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Abstract: Market conditions fluctuate abruptly in today’s competitive environment and leads to
imprecise demand information. In particular, market demand data for freshly launched products
is highly uncertain. Further, most of the products are generally manufactured through complex
multi-stage production systems that may produce defective items once they enter the out-of-control
state. Production management of a multi-stage production system in these circumstances requires
robust production model to reduce system costs. In this context, this paper introduces an imperfect
multi-stage production model with the consideration of defective proportion in the production
process and uncertain product demand. Fuzzy theory is applied to handle the uncertainty in
demand information and the center of gravity approach is utilized to defuzzify the objective function.
This defuzzified cost objective is solved through the analytical optimization technique and closed form
solution of optimal lot size and minimum cost function are obtained. Model analysis verifies that it
has successfully achieved global optimal results. Numerical experiment comprising of three examples
is conducted and optimal results are analyzed through sensitivity analysis. Results demonstrate that
larger lot sizes are profitable as the system moves towards a higher number of stages. Sensitivity
analysis indicates that the processing cost is the most influencing factor on the system cost function.

Keywords: Lean manufacturing; multi-stage production system; fuzzy demand; imperfect
products; reworking

1. Introduction

Lean manufacturing concepts are becoming rapidly popular in global production industries
subjected to growing market competitions and increased manufacturing costs. Initiated by Toyota’s
engineer Taiichi Ohno, credited with developing the principles of lean production after World War
II; eliminating unwanted activities, empowering workforce, cut down inventories, and improving
productivity are the focused themes of lean philosophy. Unlike Henry Ford, who maintained resources
in expectation of what might be required for future manufacturing, the management team at Toyota
built partnership with suppliers and consequently became made-to-order. Thus, they can easily handle
quick changes, and opposite to what their competitors could, they became able to respond quicker to
market demands.

Highly inflexible and having high volume/low variety products of automatic machinery are
the constraints in the textile industries. Due to this nature of textile industry, implementation of
lean manufacturing is a challenge in this industry. Therefore, value stream mapping, kaizen, 5S,
kanban, poka-yoke, and visual controls are practiced in combination with each other to improve the
textile manufacturing process [1]. Most of the textile manufacturing processes include more than one
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production stages, and among all other concerns, optimum work in process inventory levels and scrap
control are the premier ones. Thus, managers are interested in working out ways to minimize total
system costs through optimal lot sizing in the production system. This builds importance of economic
production quantity model in this sector to escape high inventory levels and cut down production
costs. Figure 1 shows a general multi-stage production flow of an apparel manufacturing industry.
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Since Harris [2] and Taft [3] provided Economic Order Quantity (EOQ) and Economic Production
Quantity (EPQ) formulas, respectively, economic lot size models are broadly developed by the
researchers. Due to their simplicity, these inventory models are used in many applied situations. In the
inventory management research, Lee [4], Gupta and Chakraborty [5], and Tayi and Ballou [6] studied
reprocessing of imperfect items, in which shortages due to reworking were not taken into account
by the last two. Lee et al. [7] and Glock and Jaber [8] provided production models for imperfect
production systems without considering rework opportunity. C.S Lin [9] studied the production
process for its out-of-control state along with raw material resource constraints. Salameh and Jaber [10]
provided an inventory model for imperfect quality items where these items are withdrawn from stock
resulting in lower holding cost per unit time. Their model was extended by Khan et al. [11], and
Jaber et al. [12] considers strategies for handling these imperfect quality items. Ouyang et al. [13] and
Cárdenas-Barrón [14] formulated inventory models in which backordering is allowed and Eroglu and
Ozdemir [15] considered shortages in their studies. Jaber and Guiffrida [16] studied Wright’s learning
curve along with preventive maintenance, and Daya [17] likewise extended the inventory model with
planned maintenance schedules.

Most of the researchers developed inventory models for single-stage imperfect production
systems, where numerous of them focused on analysis of the defective rates. Reworking in single-stage
inventory models with constant defective rates has been established by Jamal et al. [18], Biswas and
Sarker [19], Chung [20], and Taleizadeh et al. [21], in which the latter two included backordering in
their models. Cárdenas-Barrón [22] extended the inventory model provided by Jamal et al. [18] with
the addition of the algebraic solution approach. Ma et al. [23] analyzed imperfect production system
without providing reworking alternatives in their model, and Barzoki et al. [24] presented discounted
sales of non-reworkable items. Other researchers modified inventory model with random-defective
rate in single-stage manufacturing system, where the reworking option was assumed by Chiu et al. [25],
Chiu et al. [26], Noorollahi et al. [27], Haider et al. [28], and Chiu et al. [29] using the renewal reward
theorem. Taleizadeh et al. [30] allowed a backordering alternative along with the rework prospect in
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their inventory model, whereas Chiu et al. [31] and Taleizadeh et al. [32] developed inventory models,
ignoring the reworking facility. Random defect-rate contemplation was further established by Sana [33],
Sarkar and Moon [34], Yoo et al. [35], Chakraborty and Giri [36], Wee et al. [37], Chiu et al. [38], and
Sarkar et al. [39] using a number of other shop-floor conditions.

