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Abstract: This paper formulates a new particle motion system. The dynamic behaviors of the system
are studied including the continuous dependence on initial conditions of the system’s solution, the
equilibrium stability, Hopf bifurcation at the equilibrium point, etc. This shows the rich dynamic
behaviors of the system, including the supercritical Hopf bifurcations, subcritical Hopf bifurcations,
and chaotic attractors. Numerical simulations are carried out to verify theoretical analyses and to
exhibit the rich dynamic behaviors.
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1. Introduction

There are some scholars who have studied the dynamic behaviors of particle motion. The results
show that particle motion is a complex dynamic behavior in some case, such as chaotic motion.
For instance, Abbott N. L. investigated the diffusion of a colloidal particle in a liquid crystalline
solvent [1]. Chen C. and his colleague studied the chaotic particle dynamics in free-electron lasers
and obtained that the particle motion becomes chaotic on a time scale. Here, the time scale is the
characteristic time scale for radial-gradient-induced changes in the particle orbits, which is shown
to be of the order of the beam transit time through a few wiggler periods [2]. Research showed that
the chaos of a particle probing the black hole horizon had a universal upper bound for the Lyapunov
exponent [3]. Since chaos began to be studied, it has been a common belief that understanding and
utilizing the rich dynamics of a nonlinear system have an important impact on modern technology.
Therefore, it also promotes the study of chaos, and some useful results have been obtained. For example,
Sprott J. C. and Xiong A. [4] presented a method for classifying basins of attraction and quantifying
their size for any dissipative dynamical system, and the results were useful to describe the basin of
attraction and quantifying its shape and size for both theoretical and practical reasons. By using the
Pynamical software package, Boeing G. [5] investigated visualization methods of nonlinear dynamical
systems’ behavior and indicated that these methods can help researchers discover, examine, and
understand the behaviors of nonlinear dynamical systems, including bifurcations, the path to chaos,
fractals, and strange attractors. Bradley E. and Kantz H. [6] illustrated that the results of nonlinear
time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems.
In fact, chaos has many manifestations in many different situations [7]. Meanwhile, many systems
will appear with multiple equilibrium points under some parameter conditions, and the increase
of the equilibrium points or multi-equilibrium points may lead to richer dynamic behaviors of the
system [8–10]. For these reasons, we will formulate a particle motion model under external force and
discuss the Hopf bifurcation and chaotic behaviors of the system.
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In this paper, we will formulate a new model for particle motion and the stability of
equilibrium points. The continuous dependence on initial conditions of the system’s solution and
Hopf bifurcation are investigated in Section 2. To further study the complex dynamic behaviors of
particle motion, simulations including Lyapunov exponents, Poincaré maps and phase portraits of the
chaotic attractor for the system are given in Section 3. A summary of our results and further discussion
are presented in Section 4.

2. Model

There are rich dynamic behaviors in some cases, such as in sheared suspensions [11], in creeping
flow [12], and around a weakly-magnetized Schwarzschild black hole [13]. This shows that the particle
motion becomes complex because of the existence of external force, and the particle system has different
dynamic behaviors under different external forces [14–16]. Here, we assume that a particle with unit
mass is moving on a horizontal smooth plane (p, q), and the forces on the particle in p and q direction
are Fp and Fq, respectively, where:

Fp = a11 p− a12 p3 + a13q̇− a14 ṗ, Fq = a11q− a12q3 + a13 p− a14q̇.

a11, a12, a13, and a14 are all positive parameters. The dot expresses the derivative with respect to the
time variable t. Then, the particle motion equations are described by:

ṗ = u,
u̇ = a11 p− a12 p3 + a13v− a14u,
q̇ = v,
v̇ = a11q− a12q3 + a13 p− a14v.

(1)

2.1. Symmetry and Dissipation

Obviously, System (1) is symmetric with coordinate transformations:

(p, u, q, v)→ (−p,−u,−q,−v).

The divergence of (1) is:

∇V = ∂ ṗ
∂p + ∂u̇

∂u + ∂q̇
∂q +

∂v̇
∂v = −2a14 < 0.

Thus, the system is dissipative. This indicates that the volume element V0e−2a14t as t→ ∞, then all the
trajectories of the system (1) are ultimately in an attractor.

