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Abstract: Optimal lot sizing is the primary tool applied by lean practitioners to reduce inconsistency in
the manufacturing system to cut down inventories, which are often considered as a type of waste in the
lean culture. Managers attempt to consider environmental impacts of the manufacturing system and
find ways to reduce these effects while making efforts to achieve environmental protection. From a
sustainability standpoint, carbon emissions are the major source of environmental contamination and
degradation. In this context, this research provides an economic production quantity model with
uncertain demand and process information in a multistage manufacturing process. This imperfect
manufacturing process produces defective products at an uncertain rate, and is reworked to
convert them into perfect quality products and reduce wastages. To control this uncertainty in
the manufacturing process, the decomposition principle and the signed distance method of fuzzy
theory are applied. The manufacturing process is analyzed with regard to environmental concerns,
and a sustainable lot size is obtained through an interactive Weighted Fuzzy Goal Programming
(WFGP) approach for the simultaneous achievement of economic and environmental sustainability.
An experimental study is performed to verify the practical implication of the model, and results are
evaluated through a sensitivity analysis. Important managerial insights and graphical illustrations
are provided to elaborate the model.

Keywords: lean manufacturing; sustainability; process imperfection; uncertain information;
decomposition principle; triangular fuzzy number

1. Introduction

When analyzing any industry on a global scale, presently, it is identified that the rapidly
growing competitions in the global markets and frequently increasing raw material costs have led the
manufacturing industries to adopt lean manufacturing policies. Taiichi Ohno, an engineer in Toyota
recognized as a master of lean philosophy, provided the basis of various lean manufacturing techniques.
His focused policies involved labor empowerment, inventories reduction, productivity improvement,
and waste minimization. In this way, Toyota managed to accommodate frequent changes in market
demands by applying a made-to-order strategy. Currently, almost all types of manufacturing industries
have adopted lean culture in an appropriate proportion to minimize resource utilization, improve
process reliability, enhance employee skills, and minimize system costs to achieve the ultimate goal of
remaining noticeable in the sturdy market competition.

Productivity improvement is among the top application of lean culture due to its tangible and
operative benefits to a manufacturing business. In order to focus on productivity improvement in a
manufacturing industry, four strategic pillars of lean are simultaneously applied, namely; Poka-yoke,
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5S, visual controls, and Kanban [1]. Poka-yoke is a fool-proof system, which prevents the occurrence
of a mistake or defect [2]. 5S is a five-phase program of each phase starting with an alphabet “S”;
(a) sort, (b) set in order, (c) shine, (d) standardize, and (e) sustain. 5S ensures workplace safety, waste
minimization, and improved plant efficiency [3]. Posters, diagrammatic presentations, pictures, color
codes, and symbols are effective visual tools for productivity improvement of the manufacturing
facility [4]. Kanban is a production control tool for optimum utilization of the workforce capacity in
order to achieve just-in-time (JIT) production [5].

With the formation of lean culture, a cleaner production approach is mandatory to reduce
the environmental impacts of the manufacturing industries, which are combinedly termed as
lean-green strategies. This task can be efficiently performed by applying waste control policies.
According to a project carried out by Fresner [6], a cleaner production approach has the potential
to minimize 0.5%–1.5% of the system cost by eradicating nonvalue added activities. Similarly,
Ozturk et al. [7] analyzed implementation of 22 different environmental protection working techniques
and achieved a significant reduction in resource utilization, while achieving comparable plant efficiency
and product quality. They identified that the contribution of motivated decision-makers and leaders is
mandatory to achieve desired results. Otherwise, lean-green strategies provide little to no benefit to
the manufacturing process.

In order to attain economic sustainability, managers attempt to decide the optimal lot size
for the manufacturing process. Since the first development of Economic Production Quantity
(EPQ) model by Taft [8], a broad number of researchers have studied and extended the model to
various real-life production scenarios. The elementary shortcoming of the basic EPQ model is the
non-consideration of process imperfections. None of the real-world manufacturing processes are
perfect in nature. Hence, they produce defective products due to their “out-of-control” states. Therefore,
many researchers have extended the model by considering defective proportions in the manufacturing
systems. Some researchers have considered a constant defective rate, whereas various others have
studied a random defective rate in their production models. In addition, to convert defective products
into perfect quality products by incurring additional reworking cost, several researchers have devised
rework opportunity.

Sarkar et al. [9] determined the optimal reliability of a manufacturing process with random
imperfection using control theory. Chiu et al. [10] developed a production model with the
aim of reducing suppliers’ carrying cost by considering random imperfections in the production
process. Sarkar et al. [11] provided a production model with a random defective rate and provided
optimal strategies for setup cost reduction and process improvement of the system. Tayyab
and Sarkar [12] considered random defective proportion following beta distribution function in a
manufacturing process and obtained the optimal lot size through the analytical optimization technique.
Kim and Sarkar [13] further considered random imperfections in their production model and provided
optimal investment policies for process improvement in a manufacturing process. They found that the
spread of randomness in defective proportion data has a direct effect on the system cost.

