a,b)(c,d)=(ac−d¯b,da+bc¯)








and addition is defined by componentwise as:


(a,b)+(c,d)=(a+c,b+d).











Note that An has dimension 2n as an R-vector space. If we set, as usual, x=Re(xx¯) for x∈An, then xx¯=x¯x=x2.



Now, suppose that B16={ei∈S:i=0,1,2,…,15} is the basis for S, where e0 is the identity (or unit) and e1,e2,…,e15 are called imaginaries. Then, a sedenion S∈S can be written as:


S=∑i=015aiei=a0+∑i=115aiei








where a0,a1,…,a15 are all real numbers. Here, a0 is called the real part of S, and ∑i=115aiei is called its imaginary part.



The addition of sedenions is defined as componentwise, and multiplication is defined as follows: if S1,S2∈S, then we have:


S1S2=∑i=015aiei∑i=015biei=∑i,j=015aibj(eiej).



(5)







By setting i≡ei where i=0,1,2,…,15, the multiplication rule of the base elements ei∈B16 can be summarized as in the following Figure 1 (see [17,18]).



From the above table, we can see that:



e0ei=eie0=ei;eiei=−e0 for i≠0;eiej=−ejei for i≠j and i,j≠0.



The operations requiring the multiplication in (5) are quite a few. The computation of a sedenion multiplication (product) using the naive method requires 256 multiplications and 240 additions, while an algorithm, which was given in [19], can compute the same result in only 122 multiplications (or multipliers, in the hardware implementation case) and 298 additions (for more details, see [19]).



Using direct multiplication, the numbers of the operations requiring for the multiplication of two 2n-ions are presented in the following Table 1.



Efficient algorithms for the multiplication of quaternions, octonions, and sedenions with a reduced number of real multiplications already exist, and the results of synthesizing an efficient algorithm of computing the two 2n-ions product are given in the following Table 2.



The problem with the Cayley-Dickson process is that each step of the doubling process results in a progressive loss of structure. R is an ordered field, and it has all the nice properties we are so familiar with in dealing with numbers like: the associative property, commutative property, division property, self-conjugate property, etc. When we double R to have C, C loses the self-conjugate property (and is no longer an ordered field); next, H loses the commutative property, and O loses the associative property. When we double O to obtain S; S loses the division property. It means that S is non-commutative, non-associative, and has a multiplicative identity element e0 and multiplicative inverses, but it is not a division algebra because it has zero divisors; this means that two non-zero sedenions can be multiplied to obtain zero: an example is (e3+e10)(e6−e15)=0, and the other example is (e2−e14)(e3+e15)=0 (see [18]).



The algebras beyond the complex numbers go by the generic name hypercomplex number. All hypercomplex number systems after sedenions that are based on the Cayley-Dickson construction contain zero divisors.



Note that there is another type of sedenions, which is called conic sedenions or sedenions of Charles Muses, as they are also known; see [22,23,24] for more information. The term sedenion is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the biquaternions, or the algebra of four by four matrices over the reals.



In the past, non-associative algebras and related structures with zero divisors have not been given much attention because they did not appear to have any useful applications in most mathematical subjects. Recently, theoretical physicists have centered much attention on the Cayley-Dickson algebras O (octonions) and S (sedenions) because of their increasing usefulness in formulating many of the new theories of elementary particles. In particular, the octonions O (which is the only non-associative normed division algebra over the reals; see for example [25,26]) has been found to be involved in many unexpected areas (such as topology, quantum theory, Clifford algebras, etc.), and sedenions appear in many areas of science like linear gravity and electromagnetic theory.



Briefly, S, the algebra of sedenions, has the following properties:

	
S is a 16-dimensional non-associative and non-commutative (Cayley-Dickson) algebra over the reals,



	
S is not a composition algebra or division algebra because of its zero divisors,



	
S is a non-alternative algebra, i.e., if S1 and S2 are sedenions, the rules S12S2=S1(S1S2) and S1S22=(S1S2)S2 do not always hold,



	
S is a power-associative algebra, i.e., if S is a sedenion, then SnSm=Sn+m.