2.2. Existence and Uniqueness of the Solution

We first rewrite the system (1) as follows:

Ṗ(t) = Q(P(t)), t ∈ (0, T], (2)

where:

P =


p
u
q
v

, Q(P) =


u

a11 p− a12 p3 + a13v− a14u
v

a11q− a12q3 + a13 p− a14v

.

Let

D1 = {(p, u, q, v) : max{|p|, |u|, |q|, |v|} ≤ M}

and M > 0. The existence and uniqueness of the solution are studied in the region D1 × D2 where
D2 = (0, T]. The solution of (2) with initial conditions P(0) = P0 is:
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P = P0 +
∫ t

0
Q(P(τ))dτ, (3)

where:

P0 =


p0

u0

q0

v0

.

Next, we denote the right-hand side of (3) by W(P), then:

W(P1)−W(P2) =
∫ t

0 (Q(P1(τ))−Q(P2(τ)))dτ,

here:

P1 =


p1

u1

q1

v1

, P2 =


p2

u2

q2

v2

 .

Therefore,

W(P1)−W(P2) ≤
∫ t

0 |(Q(P1(τ))−Q(P2(τ)))|dτ

≤ Tmax


|p1 − p2|

a11|p1 − p2|+ a12|p3
1 − p3

2|+ a13|v1 − v2|+ a14|u1 − u2|
|v1 − v2|

a11|q1 − q2|+ a12|q3
1 − q3

2|+ a13|p1 − p2|+ a14|v1 − v2|

 .

The supremum norm is defined for the class of continuous function C[0, T] by:

‖Φ‖ = sup
t∈(0,T]

|Φ(t)|, Φ(t) ∈ C[0, T],

and for a matrix A = [aij(t)], which is defined by ‖A‖ = ∑
i,j

sup
t∈(0,T]

|aij(t)|. Thus, we obtain:

‖W(P1)−W(P2)‖ = T sup{|p1 − p2|+ a11|p1 − p2|+ a12|p1 − p2||p2
1 + p1 p2 + p2

2|+ a13|v1 − v2|
+a14|u1 − u2|+ |v1 − v2|+ a11|q1 − q2|+ a12|q1 − q2||q2

1 + q1q2 + q2
2|+ a13|p1 − p2|+ a14|v1 − v2|}

≤ T max{a14, a11 + 3a12M2, 1 + a13 + a14, 1 + a11 + a12 + a13 + 3M2}‖P1 − P2‖
≤ ρ‖P1 − P2‖,

where:

ρ = T max{a14, a11 + 3a12M2, 1 + a13 + a14, 1 + a11 + a12 + a13 + 3M2} > 0.

The following theorem is obtained.

Theorem 1. The sufficient condition for the existence and uniqueness of the solution of (1) with initial conditions
P(0) = P0 in the region D1 × D2 is 0 < ρ < 1.

2.3. Continuous Dependence on Initial Conditions

Based on the results in Section 2.1, we have:

P1 = P10 +
∫ t

0 Q(P1(τ))dτ, P2 = P20 +
∫ t

0 Q(P2(τ))dτ,

where:
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P10 =


p10

u10

q10

v10

, P20 =


p20

u20

q20

v20

.

P10 and P20 are all the initial conditions to (2) and ‖P10 − P20‖ ≤ ε. Under the condition of Theorem 1,
the following inequality is obtained:

‖P1 − P2‖ ≤ ‖P10 − P20‖+
∫ t

0 |(Q(P1(τ))−Q(P2(τ)))|dτ ≤ ‖P10 − P20‖+ ρ‖P1 − P2‖,

hence ‖P1− P2‖ ≤ ε
1−ρ . In conclusion, ∀σ > 0, ∃ε(σ) = (1− ρ)σ > 0 such that ‖P10− P20‖ ≤ ε implies

that ‖P1 − P2‖ ≤ σ.

Theorem 2. There is continuous dependence on the initial conditions of the solution of (1) under the condition
of Theorem 1.

2.4. Equilibrium and Stability

It is easy to visualize that (1) always has three equilibrium points, i.e.,

e0 = (0, 0, 0, 0), e1 = (0, 0,
√

a11
a12

, 0), e2 = (0, 0,−
√

a11
a12

, 0).