In most of the scenarios, determining precise distribution function of the product demand and
the random defective rate is not possible. In these situations, managers need to apply fuzzy theory,
which can grasp the uncertainty involved in demand and the defective proportion information of
the system. Zadeh introduced fuzzy theory in 1978 to handle the uncertain conditions, after which
various researchers utilized the fuzzy approach to solve production models with imprecise parametric
values. Chang [14] considered product demand and defective proportion as a fuzzy number in a
single-stage manufacturing process and found that the uncertainty in defective proportion can be
better dealt with using fuzzy theory on a cost of additional expenditure in the process. Priyan and
Manivannan [15] considered defective proportion as a fuzzy number, along with inspection errors,
in a manufacturing process and provided optimal delivery policies for the vendor-buyer integrated
system in a supply chain.
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Along with economic policies of the manufacturing processes, various other researchers have
considered environmental policies to reduce detrimental impacts of the manufacturing systems on
the outer environment. For this, carbon emission reduction is measured as an environment-friendly
policy. Efforts are made through lot size adjustment, process improvement, better recourse utilization,
and renewable energy consumption to reduce the carbon emissions of the system. Zeballos et al. [16],
Sarkar et al. [17], and Xu et al. [18] considered the effects of carbon emissions in their production
models and provided optimal production policies for the development of a sustainable manufacturing
process. Our research work also considers carbon emission as an indicator of environmental influence
of the manufacturing process analyzed in this study. Variable carbon emissions are considered during
each operational activity of the manufacturing process, and the optimal lot size of the system is
determined, which reduces the adverse environmental effects of the process.

The current focus of researchers is toward combinedly targeting operational and environmental
scopes of the production environment through the integration of lean manufacturing and green
manufacturing strategies [19]. Adopting lean practices provides green benefits, and further green
policies often pave paths for lean benefits [20]. Diaz-Elsayed et al. [21] found that the collective
implementation of lean and green practices has significantly reduced the production cost up to 10.80%
in an automotive manufacturing firm, which is evidently a noticeable realization of implementing
lean-green policies together. Recently, Thanki and Thakkar [22] developed a value-value load
diagram (VVLD) tool to access the operational (lean) as well as environmental (green) performance
of the organizations in combination with each other. This approach evaluates the lean-green
performance of the firm established on various factors including resource utilization, value addition,
and various others.

The above considerations promote the simultaneous implementation of lean and green policies to
improve economic, as well as environmental, sustainability of the manufacturing industries. In view
of the extensive association among lean and green practices and their combined benefits, this research
work studied the simultaneous implementation of lean-green policy. Economic sustainability is aimed
toward the implementation of the lean manufacturing strategy and economic lot size is obtained
to attain the minimum cost of the system. Then, environmental sustainability is focused on the
implementation of the green policy, considering emissions at each activity of the complete production
system and the optimal lot size for minimal environmental impacts is achieved. A sustainable lot
size is then obtained through the combined implementation of lean and green policies to improve
eco-environmental performance of the multistage production system.

Most of the researchers have provided production models for a single-stage process, whereas
almost all the products are manufactured through multistage manufacturing systems. Few researchers
have studied multistage production processes. Among these researchers, Jaber and Khan [23] analyzed
effects of learning and forgetting in multistage production process. Tayyab and Sarkar [12] developed a
multistage lean manufacturing model by considering random imperfections at each stage of the system
to obtain the optimal lot size through the analytical optimization technique. They found that the lean
culture implementation has great potential to improve the economic sustainability of the multistage
production process. Recently, Kim and Sarkar [13] provided optimum investment policies for setup
cost reduction at all the process stages in an imperfect multistage production process. Their results
showed that the reduction in imperfect production stabilizes the manufacturing process. Figure 1
shows a general flow of a multistage manufacturing process.

Literature review indicates that there exists a significant research gap in the field of the multistage
manufacturing process, specifically under uncertain process conditions. Therefore, this research
work extends the study of Tayyab and Sarkar [12] by taking initiative to consider highly uncertain
product demand and defective proportion at all stages of the multistage manufacturing process.
A Triangular Fuzzy Number (TFN) represents the product demand and the defective proportion at
each manufacturing stage. The decomposition principle and signed distance method [14] of the fuzzy
theory are applied to handle this uncertainty and de-fuzz the fuzzy objective function of the developed
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model. As this is a multi-objective multistage manufacturing model with conflicting objectives of
cost-minimization and carbon emissions minimization, both the analytical optimization technique
and the metaheuristic approach are applied to solve the model. The aspiration level of each objective
function is determined by the individual solution of each objective function, then the Weighted Fuzzy
Goal Programing (WFGP) model is developed for linearization of the multi-objective model, which is
solved through the metaheuristic approach.Mathematics 2018, 6, x FOR PEER REVIEW  4 of 20 
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Structure of the paper is as follows: Section 2 provides problem definition, assumptions, and
mathematical model of this research; Section 3 provides solution methodology of the model. Numerical
experiment, results analysis and important managerial insights are provided in Section 4. Finally,
Section 5 presents concluding remarks and future research opportunities related to the proposed model.