In real situations, determining the precise value of product demand is very difficult. To deal
with such conditions, managers need to gather demand data from the experts. If, according to
the experts, demand about some randomly chosen quantity is fixed; their opinion is imprecise and
then the expected annual demand is vaguely expressed. This explanation of demand is through
a fuzzy number. As defined by Dang and Hong [40], fuzziness is some parametric property of
the demand captured when its sharp boundaries cannot be determined by the decision makers.
Zadeh [41] introduced fuzzy terminologies in 1978. After him, several researches including Petrovic
and Sweeney [42], Roy and Maiti [43], Yao and Su [44], Chang and Ouyang [45], Mahata and
Goswami [46], and De and Goswami [47] formulated inventory models considering parameters
like demand, total average cost, storage space, and holding cost as fuzzy numbers. Numerous other
researches solved inventory models considering fuzzy demand. Chang and Yeh [48], Sadeghu and
Niaki [49], Lin et al. [50], Cosgun et al. [51], and Sadeghi et al. [52] treated demand as a trapezoidal
fuzzy number in their inventory models. Some other researchers including Rong and Maiti [53],
Zhang et al. [54], Moghaddam [55], and Huang et al. [56] considered demand as a Triangular Fuzzy
Number (TFN). In addition, Taleizadeh et al. [57] presented a multi-constraint EOQ model with
incremental discounts and uncertain item cost under fuzzy environment, and Jana et al. [58] considered
storage space and available budget as fuzzy variables. Das et al. [59] assumed credit period in a supply
chain as a fuzzy number, and Kumar and Goswami [60] developed a production inventory model
under fuzzy shifting time to out-of-control state and fuzzy defective proportion.

In fact, in real situations, production processes are imperfect, thus producing defective items at
a certain rate. That is why many researchers and practitioners have formulated inventory models
expressing different real world circumstances [21–24]. In addition, parametric information of the real
world production systems is not always known with precision [48]. This imprecise data can be random
or uncertain in nature. Probability theory can handle the situations with random information, whereas
the computational methods provided by the fuzzy theory are required to tackle the uncertain conditions.
Several approaches including the signed distance method, min-max approximation, weighted average
method, the center of gravity approach (centroid method), and center of the largest area are available
in the uncertainty control literature to model the uncertain environment. This research work has used
the center of gravity approach to grasp the uncertainty in demand information because of its simplicity
and ease of use.

Vast research has been done on single-stage production system, in which machine breakdowns and
defective proportion are considered as constant, random, and occasionally fuzzy in nature [22,34,60].
Regarding multistage production systems, only a few economic batch quantity models are available
with limited real world production scenarios to provide succor in decision making for the managers
dealing with multi-stage production systems [61,62]. This paper attempts to add in the literature by
formulating an economic lot size model for multi-stage production facility with setup time requirement,
uncertain annual demand rate, and imperfection constraints. The aim of this research work is to initiate
a multi-stage production model by considering a real world shop-floor situation of defective production
and uncertain market conditions regarding demand information.

Literature analysis indicates that no such model exists in the current research stream of the
inventory and production management. This fact provides motivation for the development of
multi-stage production model with the aforementioned attributes. Thus, the novelty of this study is the
introduction of imperfect production proportion at each stage of the multi-stage production system and
imprecise product demand. The objective of the research is to minimize the total cost of the imperfect
multi-stage production system by determining optimal lot size under uncertain environments. Fuzzy
theory is applied to grasp the uncertainty in demand information and analytical optimization technique
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is applied to obtain global optimum results of the model. The model is analyzed through sensitivity
analysis and significant conclusions are obtained that verifies the substantial contribution of the
proposed model in the inventory research literature.

Framework of the paper is as follows: The mathematical model is developed in Section 2. Section 3
provides experimental study and optimal results. Section 4 presents discussion and analysis of the
proposed production model. Finally, in Section 5, concluding remarks and future research directions
of this paper are discussed.

2. Materials and Methods

This research work studies an n-stage imperfect production system where defective items are
produced along with the perfect quality items. These defective items are reworked at an additional
processing cost, and product demand is fulfilled at the nth production stage. Figures 2 and 3 show
inventory behavior of production stage-k and production stage-n, respectively. The objective of the
model is to minimize the total system cost by determining optimal lot size.