When R0 = 1
3 (

2a11
3a13

)2 ≤ 1, (1) has equilibria as follows:

e3 = (
√

a11
a12

, 0,
3√θ1
6a12

+ 2a11
3√θ1

, 0), e4 = (−
√

a11
a12

, 0,
3√θ2
6a12

+ 2a11
3√θ2

, 0),

where:

θ1 =

(
108 a13

√
a11
a12

+ 12
√

a11(1−R0)
a12a13

2

)
a12

2, θ2 =

(
−108 a13

√
a11
a12

+ 12
√

a11(1−R0)
a12a13

2

)
a12

2.

By calculations, the characteristic equations at equilibrium points are obtained as follows:

fe0(λ) = λ4 + 2 λ3a14 +
(
a14

2 − 2 a11
)

λ2 +
(
−2 a11a14 − a13

2) λ + a11
2,

fe1(λ) = fe2(λ) = λ4 + 2 λ3a14 +
(
a14

2 + a11
)

λ2 +
(
a11a14 − a13

2) λ− 2 a11
2,

fe3(λ) = λ4 + 2 λ3a14 + θ12λ2 + θ11λ + θ10,

θ12 = 12 θ1
2/3a12a14

2+θ1
4/3+36 a11a12θ1

2/3+144 a11
2a12

2

12θ1
2/3a12

,

θ11 = θ1
4/3a14+36 a11a12θ1

2/3a14−12 θ1
2/3a12a13

2+144 a11
2a12

2a14
12θ1

2/3a12
,

θ10 = 2 θ1
4/3a11+24 θ1

2/3a11
2a12+288 a11

3a12
2

12θ1
2/3a12

,

fe4(λ) = λ4 + 2 λ3a14 + θ22λ2 + θ21λ + θ20,

θ22 = 12 θ2
2/3a12a14

2+θ2
4/3+36 a11a12θ2

2/3+144 a11
2a12

2

12θ2
2/3a12

,

θ21 = θ2
4/3a14+36 a11a12θ2

2/3a14−12 θ2
2/3a12a13

2+144 a11
2a12

2a14
12θ2

2/3a12
,

θ20 = 2 θ2
4/3a11+24 θ2

2/3a11
2a12+288 a11

3a12
2

12θ2
2/3a12

.

Obviously, fe0(λ), fe1(λ), and fe2(λ) have roots with positive real parts, and e0, e1, and e2 are unstable.
In the following, we will discuss the bifurcations at the rest of the equilibrium points.

2.5. Hopf Bifurcation

In this subsection, the Hopf bifurcation of System (1) is investigated by using the theories in [10].
When fe3(λ) has a pair of pure imaginary roots λ1,2 = ±αi, fe3(λ) = 0 becomes:

(λ2 + α2)(λ2 + ξλ + η) = 0,
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then we get: 

ξ = 2a14,

α2 =
θ11

2a14
,

η = θ12 −
θ11

2a14
,

θ11

2a14
=

2a14θ10

2θ12a14 − θ11
.

(4)

By calculations,

∆0 = ξ2 − 4η = − θ1
4/3a14 + 36 a11a12θ1

2/3a14 + 12 θ1
2/3a12a13

2 + 144 a11
2a12

2a14

6θ1
2/3a12

< 0.

Therefore, the eigenvalues of Jacobian matrix at e3 are:

λ1 = αi, λ2 = −αi, λ3 = −a14 +

√
−∆0i
2

, λ4 = −a14 −
√
−∆0i
2

.

By straightforward computations, we obtain the eigenvectors with respect to λ1 = αi, i.e.,

β1 = m



a14αi− α2 −M
a13

−α(α2i + Mi + a14α)

a13
1
αi

 ,

where:

M = −3
(

3√θ1
6a12

+
2a11
3
√

θ2

)2
a12 + a11.

Let m = 1, Re and Ie denote the real and imaginary parts of β1, then:

Re =


−α2−M

a13

− a14α2

a13

1
0

 , Ie =


a14α
a13

− α(α2+M)
a13

0
α

 .

For λ3 = i
√
−∆0
2 − a14, the eigenvectors are obtained:

β2 =


β21i + β22

β23i + β24

1
β25i− a14

 =


− a14

√
−∆0

2a13
i− 4M−∆0

4a13√
−∆0(∆0−4M+4a2

14)i
8a13

+ 2Ma14−a14∆0
2a13

1√
−∆0i
2 − a14

 .