2. Model Formulation

This section provides problem definition, notation, assumptions, and the mathematical model of
the proposed imperfect multistage lean manufacturing process under an uncertain environment.

2.1. Problem Definition

An imperfect multistage manufacturing process is studied in this paper. A single type of item is
produced through an n-stage manufacturing process [12]. Due to out-of-control process conditions,
imperfect quality items are produced, along with the perfect quality items at a highly uncertain
rate [14]. A rework opportunity is allowed to convert these imperfect items to perfect quality items at
additional reworking cost. To handle the uncertain information regarding product demand and the
imperfect production proportion at each manufacturing stage, product demand and the imperfect
proportion of the production are taken as TFN. The decomposition principle and signed distance
method of fuzzy theory are applied to grasp the situation [14]. Customer demand is met at the final
production stage [12]. Each stage emits a certain quantity of carbon emissions to the outer environment
during the manufacturing process. The manufacturing system makes an effort to implement the lean
philosophy of waste minimization and environmental protection by adopting the lean-green approach.

Two objectives of the model are to minimize the system cost and carbon emissions of the
system. A multi-objective model for the simultaneous minimization of these two conflicting
objectives (economic and environmental) is developed. To convert the multi-objective model into a
single-objective model, WFGP is applied with a single objective of improving satisfaction levels of
each objective function. The model is solved by an interior point metaheuristic approach and results
are analyzed to illustrate the robustness and practical applicability of the proposed model.



Mathematics 2019, 7, 20 5 of 18

2.2. Assumptions

For model formulation, the below assumptions are considered:

1. The model considers that a single type of item is produced in a multistage manufacturing process
consisting of n number of stages.

2. In today’s competitive market environment, product demand information cannot be estimated
with accuracy. Therefore, this research work considers highly uncertain product demand, which is
taken as a TFN (for instance, see Chang [14]).

3. Manufacturing companies keep their production rates higher than the demand rate to avoid
shortages in the system. Therefore, this study considers that the production rate of each
manufacturing stage is constant with the condition P > λ and shortages are not allowed.

4. In the long run production process, the system moves to an “out-of-control” state and produces
defective products, along with good quality products. This defective proportion may not be
constant throughout nor follow specific probability distribution. Thus, this research work
considers an uncertain defective proportion at each stage of the multistage production system
and treats it as a TFN.

5. Production cost of the manufacturing system consists of various components. This study
considers costs of energy, labor, and inspection costs at each manufacturing stage as the
components of production cost.

6. Inter-stage material transfer cost and time are trivial in the multistage production systems.
Therefore, this study considers that the inter-stage material transfer cost and time are negligible.

2.3. Mathematical Model

This section develops a multi-objective model for the proposed lean-green manufacturing system
with aforementioned notation and assumptions. Figure 2 presents the inventory behavior of stage-j.
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Manufacturing stage-j starts with zero inventory and achieves maximum inventory Ij in time
Tj =

(
1 + β j

)
× Q

Pj
where β̃ j is uncertain defective proportion at stage-j.

Regular production is carried out during (0, Ta), and reworking of defective items is performed
during the interval

(
Ta, Tj

)
. Average inventory of stage-j is computed as below.

Ij =
1
Tj
×
[∫ Ta

0
Q(t).dt+

∫ Tj

Ta
Q(t).dt

]
,
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which provides

Ij =
Q
2
×

1−
β̃2

j

1 + β̃ j

. (1)

Figure 3 shows inventory behavior of the final production stage (stage-n). Regular production,
along with demand fulfilment, is carried out during (0, T1n), reworking of defective items is performed
from (T1n, T2n), and pure consumption occurs during the interval (T2n, Tn). Cycle time of stage-n is
obtained as Tn = Q

λ̃
, and the total time of the complete manufacturing system is simply computed as

T =
Q
λ̃
×
[

1 + λ̃×
n−1

∑
j=1

(
1 + β̃ j

Pj

)]
. (2)

From Figure 3, total inventory of manufacturing stage-n is obtained as

In =
∫ T1n

0
Q(t).dt+

∫ T2n

T1n

Q(t).dt+
∫ Tn

T2n

Q(t).dt=
Q2

2λ̃
×
[

1− λ̃

Pn
×
(

1 + β̃n + β̃n
2)]

.
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From above, the average inventory of finished items in the system is obtained as

I =
Q

2Pn
×

Pn − λ̃×
(

1 + β̃n + β̃n
2)

1 + λ̃×
n−1
∑

j=1

(
1+β̃ j

Pj

)
. (3)

2.3.1. Objective Function Formulation with Constant Demand and Imperfect Proportion

To obtain a sustainable lot size, this paper proposes a multi-objective production model for an
imperfect multistage lean manufacturing system. Multi-objectives contain economic objective for cost
minimization, and an environmental objective for CO2 emissions reduction to develop a lean-green
manufacturing system.