2. The Tribonacci and Tribonacci-Lucas Sedenions, Their Generating Functions, and Binet’s Formulas


In this section, we define Tribonacci and Tribonacci-Lucas sedenions and give generating functions and Binet formulas for them. First, we give some information about quaternion sequences, octonion sequences, and sedenion sequences from the literature.



Horadam [27] introduced nth Fibonacci and nth Lucas quaternions as:


Qn=Fn+Fn+1e1+Fn+2e2+Fn+3e3=∑s=03Fn+ses








and:


Rn=Ln+Ln+1e1+Ln+2e2+Ln+3e3=∑s=03Ln+ses








respectively, where Fn and Ln are the nth Fibonacci and Lucas numbers, respectively. He also defined the generalized Fibonacci quaternion as:


Pn=Hn+Hn+1e1+Hn+2e2+Hn+3e3=∑s=03Hn+ses








where Hn is the nth generalized Fibonacci number (which is now called the Horadam number) by the recursive relation H1=p,H2=p+q,Hn=Hn−1+Hn−2 (p and q are arbitrary integers). Many other generalizations of Fibonacci quaternions have been given; see for example Halici and Karataş [28] and Polatlı [29].



Cerda-Morales [30] defined and studied the generalized Tribonacci quaternion sequence that includes the previously-introduced Tribonacci, Padovan, Narayana, and third-order Jacobsthal quaternion sequences. She defined the generalized Tribonacci quaternion as:


Qv,n=Vn+Vn+1e1+Vn+2e2+Vn+3e3=∑s=03Vn+ses








where Vn is the nth generalized Tribonacci number defined by the third-order recurrence relations:


Vn=rVn−1+sVn−2+tVn−3.











Here, V0=a,V1=b,V2=c are arbitrary integers and r,s,t are real numbers.



Various families of octonion number sequences (such as Fibonacci octonion, Pell octonion, Jacobsthal octonion, and third-order Jacobsthal octonion) have been defined and studied by a number of authors in many different ways. For example, Keçilioglu and Akkuş [31] introduced the Fibonacci and Lucas octonions as:


Qn=∑s=07Fn+ses








and:


Rn=∑s=07Ln+ses








respectively, where Fn and Ln are the nth Fibonacci and Lucas numbers, respectively. In ref. [32], Çimen and İpek introduced Jacobsthal octonions and Jacobsthal-Lucas octonions. In ref. [33], Cerda-Morales introduced third-order Jacobsthal octonions, and also in ref. [34], she defined and studied Tribonacci-type octonions.



A number of authors have defined and studied sedenion number sequences (such as second-order sedenions: Fibonacci sedenion, k-Pell and k-Pell-Lucas sedenions, Jacobsthal and Jacobsthal-Lucas sedenions). For example, Bilgici, Tokeşer, and Ünal [17] introduced the Fibonacci and Lucas sedenions as:


F^n=∑s=015Fn+ses








and:


L^n=∑s=015Ln+ses








respectively, where Fn and Ln are the nth Fibonacci and Lucas numbers, respectively. In ref. [35], Catarino introduced k-Pell and k-Pell-Lucas sedenions. In ref. [36], Çimen and İpek introduced Jacobsthal and Jacobsthal-Lucas sedenions.



Gül [37] introduced the k-Fibonacci and k-Lucas trigintaduonions as:


TFk,n=∑s=031Fk,n+ses








and:


TLk,n=∑s=031Lk,n+ses








respectively, where Fk,n and Lk,n are the nth k-Fibonacci and k-Lucas numbers, respectively.



We now define Tribonacci and Tribonacci-Lucas sedenions over the sedenion algebra S. The nth Tribonacci sedenion is:


T^n=∑s=015Tn+ses=Tn+∑s=115Tn+ses



(6)




and the nth Tribonacci-Lucas sedenion is:


K^n=∑s=015Kn+ses=Kn+∑s=115Kn+ses.



(7)







It can be easily shown that:


T^n=T^n−1+T^n−2+T^n−3



(8)




and:


K^n=K^n−1+K^n−2+K^n−3.



(9)







Note that:


T^−n=−T^−(n−1)−T^−(n−2)+T^−(n−3)








and:


K^−n=−K^−(n−1)−K^−(n−2)+K^−(n−3).