Next, we use the following transformation:
p−

√
a11
a12

u

q−
3√θ1
6a12
− 2a11

3√θ1

v

 =


−α2−M

a13
− a14α

a13
β22 −β21

− a14α2

a13

α(α2+M)
a13

β24 −β23

1 0 1 0
0 −α −a14 −β25




y1

y2

y3

y4

.

Then, the system (1) becomes:
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

ẏ1 = −αy2 + F1(y1, y2, y3, y4),

ẏ2 = αy1 + F2(y1, y2, y3, y4),

ẏ3 = −a14y3 −
√
−∆0
2 y4 + F3(y1, y2, y3, y4),

ẏ4 =
√
−∆0
2 y3 − a14y4 + F4(y1, y2, y3, y4),

(5)

where the items Fi(y1, y2, y3, y4) (i = 1, 2, 3, 4) can be seen in Appendix A.
According to the center manifold theorem [17], there exists a center manifold for (1) as follows:

Wc(0) = {(y1, y2, y3, y4) ∈ R4|y3 = h3(y1, y2), y4 = h4(y1, y2), |(y1, y2)| < ρ, h3(0, 0) = 0,
Dh3(0, 0) = 0, h4(0, 0) = 0, Dh4(0, 0) = 0}

for sufficiently small ρ. We assume that:

h3(y1, y2) = h31y3
1 + h32y2

1y2 + h33y1y2
2 + ..., h4(y1, y2) = h41y3

1 + h42y2
1y2 + h43y1y2

2 + ...,

where the items h3j, h4j (j = 1, 2, 3) can be seen in Appendix A. Then:

ẏ3 = ∂h3
∂y1

ẏ1 +
∂h3
∂y2

ẏ2, ẏ4 = ∂h4
∂y1

ẏ1 +
∂h4
∂y2

ẏ2.

Therefore, it is obtained that: {
ẏ1 = −αy2 + G1(y1, y2),

ẏ2 = αy1 + G2(y1, y2),
(6)

where the items G1(y1, y2) and G2(y1, y2) can be seen in Appendix A.
Therefore, applying the method in [17], we can compute the first-order fine focus as follows:

µ = { π
8α (G1y1y1y1 + G1y1y2y2 + G2y1y1y2 + G2y2y2y2) +

π
8α2 [G1y1y2(G1y1y1 + G1y2y2)− G2y1y2(G2y1y1

+G2y2y2)− G1y1y1 G2y1y1 + G1y2y2 G2y2y2 ]}|(y1,y2)=(0,0) =
πµ1
8α + πµ2

8α2 ,

where the items µ1 and µ2 can be seen in Appendix A.

Theorem 3. The supercritical Hopf bifurcation of the system (1) occurs if µ < 0, and the subcritical Hopf
bifurcation occurs if µ > 0.

The same approach can be used to study the Hopf bifurcation at the other equilibrium e4.

3. Simulation

In this section, the example of Hopf bifurcations for the system is given, and it shows that chaotic
phenomena occur in the system with some parameter values. Firstly, we fix the parameters as follows:

a11 = 1, a12 = 2, a13 = 0.5, a14 = 0.18387.

The eigenvalues of the Jacobian matrix at the equilibrium (0.70711, 0, 0.84251, 0) point are ±1.3963i
and −0.18387± 1.81914i, and the Hopf bifurcation occurs in the system (1). Based on Theorem 3, we
get µ = − 47.03741π

11.1704 −
41.82834π
15.59723 < 0, then the Hopf bifurcation at the equilibrium point of system (1)

is non-degenerate, and the bifurcating periodic solution is stable. Because of the symmetry of the
system (1), the same type of Hopf bifurcation occurs at the equilibrium (−0.70711, 0,−0.84251, 0).
The phase diagrams in the p-u plane and the q-v plane of system (1) with initial values (0.7, 0,−0.01, 0)
are given in Figures 1 and 2, respectively. It is shown that the system has a stable limit cycle around
the equilibrium point. Moreover, the eigenvalues of the Jacobian matrix at the equilibria (0, 0, 0, 0),
(0, 0, 0.70711, 0), and (0, 0,−0.70711, 0) are:

1.15099, 0.68014, 1.0994± 0.261998i, and 0.95,−1.05018,−0.13378± 1.40954i,
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and 0.95,−1.05018,−0.13378± 1.40954i, respectively. Thus, (0, 0, 0, 0) is a stable-focus point with a
four-dimensional unstable manifold, and (0, 0, 0.70711, 0), (0, 0,−0.70711, 0) are all stable-focus points
with a three-dimensional stable manifold and a one-dimensional unstable manifold.