Cost Minimization Objective ( fCost)

The cost minimization objective of the proposed multi-objective production model with constant
demand rate and defective proportion is formulated in Equation (4). The first part of the objective
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function depicts the setup cost of the system. The second term shows the order processing cost and
reworking cost of the system. The final term in the objective function represents the inventory carrying
cost of finished items in the system.

TC(Q) = 1
T ×

n
∑

i=1
Aci +

1
T

[
Q×

n
∑

i=1
Cci × (1 + βi)

]
+ hc × Q

2Pn
×

 Pn−λ×(1+βn+βn
2)

1+λ×
n−1
∑

j=1

(
1+βj

Pj

)


=

n
∑

i=1
Aci+Q×

n
∑

i=1
Cci×(1+βi)

Q
λ̃
×
[

1+λ×
n−1
∑

j=1

(
1+βj

Pj

)] + hc × Q
2Pn
×

 Pn−λ×(1+βn+βn
2)

1+λ×
n−1
∑

j=1

(
1+βj

Pj

)
.

(4)

CO2 Emissions Minimization Objective
(

fCO2

)
CO2 minimization objective of the proposed multi-objective production model in fuzzy form is

formulated in Equation (5). The first part of the objective function depicts CO2 emissions during setup
of the system. The second term shows emissions during the order processing and the reworking of
the defective items in the system. The final term in the objective function represents emissions during
inventory carrying of finished items in the system.

TE(Q) = 1
T ×

n
∑

i=1
Aei +

1
T

[
Q×

n
∑

i=1
Cei × (1 + βi)

]
+ he × Q

2Pn
×

 Pn−λ×(1+βn+βn
2)

1+λ×
n−1
∑

j=1

(
1+βj

Pj

)
,

=

n
∑

i=1
Aei+Q×

n
∑

i=1
Cei×(1+βi)

Q
λ̃
×
[

1+λ×
n−1
∑

j=1

(
1+βj

Pj

)] + he × Q
2Pn
×

 Pn−λ×(1+βn+βn
2)

1+λ×
n−1
∑

j=1

(
1+βj

Pj

)
.

(5)

2.3.2. Objective Function Formulation with Fuzzy Demand and Imperfect Proportion

This model considers defective proportion at each stage of the manufacturing process as highly
uncertain. Thus, an uncertainty control approach is required to handle this vagueness in system
information. Fuzzy theory is most suitable for such type of operating conditions under uncertain
environment [14]. Therefore, defective proportion is taken as a TFN, and the decomposition principle,
along with the signed distance approach, are applied to convert the fuzzy objective functions into their
equivalent crisp forms. For the fuzzy set κ̃ = (∆1, ∆2, ∆3), defined on R with ∆1 < ∆2 < ∆3 is a TFN
with a membership function

ϕκ̃(x) =


x−∆1

∆2−∆1
i f ∆1 ≤ x ≤ ∆2,

∆3−x
∆3−∆2

i f ∆2 ≤ x ≤ ∆3,
0 otherwise.

According to decomposition principle, α− cut of κ̃ = (∆1, ∆2, ∆3) is κ(α) = [κL(α), κU(α)] for
α ∈ [0, 1] where κL(α) = ∆1 + (∆2 − ∆1)α and κU(α) = ∆3 − (∆3 − ∆2)α. Then the signed distance of
κ̃ to 0̃1 is determined as d

(
κ̃, 0̃1

)
= 1

4 (∆1 + 2∆2 + ∆3).
Using the aforementioned uncertainty control approach, uncertainty in product demand and the

defective proportion data for both objective functions is handled as below.
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Fuzzy Membership Function Development

For the product demand of the manufacturing process represented by a fuzzy set λ̃ = (λ1, λ2, λ3),
defined on R with λ1 < λ2 < λ3 is a TFN with a membership function

v
λ̃
(ρ) =


ρ−λ1

λ2−λ1
i f λ1 ≤ ρ ≤ λ2,

λ3−ρ
λ3−λ2

i f λ2 ≤ ρ ≤ λ3,
0 otherwise.

On the similar scale, for the defective proportion at each stage of the manufacturing process
represented by a fuzzy set β̃ = (δ1, δ2, δ3), defined on R with δ1 < δ2 < δ3 is a TFN with a
membership function

ϕ
β̃
(x) =


x−δ1
δ2−δ1

i f δ1 ≤ x ≤ δ2,
δ3−x
δ3−δ2

i f δ2 ≤ x ≤ δ3,
0 otherwise.

Fuzzification

Fuzzified form of cost minimization objective ( fCost) and CO2 minimization objective
(

fCO2

)
are

developed as below.