The conjugate of T^n and K^n are defined by:


T^n¯=Tn−∑s=115Tn+ses=Tn−Tn+1e1−Tn+2e2−…−Tn+15e15








and:


K^n¯=Kn−∑s=115Kn+ses=Kn−Kn+1e1−Kn+2e2−…−Kn+15e15








respectively. The norms of nth Tribonacci and Tribonacci-Lucas sedenions are:


T^n2=N2(T^n)=T^nT^n¯=T^n¯T^n=Tn2+Tn+12+…+Tn+152








and:


K^n2=N2(K^n)=K^nK^n¯=K^n¯K^n=Kn2+Kn+12+…+Kn+152








respectively.



To calculate the norms of T^n and K^n, we need the following Lemma.



Lemma 1

([38]). The following formulas are valid:


∑i=1nTi2=1+4TnTn+1−(Tn+1−Tn−1)24,



(10)






∑i=1nKi2=−Kn+12−Kn−12+K2n+3+K2n−22−2.



(11)









We can now calculate the norms of T^n and K^n.



Theorem 1.

The norms of nth Tribonacci and Tribonacci-Lucas sedenions are given as:


T^n2=4(Tn+15Tn+16−Tn−1Tn)+(Tn−Tn−2)2−(Tn+16−Tn+14)24,K^n2=−Kn+162−Kn+142+Kn2+Kn−22+K2n+33+K2n+28−K2n+1−K2n−42.













Proof. 

We obtain the results from the following calculations:


T^n2=∑i=nn+15Ti2=∑i=1n+15Ti2−∑i=1n−1Ti2=1+4Tn+15Tn+16−(Tn+16−Tn+14)24−1+4Tn−1Tn−(Tn−Tn−2)24=4(Tn+15Tn+16−Tn−1Tn)+(Tn−Tn−2)2−(Tn+16−Tn+14)24








and:


K^n2=∑i=nn+15Ki2=∑i=1n+15Ki2−∑i=1n−1Ki2=(−Kn+162−Kn+142+K2n+33+K2n+282−2)−(−Kn2−Kn−22+K2n+1+K2n−42−2)=−Kn+162−Kn+142−K2n+1−K2n−4+K2n+33+Kn2+Kn−22+K2n+282.








 □





Now, we will state Binet’s formula for the Tribonacci and Tribonacci-Lucas sedenions, and in the rest of the paper, we fixed the following notations.


α^=∑s=015αses,β^=∑s=015βses,γ^=∑s=015γses.











Theorem 2.

For any integer n, the nth Tribonacci sedenion is:


T^n=α^αn+1(α−β)(α−γ)+β^βn+1(β−α)(β−γ)+γ^γn+1(γ−α)(γ−β)



(12)




and the nth Tribonacci-Lucas sedenion is:


K^n=α^αn+β^βn+γ^γn.



(13)









Proof. 

Repeated use of (4) in (6) enables us to write for α^=∑s=015αses,β^=∑s=015βses and γ^=∑s=015γses:


T^n=∑s=015Tn+ses=∑s=015αn+1+ses(α−β)(α−γ)+βn+1+ses(β−α)(β−γ)+γn+1+ses(γ−α)(γ−β)=α^αn+1(α−β)(α−γ)+β^βn+1(β−α)(β−γ)+γ^γn+1(γ−α)(γ−β).











Similarly, we can obtain (13). □





The next theorem gives us an alternative proof of Binet’s formula for the Tribonacci and Tribonacci-Lucas sedenions. For this, we need the quadratic approximation of {Tn}n≥0 and {Kn}n≥0:



Lemma 2.

For all integers n, we have:

	(a) 

	


ααn+2=Tn+2α2+(Tn+1+Tn)α+Tn+1,ββn+2=Tn+2β2+(Tn+1+Tn)β+Tn+1,γγn+2=Tn+2γ2+(Tn+1+Tn)γ+Tn+1.