Figure 1. The phase diagram in the p-u plane.

Figure 2. The phase diagram in the q-v plane.

Next, we assume the parameters as follows:
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a11 = 1, a12 = 2, a13 = 0.2, a14 = 0.01.

In this case, the system (1) has nine equilibrium points. Table 1 indicates the eigenvalues of the
corresponding Jacobian matrix and the equilibria type and shows the unstable manifold and stable
manifold at the equilibrium points of the particle motion system.

Table 1. The eigenvalues of the corresponding Jacobian matrix and the equilibria type.

Equilibrium Points Eigenvalues of the Jacobian Matrix Equilibria Type

(0, 0, 0, 0) 1.09467, 0.89543, −1.005± 0.10037i saddle-focus point
(0, 0, 0.70711, 0) 1.00164, −0.9983, −0.01167± 1.41421i saddle-focus point

(0, 0,−0.70711, 0) 1.00164, −0.9983, −0.01167± 1.41421i saddle-focus point

(−0.70711, 0, 0.14789, 0) 0.93402, −0.93008, −0.01197± 1.41421i saddle-focus point

(0.70711, 0,−0.14789, 0) 0.93402, −0.93008, −0.01197± 1.41421i saddle-focus point

(−0.70711, 0, 0.62147, 0) −0.03366± 1.41718i, 0.02366± 1.14477i focus point

(0.70711, 0,−0.62147, 0) −0.03366± 1.41718i, 0.02366± 1.14477i focus point

(0.70711, 0, 0.76936, 0) −0.03366± 1.41718i, 0.023657± 1.14477i focus point

(−0.70711, 0,−0.76936, 0) −0.03366± 1.41718i, 0.023657± 1.14477i focus point

It has been long supposed that the existence of chaotic behavior in the microscopic motions
is responsible for their equilibrium and non-equilibrium properties [18], and the increase of the
equilibrium points or multi-equilibrium points may lead to abundant dynamic behaviors of the
system [8–10]. From the above results, it is shown that the system (1) has multi-equilibrium points
with a stable manifold and an unstable manifold. Therefore, the particle motion system has rich
dynamic behaviors. The Lyapunov exponents are 0.01, 0.00, −0.01, and −0.02 by using the method
in [19]; thus, the system (1) is chaotic. In addition, the chaotic phenomena can also be reflected by the
Poincaré maps [20]. Therefore, the chaotic attractor in the p− q plane of System (1) with parameters
a11 = 1, a12 = 2, a13 = 0.2, a14 = 0.01 and initial values (0.7, 0,−0.01, 0) is shown in Figure 3a, and
the Poincaré mapping on the section hyperplane u = 0 is given in Figure 3b. The chaotic attractor in
the u− v plane of System (1) with parameters a11 = 1, a12 = 2, a13 = 0.2, a14 = 0.01 and initial values
(0.7, 0,−0.01, 0) is shown in Figure 4a, and the Poincaré mapping on the section hyperplane p = 0 is
given in Figure 4b. Here, the Runge–Kutta method of order four is employed with the time step of
0.001 from t = 0 to t = 300. This shows that the particle motion trajectories and the velocities of the
particle in both directions are complex and the particle motion chaotic. Hence, the particle motion
system shows chaotic behavior. To further illustrate the strange attractors of System (1), Figures 5 and
6 show the chaos phase portrait of p− u and q− v and the corresponding Poincaré map by taking the
same parameters and initial values as Figure 3.

Figure 3. (a) The chaotic attractor in the p-q plane; (b) The Poincaré mapping on the section u = 0.
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Figure 4. (a) The chaotic attractor in the u-v plane; (b) The Poincaré mapping on the section p = 0.

Figure 5. p-u phase portrait and the corresponding Poincaré map (red points) on the section q = 0.