T̃C(Q) =

n
∑

i=1
Aci+Q×

n
∑

i=1
Cci×(1+d(β̃i ,0̃1))

Q
d(λ̃,0̃1)

×
[

1+d(λ̃,0̃1)×
n−1
∑

j=1

(
1+d(β̃j ,0̃1)

Pj

)] + hc × Q
2Pn
×

 Pn−d(λ̃,0̃1)×
(

1+d(β̃n ,0̃1)+d(β̃n ,0̃1)
2)

1+d(λ̃,0̃1)×
n−1
∑

j=1

(
1+d(β̃j ,0̃1)

Pj

)
,

and

T̃E(Q) =

n
∑

i=1
Aei+Q×

n
∑

i=1
Cei×(1+d(β̃i ,0̃1))

Q
d(λ̃,0̃1)

×
[

1+d(λ̃,0̃1)×
n−1
∑

j=1

(
1+d(β̃j ,0̃1)

Pj

)] + he × Q
2Pn
×

 Pn−d(λ̃,0̃1)×
(

1+d(β̃n ,0̃1)+d(β̃n ,0̃1)
2)

1+d(λ̃,0̃1)×
n−1
∑

j=1

(
1+d(β̃j ,0̃1)

Pj

)
.

Defuzzification

Defuzzification is the conversion of the fuzzy linguistic variable to its equivalent crisp form for
further computations of the objective functions. This research work has used the signed distance
method of defuzzification for uncertain objective functions of the model.

For TFN, the signed distance of λ̃ to 0̃1 is determined as

d
(

λ̃, 0̃1

)
=

1
4
(λ1 + 2λ2 + λ3),

and the signed distance of β̃ to 0̃1 is obtained as

d
(

β̃, 0̃1

)
=

1
4
(δ1 + 2δ2 + δ3).

Putting this in the fuzzy objective functions defuzzify them in their equivalent crisp form as below.

[TC]Equivalent crisp =
( 1

4 (λ1+2λ2+λ3))×
(

n
∑

i=1
Aci+Q×

n
∑

i=1
Cci×(1+( 1

4 (δ1i+2δ2i+δ3i)))
)

Q×
[

1+( 1
4 (λ1+2λ2+λ3))×

n−1
∑

j=1

(
1+( 1

4 (δ1j+2δ2j+δ3j))
Pj

)]

+hc × Q
2Pn
×

 Pn−( 1
4 (λ1+2λ2+λ3))×

(
1+( 1

4 (δ1n+2δ2n+δ3n))+( 1
4 (δ1n+2δ2n+δ3n))

2)
1+( 1

4 (λ1+2λ2+λ3))×
n−1
∑

j=1

(
1+( 1

4 (δ1j+2δ2j+δ3j))
Pj

)
,
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and

[TE]Equivalent crisp =
( 1

4 (λ1+2λ2+λ3))×
(

n
∑

i=1
Aei+Q×

n
∑

i=1
Cei×(1+( 1

4 (δ1i+2δ2i+δ3i)))
)

Q×
[

1+( 1
4 (λ1+2λ2+λ3))×

n−1
∑

j=1

(
1+( 1

4 (δ1j+2δ2j+δ3j))
Pj

)]

+he × Q
2Pn
×

 Pn−( 1
4 (λ1+2λ2+λ3))×

(
1+( 1

4 (δ1n+2δ2n+δ3n))+( 1
4 (δ1n+2δ2n+δ3n))

2)
1+( 1

4 (λ1+2λ2+λ3))×
n−1
∑

j=1

(
1+( 1

4 (δ1j+2δ2j+δ3j))
Pj

)
.

In order to verify that the [TC]Crisp attends minimum value in the interval (0, T), one can simply
apply analytical technique. As [TC]Crisp is a minimization objective with production quantity (QCost)

as a decision variable, thus, principle minor must be positive. From necessary conditions, d[TC]Crisp

dQCost
= 0.

From sufficient conditions, it is verified that

d2[TC]Crisp

dQ2
Cost

=
2λ ∑n

i=1 Aci

Q3
(

1 + 1
4 (λ1 + 2λ2 + λ3)×∑n−1

j=1
1+ 1

4 (δ1j+2δ2j+δ3j)
Pj

) > 0,

which proves that [TC]Crisp is strictly convex in Q∗Cost. Hence, [TC]Crisp has a minimum value in the
interval (0, T).

Similarly, it can be proved that [TE]Crisp attends the minimum value in the interval (0, T) as the
following: [TE]Crisp is a CO2 minimization objective with production quantity

(
QCO2

)
as a decision

variable. Thus, the principle minor must be positive. From necessary conditions, d[TE]Crisp

dQCO2
= 0.

From sufficient conditions, it is verified that

d2[TE]Crisp

dQ2
CO2

=
2λ ∑n

i=1 Aei

Q3
(

1 + 1
4 (λ1 + 2λ2 + λ3)∑n−1

j=1
1+ 1

4 (δ1j+2δ2j+δ3j)
Pj

) > 0,

which proves that [TE]Crisp is strictly convex in Q∗CO2
. Hence, [TE]Crisp has a minimum value in the

interval (0, T).