2.1. Assumptions

Following assumptions are considered in the development of multi-stage production model.

1. A single type of item is produced in an n-stage production system.
2. Production runs are fairly consistent, i.e., system is assumed to be a lean manufacturing system

where inventory behavior follows a similar trend in repetitive production cycles.
3. Uncertain product demand is measured as a Triangular Fuzzy Number (TFN).
4. Inline inspections provides effective results, determines the defective items immediately, and

helps the managers to make immediate decisions over it. This model assumes that defective
items are detected during the hundred percent inline inspection.

5. In textile industries, defective items are generally reworked. This model assumes reworking of
defective items at each production stage. The reworking process is considered as perfect and no
item is scrapped.

6. Defective rate is constant at each production stage, but it may vary from stage to stage.
7. Setup time of each production stage is ρ percent of the total time of that production stage.
8. Transportation time and cost among the production stages is assumed to be negligible.

2.2. Model Formulation

Keeping in view the above-mentioned assumptions, a mathematical model is formulated.
Figure 2 shows the inventory behavior of kth production stage. Maximum inventory level (I3k) of

the kth production stage (k = 1, 2, 3, . . . , n− 1) is computed as I3k = I1k + I2k, where I1k is the inventory
level after production phase and I2k is the inventory level after reworking phase.

Production time of stage-k is T1k = Q
Pk

, and its reworking time is T2k = Qαk
Pk

. It is obvious from

triangle abc in Figure 2, that tan ω1 = I1k
T1k

, which gives I1k = Q(1− αk). Similarly, from triangle bef, one

can observe that tan ω2 = I2k
T2k

, which provides I2k = Qαk. From above the maximum inventory level

of kth production stage is obtained as I3k = Q.
Total inventory of kth production stage is the sum of the triangular areas abc, bcd, and bdf (Figure 2).

One can simply compute these areas and the total inventory of kth production stage is now formulated as:

Ik =
Q2

2Pk
(1 + αk − αk

2) (1)

Total production time of stage-k can be obtained by the sum Tk = Tsk + T1k + T2k, where the setup
time of stage-k, Tsk = ρ(T1k + T2k). Total time of stage-k (Tk) is obtained as:
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Tk =
Q
Pk

(1 + ρ)(1 + αk) (2)
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Applying similar method for production stage-n (Figure 3), one can simply obtain production time
T1n = Q

Pn
, reworking time T2n = Qαn

Pn
, pure consumption time TD = Q

D

(
1− D

Pn
(1 + αn)

)
, inventory

level after production phase I1n = Q
(

1− αn − D
Pn

)
, and inventory level after reworking phase as

I2n = Qαn

(
1− D

Pn

)
for production stage-n. Finally, maximum inventory level of stage-n is computed

as Imax(n) = Q
(

1− D
Pn
(1 + αn)

)
.
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Proceeding towards determination of total inventory level of finished items (I), we have

I =
Q2

2D

(
1− D

Pn
(1 + αn + αn

2)

)
(3)
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Total time of production stage-n is obtained as

Tn = (1 + ρ)
Q
D

(4)

Total time of the complete production system can be determined by the sum T =
n−1
∑

k=1
Tk + Tn, and

is given by

T =
Q(1 + ρ)

D

(
1 + D

n−1

∑
k=1

(
1 + αk

Pk

))
(5)

Average inventory level of the finished items (I) in the system is calculated as I = I
T ,

which provides

I =
Q
(

Pn − D
(
1 + αn + αn

2))
2Pn(1 + ρ)

(
1 + D ∑n−1

k=1

(
1+αk

Pk

)) (6)

Total cost of the system by considering setup cost, order processing cost, inspection cost, and
inventory holding cost is formulated as follows:

Setup cost (KS) ($K/lot/stage)

Setup cost is a major part of the total cost in a production system. It is required to be incurred
prior to the production of every lot. For an n-stage production system, the total setup cost is

Ks =
n

∑
i=1

Ki (7)

Order processing cost (KP) ($C/item/stage)

Order processing cost and reworking cost are considered as the same in this model. The total
order processing cost is the sum of processing cost of good items as well as the reworking cost of
defective items:

KP = Q
n

∑
i=1

Ci(1 + αi) (8)

Inspection cost (KI) ($J/item/stage)

Inspection cost is incurred on both good quality items as well as on reworked items and is
assumed to be the same. Total inspection cost:

KI = Q
n

∑
i=1

Ji(1 + αi) (9)

Inventory holding cost (KC) ($H/item/year)

Under linear assumptions, total inventory holding cost is proportional to the holding cost of
average inventory of finished items in the cycle as

KC = HI = H
Q
(

Pn − D
(
1 + αn + αn

2))
2Pn(1 + ρ)