	(b) 

	


Pαn+2=Kn+2α2+(Kn+1+Kn)α+Kn+1,Qβn+2=Kn+2β2+(Kn+1+Kn)β+Kn+1,Rγn+2=Kn+2γ2+(Kn+1+Kn)γ+Kn+1,








where


P=3−(β+γ)+3βγ,Q=3−(α+γ)+3αγ,R=3−(α+βγ)+3αβ.



















Proof. 

See [39] or [34].



Alternative proof of Theorem 2:



Note that:


α2T^n+2+α(T^n+1+T^n)+T^n+1=α2(Tn+2+Tn+3e1+…+Tn+17e15)+α((Tn+1+Tn)+(Tn+2+Tn+1)e1+…+(Tn+16+Tn+15)e15)+(Tn+1+Tn+2e1+…+Tn+16e15)=α2Tn+2+α(Tn+1+Tn)+Tn+1+(α2Tn+3+(Tn+2+Tn+1)+Tn+2)e1+(α2Tn+4+(Tn+3+Tn+2)+Tn+3)e2⋮+(α2Tn+17+(Tn+16+Tn+15)+Tn+16)e15.











From the identity αn+3=Tn+2α2+(Tn+1+Tn)α+Tn+1 for the nth Tribonacci number Tn, we have:


α2T^n+2+α(T^n+1+T^n)+T^n+1=α^αn+3.



(14)







Similarly, we obtain:


β2T^n+2+β(T^n+1+T^n)+T^n+1=β^βn+3



(15)




and:


γ2T^n+2+γ(T^n+1+T^n)+T^n+1=γ^γn+3.



(16)







Subtracting (15) from (14), we have:


(α+β)T^n+2+(T^n+1+T^n)=α^αn+3−β^βn+3α−β.



(17)







Similarly, subtracting (16) from (14), we obtain:


(α+γ)T^n+2+(T^n+1+T^n)=α^αn+3−γ^γn+3α−γ.



(18)







Finally, subtracting (18) from (17), we get:


T^n+2=1α−βα^αn+3−β^βn+3α−β−α^αn+3−γ^γn+3α−γ=α^αn+3(α−β)(α−γ)−β^βn+3(α−β)(β−γ)+γ^γn+3(γ−α)(γ−β)=α^αn+3(α−β)(α−γ)+β^βn+3(β−α)(β−γ)+γ^γn+3(γ−α)(γ−β).











Therefore, this proves (12). Similarly, we obtain (13). □





Next, we present generating functions.



Theorem 3.

The generating functions for the Tribonacci and Tribonacci-Lucas sedenions are:


g(x)=∑n=0∞T^nxn=T^0+(T^1−T^0)x+T^−1x21−x−x2−x3



(19)




and:


g(x)=∑n=0∞K^nxn=K^0+(K^1−K^0)x+K^−1x21−x−x2−x3



(20)




respectively.





Proof. 

Define g(x)=∑n=0∞T^nxn. Note that:


g(x)=T^0+T^1x+T^2x2+T^3x3+T^4x4+T^5x5+…+T^nxn+…xg(x)=T^0x+T^1x2+T^2x3+T^3x4+T^4x5+…+T^n−1xn+…x2g(x)=T^0x2+T^1x3+T^2x4+T^3x5+…+T^n−2xn+…x3g(x)=T^0x3+T^1x4+T^2x5+…+T^n−3xn+…











Using the above table and the recurrence relation T^n=T^n−1+T^n−2+T^n−3, we have:


g(x)−xg(x)−x2g(x)−x3g(x)=T^0+(T^1−T^0)x+(T^2−T^1−T^0)x2+(T^3−T^2−T^1−T^0)x3+(T^4−T^3−T^2−T^1)x4+…+(T^n−T^n−1−T^n−2−T^n−3+)xn+…=T^0+(T^1−T^0)x+(T^2−T^1−T^0)x2.











It follows that:


g(x)=T^0+(T^1−T^0)x+(T^2−T^1−T^0)x21−x−x2−x3.











Since T^2−T^1−T^0=T^−1, the generating function for the Tribonacci sedenion is:


g(x)=T^0+(T^1−T^0)x+T^−1x21−x−x2−x3.











Similarly, we can obtain (20). □





In the following theorem, we present another forms of Binet’s formulas for the Tribonacci and Tribonacci-Lucas sedenions using generating functions.