3. Solution Procedure

Goal programming (GP) is a well-known method of solving multi-objective optimization problems.
There are several variants of GP used under different conditions. WFGP is proven to outperform
in the scenario of an uncertain environment [12,20]. In this method, decision-makers decide the
aspiration level and maximum acceptable level of each objective, which is then converted into a fuzzy
membership function and the satisfaction level of each objective is determined. Then, the satisfaction
level of each objective is maximized according to the predetermined importance criteria provided by
the decision-makers. This research work applies WFGP to solve the proposed multi-objective nonlinear
programing model.

Solution steps for the proposed multi-objective multi-stage lean manufacturing model are
provided below.

1. Determine α− extreme solutions

Each objective function is solved separately to obtain target (aspiration) level of the function.
Then maximum acceptable level of each objective function is determined by keeping aspiration level
of other objective as an equality constraint, and a pay-off table (POF) is developed.
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2. Develop Fuzzy membership function (FMF)

Fuzzy membership function (µk) for satisfaction level (TFN) of each objective is developed in
this step by using aspiration level and maximum acceptable level of each objective determined in the
previous step.

µk =


0 i f fk ≥ f α−accept

k ,
f α−accept
k − fk

f α−accept
k − f α−aspiration

k

i f f α−aspiration
k < fk < f α−accept

k ,

1 i f fk ≤ f α−aspiratio
k ,

where f α−aspiration
k and f α−accept

k are the α−extreme solutions of objective function k.

3. Develop WFGP model

WFGP is an interactive technique which requires expert human intervention to assign priority weights
to each objective function in accordance with the decision-maker’s choice. Thus, the decision-makers
determine importance weight (Zk) for satisfaction level of each objective function k. WFGP model is then
developed as below, which is in turn solved through a metaheuristic approach.

Maximize
K
∑

k=1
Zk × µk

Subject to f α−accept
k − fk

f α−accept
k − f α−aspiration

k

= µk, ∀k

K
∑

k=1
Zk = 1, ∀k

0 ≤ µk ≤ 1. ∀k

4. Experimental Analysis

To illustrate the practical implication of the developed multi-objective production model,
a numerical experiment is carried out for a five-stage lean-green manufacturing process with the
appropriate data set.

4.1. Numerical Data

Table 1 shows the numerical data (see Notation for units of parameters), modified from Tayyab
and Sarkar [12] and Sarkar and Mahapatra [24].

Table 1. Data for numerical experiment.

Parameter Value Parameter Value

n 5 (λ1, λ2, λ3) (460 490 610)

Pi
[810 795 780 765

750] Aic [50 35 65 50 20]

Cic [5 2.5 3 4.2 7] (δ1i, δ2i, δ3i) [0.05 0.10 0.17]
Aie [100 70 130 100 40] Cie [10 5 6 8.4 14]
hc 25 he 135

ZCost 0.60 ZCO2 0.40

4.2. Numerical Solution Procedure

Multi-objective WFGP model is solved with the given data set (Table 1) in the following steps:

Step 1. Find α− positive extreme solution of each objective function by solving them separately and
record the values (Table 2) as their respective aspiration levels (where λ1 = λ2 = λ3 and δ1i = δ2i = δ3i
for the model with constant demand and imperfect proportion).
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Table 2. Aspiration levels of model objectives.

Model Consideration Objective Aspiration Level

Constant demand and
imperfect proportion

fCost ($/unit time) 3453.67
fCO2 (units/ unit time) 7326.03

Fuzzy demand and
imperfect proportion

fCost ($/unit time) 3467.737
fCO2 (units/ unit time) 7318.47

Step 2. Find α− negative extreme solution of each objective function by taking the aspiration level
of each objective as an equality constraint for second objective and record the values (Table 3) as the
form of a pay-off table (POT).

Table 3. Payoff table for multi-objectives.

Model Consideration POT fCost ($/unit time) fCO2
(units/unit time)

Constant demand and
imperfect proportion

fCost ($/unit time) 3453.67 3494.71
fCO2 (units/unit time) 7460.49 7326.03

Fuzzy demand and
imperfect proportion

fCost ($/unit time) 3467.37 3504.92
fCO2 (units/ unit time) 7441.69 7318.47

Step 3. Develop fuzzy membership functions of the satisfaction level (µk) for each objective as
below (for instance, regarding model with fuzzy parameters).

µCost =


0 i f fCost ≥ 3504.92,

3504.92− fCost
3504.92−3467.37 i f 3467.37 < fCost < 3504.92,
1 i f fk ≤ 3467.37,

and

µCO2 =


0 i f fCO2 ≥ 7441.69,

7441.69− fCO2
7441.69−7318.47 i f 7318.47 < fCO2 < 7441.69,
1 i f fCO2 ≤ 7318.47.

Step 4. Decide the importance weight (Zk) for each objective function and develop a WFGP
model as below.