Figure 6. q-v phase portrait and the corresponding Poincaré map (red points) on the section u = 0.
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4. Conclusions

In this paper, a particle motion model is formulated by introducing external forces. The dynamic
behaviors of the system are investigated, including the symmetry, the existence and uniqueness of the
solution, and the continuous dependence on initial conditions. The range of the parameter where the
solution of the system shows continuous dependence on initial conditions can be determined from
Theorems 1 and 2. Consequently, the range of parameter values of the system where the system does
not exhibit chaotic behavior can be determined in theory. The results provide great help in controlling
the dynamic behavior of the particle motion system. By using the center manifold theorem and
simulations, the Hopf bifurcations at the equilibrium and chaotic behavior are studied. This illustrates
that the particle motion system has rich dynamic phenomena and also indicates the influence of the
external force on the particle motion trajectories. Compared to [21,22], different results are obtained,
such as Theorems 1 and 2, and the dynamic behaviors of the particle motion system are investigated
by applying different methods such as the method in [17] and the Poincaré section. These results
are helpful for further understanding the state of particle motion under external force. How to
effectively control the chaotic behavior and bifurcation phenomena of particle motion will be our next
research direction.
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Appendix A

(1) Expressions of Fi(y1, y2, y3, y4) (i = 1, 2, 3, 4) in Section 2.5:

F1(y1, y2, y3, y4) = b12[−a12(
(−α2−M)y1

a13
− a14α y2

a13
+ β22y3 − β21y4)

3 − 3 a12(
(−α2−M)y1

a13
− a14α y2

a13

+β22y3 − β21y4)
2
√

a11
a12

] + b14[−a12(y1 + y3)
3 − 3 a12(y1 + y3)

2(
3√θ1
6a12

+ 2a11
3√θ1

)],

F2(y1, y2, y3, y4) = b22[−a12(
(−α2−M)y1

a13
− a14α y2

a13
+ β22y3 − β21y4)

3 − 3 a12(
(−α2−M)y1

a13
− a14α y2

a13

+β22y3 − β21y4)
2
√

a11
a12

] + b24[−a12(y1 + y3)
3 − 3 a12(y1 + y3)

2(
3√θ1
6a12

+ 2a11
3√θ1

)],

F3(y1, y2, y3, y4) = b32[−a12(
(−α2−M)y1

a13
− a14α y2

a13
+ β22y3 − β21y4)

3 − 3 a12(
(−α2−M)y1

a13
− a14α y2

a13

+β22y3 − β21y4)
2
√

a11
a12

] + b34[−a12(y1 + y3)
3 − 3 a12(y1 + y3)

2(
3√θ1
6a12

+ 2a11
3√θ1

)],

F4(y1, y2, y3, y4) = b42[−a12(
(−α2−M)y1

a13
− a14α y2

a13
+ β22y3 − β21y4)

3 − 3 a12(
(−α2−M)y1

a13
− a14α y2

a13

+β22y3 − β21y4)
2
√

a11
a12

] + b44[−a12(y1 + y3)
3 − 3 a12(y1 + y3)

2(
3√θ1
6a12

+ 2a11
3√θ1

)],

where:

b11 = − 1
∆1
[(α a13β23 + α(α2 + M)β25)a13], b12 = 1

∆1
[(a13β21 − a14β25)α a13],

b13 = 1
∆1
[a13(−α a13β21β24 + α a13β22β23 + α a14

2β23 + αa14β24β25 + α(α2 + M)a14β21

+α(α2 + M)β22β25)], b14 = 1
∆1
[(α a14β23 + α(α2 + M)β21)a13],

b21 = − 1
∆1
[(α2a14β25 + a13a14β23 + a13β24β25)a13],

b22 = 1
∆1
[(α2β25 + a13a14β21 + a13β22β25 + Mβ25)a13],

b23 = − 1
∆1
[(−α2a14

2β21 − α2a14β22β25 + α2a14β23 + α2β24β25 + Ma14β23 + Mβ24β25)a13],
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b24 = − 1
∆1
[(−α2a14β21 + α2β23 − a13β21β24 + a13β22β23 + Mβ23)a13],