Theorem 4.

For any integer n, the nth Tribonacci sedenion is:


T^n=((α2−α)T^0+αT^1+T^−1)αnα−γα−β+((β2−β)T^0+βT^1+T^−1)βnβ−γβ−α+((γ2−γ)T^0+γT^1+T^−1)γnγ−βγ−α








and the nth Tribonacci-Lucas sedenion is:


K^n=((α2−α)K^0+αK^1+K^−1)αnα−γα−β+((β2−β)K^0+βK^1+K^−1)βnβ−γβ−α+((γ2−γ)K^0+γK^1+K^−1)γnγ−βγ−α.













Proof. 

We can use generating functions. Since the roots of the equation 1−x−x2−x3=0 are αβ,βγ,αγ and:


1−x−x2−x3=(1−αx)(1−βx)(1−γx)








we can write the generating function of T^n as:


g(x)=T^0+(T^1−T^0)x+T^−1x21−x−x2−x3=T^0+(T^1−T^0)x+T^−1x2(1−αx)(1−βx)(1−γx)=A(1−αx)+B(1−βx)+C(1−γx)=A(1−βx)(1−γx)+B(1−αx)(1−γx)+C(1−αx)(1−βx)(1−αx)(1−βx)(1−γx)=(A+B+C)+(−Aβ−Aγ−Bα−Bγ−Cα−Cβ)x+(Aβγ+Bαγ+Cαβ)x2(1−αx)(1−βx)(1−γx).











We need to find A,B, and C, so the following system of equations should be solved:


A+B+C=T^0−Aβ−Aγ−Bα−Bγ−Cα−Cβ=T^1−T^0Aβγ+Bαγ+Cαβ=T^−1











We find that:


A=−αT^0+αT^1+T^−1+α2T^0α2−αβ−αγ+βγ=((α2−α)T^0+αT^1+T^−1)α−γα−β,B=−βT^0+βT^1+T^−1+β2T^0β2−αβ+αγ−βγ=((β2−β)T^0+βT^1+T^−1)β−γβ−α,C=−γT^0+γT^1+T^−1+γ2T^0γ2+αβ−αγ−βγ=((γ2−γ)T^0+γT^1+T^−1)γ−βγ−α.








and:


g(x)=((α2−α)T^0+αT^1+T^−1)α−γα−β∑n=0∞αnxn+((β2−β)T^0+βT^1+T^−1)β−γβ−α∑n=0∞βnxn+(−γT^0+γT^1+T^−1+γ2T^0)γ−βγ−α∑n=0∞γnxn=∑n=0∞((α2−α)T^0+αT^1+T^−1)αnα−γα−β+((β2−β)T^0+βT^1+T^−1)βnβ−γβ−α+((γ2−γ)T^0+γT^1+T^−1)γnγ−βγ−αxn.











Thus, Binet’s formula of the Tribonacci sedenion is:


T^n=((α2−α)T^0+αT^1+T^−1)αnα−γα−β+((β2−β)T^0+βT^1+T^−1)βnβ−γβ−α+((γ2−γ)T^0+γT^1+T^−1)γnγ−βγ−α.











Similarly, we can obtain Binet’s formula of the Tribonacci-Lucas sedenion. □





If we compare Theorem 2 and Theorem 4 and use the definition of T^n,K^n, we have the following remark showing relations between T^−1,T^0,T^1;K^−1,K^0,K^1 and α^,β^,γ^. We obtain (b) and (d) after solving the system of equations in (a) and (c), respectively.



Remark 1.