Maximize ZCost × µCost + ZCO2 × µCO2

Subject to 3504.92− fCost
3504.92−3,467.37 = µCost,

7441.69− fCO2
7441.69−7318.47 = µCO2 ,
K
∑

k=1
Zk = 1, ∀k

0 ≤ µk ≤ 1. ∀k

Step 5. Obtain optimal tradeoff solutions of the single-objective model developed in Step 4
through a heuristic approach.

4.3. Computational Results

As the developed WFGP model is a nonlinear maximization problem, a heuristic approach is
required to solve the model. Therefore, interior point optimization is applied using MATLAB R2015a
with system specifications of 4GB RAM and 1.80 GHz processor speed, and the optimal solution for
the model with uncertain information is achieved in 11.54 s. Table 4 and Figure 4 show the optimal
tradeoff values of the conflicting objective functions. Table 5 shows the optimal values of decision
variables in the multi-objective optimization model.
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Table 4. Optimal results of multi-objectives.

Model Consideration Attributes fCost
∗ fCO2

∗

Constant demand and
imperfect proportion

Objective value 3460.20 ($/unit time) 7373.45 (units/unit time)
Satisfaction level 84.09% 64.73%

Fuzzy demand and
imperfect proportion

Objective value 3473.35 ($/unit time) 7361.92 (units/unit time)
Satisfaction level 84.07% 64.74%

Table 5. Optimal decision variable values.

Model Consideration Decision Variable Optimal Value

Constant demand and
imperfect proportion

Q∗Cost (items) 177.15
Q∗CO2

(items) 107.81
Q∗sustainable (items) 145.04

Fuzzy demand and
imperfect proportion

Q∗Cost (items) 194.93
Q∗CO2

(items) 118.63
Q∗sustainable (items) 159.59

4.4. Result Analysis and Discussion

Results indicate a considerate tradeoff between conflicting objectives of the proposed model.
Table 4 verifies that the optimal values of the objective functions lie within the acceptable limits, as
defined in the POT. One can observe that the optimal cost of the model with constant demand
and imperfect proportion is less than the model with fuzzy demand and imperfect proportion.
This variation is due to the fact that the model with fuzzy parameters is handling a wide range
of scattered information by the addition of a certain cost.

4.4.1. Satisfaction Level Achievement

Results indicate that the proposed fuzzy model has successfully achieved 84.07% satisfaction
level for cost objective and 64.74% satisfaction level for CO2 emissions objective as computed below.
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µCost =
3504.92− 3473.35
3504.92− 3467.37

= 84.07%,

and
µCO2 =

7441.69− 7361.92
7441.69− 7318.47

= 64.74%.



Mathematics 2019, 7, 20 13 of 18

One can compute the contribution of an achieved satisfaction level of each conflicting objective
in the proposed multi-objective lean-green multistage manufacturing model as contributionk =

µk
∑
k

µk
,

which indicates that the contribution of µCost and µCO2 are 56.49% and 43.51%, respectively (Figure 5) in
the overall performance of the proposed multi-objective multistage lean-green manufacturing system.
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4.4.2. Effect of Uncertain Environment

Proposed model is analyzed for different instances of uncertain process information by varying
values of fuzzy deviational variables and their effect is studied. Table 6 shows the optimal tradeoff
among model objectives for below levels of uncertainty in the imperfect production proportion of the
manufacturing system.

case 1 : (δ1i, δ2i, δ3i) = (0.05 0.10 0.25),
case 2 : (δ1i, δ2i, δ3i) = (0.10 0.10 0.10),
case 3 : (δ1i, δ2i, δ3i) = (0.00 0.10 0.17).

Table 6. Effect of uncertain information on optimal results.

Case Q∗sustainable fCost fCO2

Case 1 165.58 3473.08 7341.14
Case 2 158.23 3473.31 7366.82
Case 3 156.26 3473.15 7373.96

It can be observed from Table 6 that the uncertainty in information bears a significant degree of
impact on the optimal trade-off value of each objective function in the model.

4.4.3. Sensitivity Analysis

The effects of various cost and CO2 emission parameters on optimal results of the multi-objective
function of the model with uncertain demand and imperfect proportion are studied by varying their
values from −50% to +50%, as shown in Table 7.

Sensitivity analysis of the model shows that the production cost and corresponding CO2 emissions
of the manufacturing system create the highest impact on the total cost and emissions of the system,
respectively. A 50% decrease in the production cost of the system reduces 45.29% of the system cost,
and vice versa. Similarly, a 50% decrease in CO2 emissions of the system during production reduces
42.64% emissions of the system, and vice versa. Variations in the setup cost and inventory carrying cost
have a trivial impact on the system cost. Similar behavior is shown by the variations in CO2 emissions
of the system during the order setup and inventory carrying process. Figures 6 and 7 show the effect of
variations in various key parameters on the cost and CO2 emissions minimization objective as a whole.
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Table 7. Sensitivity analysis for important parameters of numerical experiment.