b31 = 1
∆1
[(αa13β23 + α(α2 + M)β25)a13], b32 = − 1

∆1
[(a13β21 − a14β25)αa13],

b33 = 1
∆1
[−α3a13a14β21 + α3a14

2β25 + α3a13β23 + Mα a13β23 + α(α2 + M)α2β25 + Mα(α2 + M)β25],

b34 = − 1
∆1
[(α a14β23 + α(α2 + M)β21)a13], b41 = − 1

∆1
[(−α3a14 − α a13β24 + α(α2 + M)a14)a13],

b42 = − 1
∆1
[(α2 + a13β22 + a14

2 + M)α a13],
b43 = − 1

∆1
[α3a13a14β22 + α3a14

3 − α3a13β24 −Mα a13β24 + α(α2 + M)α2a14 + Mα(α2 + M)a14],

b44 = − 1
∆1
[α3a14

2 + α a13a14β24 + α(α2 + M)α2 + α(α2 + M)a13β22 + Mα(α2 + M)].

∆1 = −α3a13a14β21 + α3a14
2β25 + α3a13β23 − α a13

2β21β24 + αa13
2β22β23 + αa13a2

14β23

+α a13a14β24β25 + Mα a13β23 + α(α2 + M)α2β25 + α(α2 + M)a13a14β21

+α(α2 + M)a13β22β25 + Mα(α2 + M)β25,

(2) Expressions of h3j, h4j (j = 1, 2, 3) in Section 2.5:

h31 = 1
∆2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −α 0 −
√
−∆0
2 0 0

0 0 −2 α 0 −
√
−∆0
2 0

0 α 0 0 0 −
√
−∆0
2

δ21 0 0 −a14 −α 0

δ22

√
−∆0
2 0 2 α −a14 −2 α

δ23 0
√
−∆0
2 0 α −a14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

h32 = 1
∆2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 −
√
−∆0
2 0 0

2 α 0 −2 α 0 −
√
−∆0
2 0

0 0 0 0 0 −
√
−∆0
2

√
−∆0
2 δ21 0 −a14 −α 0

0 δ22 0 2 α −a14 −2 α

0 δ23

√
−∆0
2 0 α −a14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

h33 = 1
∆2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −α 0 −
√
−∆0
2 0 0

2 α 0 0 0 −
√
−∆0
2 0

0 α 0 0 0 −
√
−∆0
2

√
−∆0
2 0 δ21 −a14 −α 0

0
√
−∆0
2 δ22 2 α −a14 −2 α

0 0 δ23 0 α −a14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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h41 = 1
∆2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −α 0 0 0 0

2 α 0 −2 α 0 −
√
−∆0
2 0

0 α 0 0 0 −
√
−∆0
2

√
−∆0
2 0 0 δ21 −α 0

0
√
−∆0
2 0 δ22 −a14 −2 α

0 0
√
−∆0
2 δ23 α −a14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

h42 = 1
∆2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −α 0 −
√
−∆0
2 0 0

2 α 0 −2 α 0 0 0

0 α 0 0 0 −
√
−∆0
2

√
−∆0
2 0 0 −a14 δ21 0

0
√
−∆0
2 0 2 α δ22 −2 α

0 0
√
−∆0
2 0 δ23 −a14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

h43 = 1
∆2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −α 0 −
√
−∆0
2 0 0

2 α 0 −2 α 0 −
√
−∆0
2 0

0 α 0 0 0 0
√
−∆0
2 0 0 −a14 −α δ21

0
√
−∆0
2 0 2 α −a14 δ22

0 0
√
−∆0
2 0 α δ23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where:

δ21 = − 3b42a12(−α2−M)2

a13
2

√
a11
a12
− 3b44a12(

3√θ1
6a12

+ 2a11
3√θ1

),

δ22 =
6b42a12a14α (−α2−M)

a13
2

√
a11
a12

,

δ23 = − 3b42a12a14
2α2

a13
2

√
a11
a12

,

∆2 = −4 ∆0α4 − ∆0a14
2α2 − 1

2 α2∆0
2 − ∆0

3

64 .