We have the following identities:

	(a) 

	


(α2−α)T^0+αT^1+T^−1α=α^(β2−β)T^0+βT^1+T^−1β=β^(γ2−γ)T^0+γT^1+T^−1γ=γ^












	(b) 

	


∑s=015T−1+ses=T^−1=α^(α−β)(α−γ)+β^(β−α)(β−γ)+γ^(γ−α)(γ−β)∑s=015Tses=T^0=α^α(α−β)(α−γ)+β^β(β−α)(β−γ)+γ^γ(γ−α)(γ−β)∑s=015T1+ses=T^1=α^α2(α−β)(α−γ)+β^β2(β−α)(β−γ)+γ^γ2(γ−α)(γ−β)












	(c) 

	


((α2−α)K^0+αK^1+K^−1)α−γα−β=α^((β2−β)K^0+βK^1+K^−1)β−γβ−α=β^((γ2−γ)K^0+γK^1+K^−1)γ−βγ−α=γ^












	(d) 

	


∑s=015K−1+ses=K^−1=α^α−1+β^β−1+γ^γ−1∑s=015Kses=K^0=α^+β^+γ^∑s=015K1+ses=K^1=α^α+β^β+γ^γ.



















Using the above remark, we can find T^2,K^2 as follows:


∑s=015T2+ses=T^2=T^1+T^0+T^−1=α^α3(α−β)(α−γ)+β^β3(β−α)(β−γ)+γ^γ3(γ−α)(γ−β)



(21)




and:


∑s=015K2+ses=K^2=K^1+K^0+K^−1=α^α2+β^β2+γ^γ2.



(22)







Of course, (21) and (22) can be found directly from (12) and (13).



Now, we present the formulas, which give the summation of the first n Tribonacci and Tribonacci-Lucas numbers.



Lemma 3.

For every integer n≥0, we have:


∑i=0nTi=T0+12(Tn+2+Tn−1)=12(Tn+2+Tn−1)



(23)




and:


∑i=0nKi=Kn+2+Kn2.



(24)









Proof. 

(23) and (24) can be easily proven by mathematical induction. For a proof of (23) with a telescopic sum method, see [40], or with a matrix diagonalization proof, see [41], or see also [30].



For a proof of (24), see [42]. Since K0=3 and ∑i=1nKi=Kn+2+Kn−62, it follows that ∑i=0nKi=Kn+2+Kn2. □





There is also a formula of the summation of the first n negative Tribonacci numbers:


∑i=1nT−i=12(1−T−n−1−T−n+1).











For a proof of the above formula, see Kuhapatanakul and Sukruan [43].



Next, we present the formulas that give the summation of the first n Tribonacci and Tribonacci-Lucas sedenions.



Theorem 5.

The summation formulas for Tribonacci and Tribonacci-Lucas sedenions are


∑i=0nT^i=12(T^n+2+T^n+c1)



(25)




and:


∑i=0nK^i=12(K^n+2+K^n+c2)



(26)




respectively, where:


c1=−1−e1−3e2−5e3−9e4−17e5−31e6−57e7−105e8−193e9−355e10−653e11−1201e12−2209e13−4063e14−7473e15








and:


c2=−6e1−8e2−14e3−28e4−50e5−92e6−170e7−312e8−574e9−1056e10−1842e11−3572e12−6570e13−12084e14−22226e15.













Proof. 

Using (6) and (23), we obtain:


∑i=0nT^i=∑i=0nTi+e1∑i=0nTi+1+e2∑i=0nTi+2+…+e15∑i=0nTi+15=(T0+…+Tn)+e1(T1+…+Tn+1)+e2(T2+…+Tn+2)+…+e15(T15+…+Tn+15).








and:


2∑i=0nT^i=(Tn+2+Tn−1)+e1(Tn+3+Tn+1−1−2T0)+e2(Tn+4+Tn+3−1−2(T0+T1))⋮+e15(Tn+17+Tn+15−1−2(T0+T1+…+T14))=T^n+2+T^n+c1








where c1=−1+e1(−1−2T0)+e2(−1−2(T0+T1))+…+e15(−1−2(T0+…+T14)). Hence:


∑i=0nT^i=12(T^n+2+T^n+c1).











We can compute c1 as:


c1=−1−e1−3e2−5e3−9e4−17e5−31e6−57e7−105e8−193e9−355e10−653e11−1201e12−2209e13−4063e14−7473e15.











This proves (25). Similarly, we can obtain (26). □






3. Some Identities for the Tribonacci and Tribonacci-Lucas Sedenions


In this section, we give identities about Tribonacci and Tribonacci-Lucas sedenions.



Theorem 6.