Change in Parameter(s) (%) Change in TC∗ (%) Change in Parameter(s) (%) Change in TE∗(%)

Aci

−50 −2.78

Aei

−50 −4.34
−25 −1.29 −25 −1.96
+25 +1.17 +25 +1.71
+50 +2.26 +50 +3.34

Cci

−50 −45.29

Cei

−50 −42.64
−25 −22.64 −25 −21.32
+25 +22.64 +25 +21.32
+50 +45.29 +50 +42.64

hc

−50 −2.78

he

−50 −4.34
−25 −1.29 −25 −1.96
+25 +1.17 +25 +1.71
+50 +2.26 +50 +3.34
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4.5. Managerial Insights

Analysis of the results verify that the proposed model has provided a practical approach to achieve
optimal production policy for imperfect multistage lean manufacturing system. Below managerial
insights are inferred from the model analysis:

Insight 1. The proposed study provides a handy tool to the managers and decision-makers
of the imperfect manufacturing process to transform it into lean-green manufacturing system
by reducing excessive inventories and CO2 emissions of the complete multistage manufacturing
process. This improves the effectiveness of the system decisions to attain economic as well as
environmental sustainability.

Insight 2. Uncertainty control analysis indicates that the proposed model is significantly capable
of handling high uncertainty in the parametric information by implementing WFGP approach.
Model has achieved reasonable satisfaction levels of the conflicting objective functions under high
uncertainty. Thus, managers can conclude best possible tradeoffs among corporate objectives
through implementation of this study and can compute sustainable lot size for a sustainable
manufacturing process.

Insight 3. Sensitivity analysis of the system confirms that the impact of setup cost and inventory
carrying cost is same on the total cost of the system. Thus, managers must wisely decide about making
efforts to reduce setup cost or carrying cost first. This can be done by implementing lean strategies
including SMED (single minute exchange of dyes) and FIFO (first-in-first-out) approaches for cutting
down setup cost and inventory carrying costs, respectively.

5. Conclusions

This research work provides an optimal production policy for uncertain process information in a
multistage lean manufacturing process. Market demand information of the product is uncertain in
nature. Imperfect manufacturing process produces defective products at an uncertain rate, which are
reworked to convert them into perfect quality products and reduce wastages. To control this uncertainty
in the market demand and manufacturing process, the decomposition principle and the signed distance
method of fuzzy theory are applied. The manufacturing process is analyzed for its environmental
concerns, and a sustainable lot size is obtained through metaheuristic approach for simultaneous
achievement of economic as well as environmental sustainability. The WFGP approach is applied to
handle the multi-objective model with conflicting objectives for cost and CO2 reductions of the system.
An experimental study is performed to verify the practical implication of the model, and results are
evaluated through an uncertainty control analysis and sensitivity analysis of the important parameters.

Experimental results verify that the proposed model provides a real-world approach to
achieve the optimal production policy for an imperfect multistage lean manufacturing system by
achieving an 84.07% satisfaction level for the cost-minimization objective and 64.74% satisfaction
level for the CO2 emissions objective function. Imperative managerial insights are inferred from
the analysis of the optimal results, which indicate the robustness of the proposed model and its
applicability in the real-world lean-green manufacturing processes. The proposed study can be
extended in several directions. Consideration of controllable production rate of the manufacturing
system [25–27] can be the immediate possible extensions. Other potential extensions may include
planned backlogging [28,29], partial backlogging [30–32], trade credit policies [33,34], random
defective rate [35,36], product deterioration [37], and constrained manufacturing environment [38] in
the production system.
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Nomenclature

Indices
i number of production stages, i = 1, 2, 3 . . . n
j number of production stages, j = 1, 2, 3 . . . (n− 1)
k number of model objectives, k = 1, 2, 3 . . . K
Decision variables
Q∗Cost optimal lot size to achieve minimum system cost (items)
Q∗CO2

optimal lot size to achieve minimum carbon emissions (items)
Q∗sustainable optimal lot size to achieve economic and environmental sustainability (items)
Parameters
Pi production rate of manufacturing stage-i (items/year)
λ̃ customer demand (items/year) (fuzzy number)
β̃i imperfect production proportion at stage-i (fuzzy number)
Aic setup cost of manufacturing stage-i ($/setup)
Cic production cost at manufacturing stage-i ($/item)
hc inventory carrying cost of finished items ($/item/year)
Aie CO2 emissions during setup at stage-i (units/setup)
Cie CO2 emissions during product manufacturing at stage-i (units/item)
he CO2 emissions during inventory carrying of finished items (units/item/year)
Ii average inventory of stage-i (items per unit time)
TC total cost of the system ($/unit time)
TE total CO2 emissions of the system (units/unit time)
Zk importance weight of objective-k for WFGP model
µk satisfaction level of objective-k
δi, λi fuzzy deviational variables

Abbreviations

Below abbreviations are used for the development of this model.
WFGP Weighted fuzzy goal programming
EPQ Economic production quantity
TFN Triangular fuzzy number
TC Total cost
TE Total Emissions
POF Pay-off table
FMF Fuzzy membership function
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