(3) Expressions of G1(y1, y2) and G2(y1, y2) in Section 2.5:

G1(y1, y2) = [b12(− a12(−α2−M)3

a13
3 − 6a12(−α2−M)(−β21h41+β22h31)

a13

√
a11
a12

) + b14(−a12 − 6 a12h31(
3√θ1
6a12

+ 2a11
3√θ1

))]y3
1 + [b12(

3a12a14α (−α2−M)2

a13
3 − 3 a12(− 2a14α (−β21h41+β22h31)

a13
+ 2(−α2−M)(−β21h42+β22h32)

a13
)

×
√

a11
a12

)− 6 b14a12h32(
3√θ1
6a12

+ 2a11
3√θ1

)]y2
1y2 + [b12(− 3a12a14

2α2(−α2−M)
a13

3 − (− 6a12a14α (−β21h42+β22h32)
a13

+ a12(−β21h43+β22h33)(−α2−M)
a13

)
√

a11
a12

)− 6 b14a12h33(
3√θ1
6a12

+ 2a11
3√θ1

)]y1y2
2 + [b12(

a12a3
14α3

a3
13

+ 6a12a14α(−β21h43+β22h33)
a13

√
a11
a12

)]y3
2 + o(‖y1, y2‖4),

G2(y1, y2) = [b22(− a12(−α2−M)3

a13
3 − 6a12(−α2−M)(−β21h41+β22h31)

a13

√
a11
a12

) + b24(−a12 − 6 a12h31(
3√θ1
6a12

+ 2a11
3√θ1

))]y3
1 + [b22(

3a12a14α (−α2−M)2

a13
3 − 3 a12(− 2a14α (−β21h41+β22h31)

a13
+ 2(−α2−M)(−β21h42+β22h32)

a13
)
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×
√

a11
a12

)− 6 b24a12h32(
3√θ1
6a12

+ 2a11
3√θ1

)]y2
1y2 + [b22(− 3a12a14

2α2(−α2−M)
a13

3 − (− 6a12a14α (−β21h42+β22h32)
a13

+ a12(−β21h43+β22h33)(−α2−M)
a13

)
√

a11
a12

)− 6 b24a12h33(
3√θ1
6a12

+ 2a11
3√θ1

)]y1y2
2 + [b22(

a12a14
3α3

a13
3

+ 6a12a14α(−β21h43+β22h33)
a13

√
a11
a12

)]y3
2 + o(‖y1, y2‖4).

(4) Expressions of µ1 and µ2 in Section 2.5:

µ1 = b12(− 6a12(−α2−M)3

a13
3 − 18a12(−α2−M)(−2 β21h41+2 β22h31)

a13

√
a11
a12

) + b14(−6 a12 − 36 a12(
3√θ1
6a12

+ 2a11
3√θ1

)h31) + b12(− 6a12a14
2α2(−α2−M)

a13
3 − 6a12(−2 β21h43+2 β22h33)(−α2−M)

a13

√
a11
a12

+ 12a12a14α (−β21h42+β22h32)
a13

√
a11
a12

)− 12 b14a12h33(
3√θ1
6a12

+ 2a11
3√θ1

) + b22(
6a12a14α (−α2−M)2

a13
3

− 12a12(−α2−M)(−β21h42+β22h32)
a13

√
a11
a12

+ 6a12a14α (−2 β21h41+2 β22h31)
a13

√
a11
a12

)− 12 b24a12(
3√θ1
6a12

+ 2a11
3√θ1

)h32 + b22(
6a12a14

3α3

a13
3 + 18a12a14α (−2 β21h43+2 β22h33)

a13

√
a11
a12

),

µ2 = 6b12a12a14α (−α2−M)
a13

2

√
a11
a12

(− 6b12a12(−α2−M)2

a13
2

√
a11
a12
− 6 b14a12(

3√θ1
6a12

+ 2a11
3√θ1

)− 6b12a12a14
2α2

a13
2

√
a11
a12

)

− 6b22a12a14α (−α2−M)
a13

2

√
a11
a12

(− 6b22a12(−α2−M)2

a13
2

√
a11
a12
− 6 b24a12(

3√θ1
6a12

+ 2 a11
3√θ1

)− 6b22a12a14
2α2

a13
2

√
a11
a12

)

−(− 6b12a12(−α2−M)2

a13
2

√
a11
a12
− 6 b14a12(

3√θ1
6a12

+ 2a11
3√θ1

))(− 6b22a12(−α2−M)2

a13
2

√
a11
a12
− 6 b24a12(

3√θ1
6a12

+ 2a11
3√θ1

))

+ 36b12a12a14
4α4a11b22

a13
4 .
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