For n≥1, the following identities hold:

	(a) 

	
K^n=3T^n+1−2T^n−T^n−1,




	(b) 

	
T^n+T^n¯=2Tn,K^n+K^n¯=2Kn,




	(c) 

	
T^n+1+T^n=α^α+1αn+1(α−β)(α−γ)+β^β+1βn+1(β−α)(β−γ)+γ^γ+1γn+1(γ−α)(γ−β),




	(d) 

	
K^n+1+K^n=α^α+1αn+β^β+1βn+γ^γ+1γn,




	(e) 

	
∑i=0nniF^i=α^α(1+α)n(α−β)(α−γ)+β^β(1+β)n(β−α)(β−γ)+γ^γ(1+γ)n(γ−α)(γ−β),




	(f) 

	
∑i=0nniK^i=α^(1+α)n+β^(1+β)n+γ^(1+γ)n.











Proof. 

(a) follows from the recurrence relation Kn=3Tn+1−2Tn−Tn−1 (see for example [39]). The others can be easily established. □





Theorem 7.

For n≥0,m≥3, we have:

	(a) 

	
T^m+n=Tm−1T^n+2+(Tm−2+Tm−3)T^n+1+Tm−2T^n,




	(b) 

	
T^m+n=Tm+2T^n−1+(Tm+1+Tm)T^n−2+Tm+1T^n−3,




	(c) 

	
K^m+n=Kn−1T^m+2+(T^m+1+T^m)Kn−2+Kn−3T^m+1,




	(d) 

	
K^m+n=Km+2T^n−1+(Km+1+Km)T^n−2+Km+1T^n−3.











Proof. 

(a) and (d) can be proven by strong induction on m, and (c) can be proven by strong induction on n. For (b), replace n by n−3 and m by m+3 in (a). □





Note that in fact, the results of the above theorem are true for all integers n and m, and taking n=2 in (c), we obtain:


K^m+2=T^m+2+2T^m+1+3T^m








and taking m=−4 in (d):


K^n−4=−T^n−1+5T^n−3.











Note also that since, for all integers n,T−n=2T−n+3−T−n+4, it follows that:


T^−n=2T^−n+3−T^−n+4.











Theorem 8.

For all integers n, the following identities hold:

	(a) 

	
T^n+6=7T^n+3−5T^n+T^n−3




	(b) 

	
T^n+8=11T^n+4+5T^n+T^n−4




	(c) 

	
T^n+10=21T^n+5+T^n+T^n−5




	(d) 

	
K^n+6=2K^n+3+K^n+K^n−3




	(e) 

	
K^n+8=4K^n+4+K^n−4




	(f) 

	
K^n+10=7K^n+5−2K^n+K^n−5.











Proof. 

For all integers n and m, we have Tn+2m=KmTn+m−K−mTn+Tn−m and Kn+2m=TmKn+m−T−mKn+Kn−m (see [44]). Giving some value for m, we obtain the results. □






4. Matrices and Determinants Related to Tribonacci and Tribonacci-Lucas Sedenions


Define the 4×4 determinants Dn and En, for all integers n, by:


Dn=TnKnKn+1Kn+2T2K2K3K4T1K1K2K3T0K0K1K2,En=KnTnTn+1Tn+2K2T2T3T4K1T1T2T3K0T0T1T2











Theorem 9.

The following statements are true.

	(a) 

	
Dn=0 and En=0 for all integers n.




	(b) 

	
44T^n=10K^n+2−6K^n+1−8K^n.




	(c) 

	
K^n=−T^n+2+4T^n+1−T^n.











Proof. 

(a) is a special case of a result in [45]. Expanding Dn along the top row gives 44Tn=10Kn+2−6Kn+1−8Kn, and now, (b) follows. Expanding En along the top row gives Kn=−Tn+2+4Tn+1−Tn, and now, (c) follows. □





Consider the sequence {Un}, which is defined by the third-order recurrence relation:


Un=Un−1+Un−2+Un−3,U0=U1=0,U2=1.











Note that some authors call {Un} a Tribonacci sequence instead of {Tn}. The numbers Un can be expressed using Binet’s formula:


Un=αn(α−β)(α−γ)+βn(β−α)(β−γ)+γn(γ−α)(γ−β)








and the negative numbers U−n(n=1,2,3,…) satisfy the recurrence relation:


U−n=Un+1Un+2UnUn+1=Un+12−Un+2Un.











The matrix method is a very useful method in order to obtain some identities for special sequences. We define the square matrix M of order three as:


M=111100010








such that detM=1. Note that:


Mn=Un+2Un+1+UnUn+1Un+1Un+Un−1UnUnUn−1+Un−2Un−1.



(27)







For a proof of (27), see [46]. Matrix formulation of Tn and Kn can be given as:


Tn+2Tn+1Tn=111100010nT2T1T0



(28)




and:


Kn+2Kn+1Kn=111100010nK2K1K0.



(29)







The matrix M was defined and used in [47]. For the matrix formulations (28) and (29), see [48,49].



Now, we define the matrices MT and MK as:


MT=T^4T^3+T^2T^3T^3T^2+T^1T^2T^2T^1+T^0T^1andMK=K^4K^3+K^2K^3K^3K^2+K^1K^2K^2K^1+K^0K^1.











These matrices MT and MK can be called the Tribonacci sedenion matrix and Tribonacci-Lucas sedenion matrix, respectively.



Theorem 10.

For n≥0, the following are valid:

	(a) 

	


MT111100010n=T^n+4T^n+3+T^n+2T^n+3T^n+3T^n+2+T^n+1T^n+2T^n+2T^n+1+T^nT^n+1



(30)








	(b) 

	


MK111100010n=K^n+4K^n+3+K^n+2K^n+3K^n+3K^n+2+K^n+1K^n+2K^n+2K^n+1+K^nK^n+1



(31)















Proof. 

We prove (a) by mathematical induction on n. If n=0, then the result is clear. Now, we assume it is true for n=k, that is:


MTMk=T^k+4T^k+3+T^k+2T^k+3T^k+3T^k+2+T^k+1T^k+2T^k+2T^k+1+T^kT^k+1.











If we use (8), then for k≥3, we have T^k+3=T^k+2+T^k+1+T^k. Then, by induction hypothesis, we obtain:


MTMk+1=(MTMk)M=T^k+4T^k+3+T^k+2T^k+3T^k+3T^k+2+T^k+1T^k+2T^k+2T^k+1+T^kT^k+1111100010=T^k+2+T^k+3+T^k+4T^k+4+T^k+3T^k+4T^k+1+T^k+2+T^k+3T^k+3+T^k+2T^k+3T^k+1+T^k+2+T^kT^k+2+T^k+1T^k+2=T^k+5T^k+4+T^k+3T^k+4T^k+4T^k+3+T^k+2T^k+3T^k+3T^k+2+T^k+1T^k+2.











Thus, (30) holds for all non-negative integers n.



(31) can be similarly proven. □





Corollary 1.

For n≥0, the following hold:

	(a) 

	
T^n+2=T^2Un+2+(T^1+T^0)Un+1+T^1Un




	(b) 

	
K^n+2=K^2Un+2+(K^1+K^0)Un+1+K^1Un











Proof. 

The proof of (a) can be seen by the coefficient (28) of the matrix MT and (27). The proof of (b) can be seen by the coefficient (29) of the matrix MK and (27).



Note that we have similar results if we replace the matrix M with the matrices N and O defined by:


N=110101100andO=010001111.








 □
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Figure 1. Multiplication table for sedenions’ imaginary units. 






Figure 1. Multiplication table for sedenions’ imaginary units.
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Table 1. Direct multiplication.






Table 1. Direct multiplication.





	2n-Ions
	Computational Method
	Multiplications
	Additions





	Quaternions
	Based on expression (5)
	16
	12



	Octonions
	Based on expression (5)
	64
	56



	Sedenions
	Based on expression (5)
	256
	240










[image: Table]





Table 2. Efficient algorithms for the multiplication.






Table 2. Efficient algorithms for the multiplication.





	2n-Ions
	Computational Method
	Multiplications
	Additions





	Quaternions
	Algorithm in [20]
	8
	-



	Octonions
	Algorithm in [21]
	32
	88



	Sedenions
	Algorithm in [19]
	122
	298
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