(
1 + D ∑n−1

k=1

(
1+αk

Pk

)) (10)

Total system cost function by considering aforementioned cost components is given by

TC(Q) =

n
∑

i=1
Ki + Q

n
∑

i=1
Ci(1 + αi) + Q

n
∑

i=1
Ji(1 + αi)

Q(1+ρ)
D

(
1 + D

n−1
∑

k=1

(
1+αk

Pk

)) + H
Q
(

Pn − D
(
1 + αn + αn

2))
2Pn(1 + ρ)

(
1 + D ∑n−1

k=1

(
1+αk

Pk

)) (11)
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and after some simplifications

TC(Q) =

(
Q2(HPn − DH(1 + αn + αn

2)
)
+ 2DPn

n
∑

i=1
Ki + 2DQPn

(
n
∑

i=1
Ci(1 + αi) +

n
∑

i=1
Ji(1 + αi)

))
2QPn(1 + ρ)

(
1 + D

n−1
∑

k=1

(
1 + αk

Pk

)) (12)

Cárdenas-Barrón [14] viewed annual demand as a constant parameter. However, in several real
world scenarios, some uncertainties may alter annual demand slightly. Thus, annual demand may
be considered as a fuzzy number. To replace the annual demand D by a fuzzy number D̃, consider
the fuzzy number D̃ as a TFN D̃ = (D− ∆1, D, D + ∆2), where 0 < ∆1 < D and 0 < ∆2 as shown in
Figure 4. The Fuzzy Membership Function (FMF) of D̃ is formulated as

µD̃(x) =


x−D+∆1

∆1
i f D− ∆1 ≤ x ≤ D

D+∆2−x
∆2

i f D ≤ x ≤ D + ∆2

0 otherwise .

The centroid of µD̃(x) is given by D∗ = D + 1
3 (∆2 − ∆1). This result is considered to obtain

the annual demand in fuzzy sense. For any T > 0, let TC(Q) (x) = y(> 0). Using the extension
principle of Kaufmann and Gupta [63] and Zimmermann [64], the membership function of the fuzzy
cost TC(Q)(D̃) is formulated as

µTC(Q)D̃(y) =

{
supxεTC(Q)−1(y)µ(D̃)(x) i f TC(Q)−1(y) 6= ∅
0 i f TC(Q)−1(y) = ∅

.
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From TC(Q) (x) = y and the system cost function, we obtain

y =

(
Q2(HPn − DH(1 + αn + αn

2)
)
+ 2DPn

n
∑

i=1
Ki + 2DQPn

(
n
∑

i=1
Ci(1 + αi) +

n
∑

i=1
Ji(1 + αi)

))
2QPn(1 + ρ)

(
1 + D

n−1
∑

k=1

(
1+αk

Pk

)) (13)

For simplification purpose, let us assume
B = HPn,
F = H

(
1 + αn + αn

2),
L = 2Pn

n
∑

i=1
Ki,
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G = 2Pn

(
n
∑

i=1
Ci(1 + αi) +

n
∑

i=1
Ji(1 + αi)

)
,

M = 2Pn(1 + ρ),
and

R = 2Pn(1 + ρ)
n−1
∑

k=1

(
1+αk

Pk

)
.

This provides

y =
BQ2 + D(L + Q(G− FQ))

Q(M + DR)
(14)

and

x =
Q(BQ−My)

FQ2 + QRy− L− GQ
(15)

From the standard triangular FMF and values of x and y, the FMF of TC(Q)(D̃) is given by

µTC(Q)D̃(y) =


Q(BQ−My)

(FQ2+QRy−L−GQ)∆1
− D−∆1

∆1
i f y1 ≤ y ≤ y2

D+∆2
∆2
− Q(BQ−My)

(FQ2+QRy−L−GQ)∆2
i f y2 ≤ y ≤ y3

.

Figure 5 represents the FMF of TC(Q)(D̃).
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Now centroid of µTC(Q)D̃(y) is formulated as

TC(Q) =

∫ ∞
−∞

[
yµTC(Q)D̃(y)

]
dy∫ ∞

−∞

[
µTC(Q)D̃(y)

]
dy

(16)

After defuzzification, crisp total cost function becomes

TC(Q) =

(
BQ2+D(L+Q(G−FQ))

M+DR + BQ2+(L+Q(G−FQ))(D−∆1)
M+R(D−∆1)

+ BQ2+(L+Q(G−FQ))(D+∆2)
M+R(D+∆2)

)
3Q

(17)

As lot size Q is a decision variable, we differentiate the cost function (17) with respect to Q. Thus,
from the necessary conditions, we have
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d(TC)
dQ =


∆1


(M + DR)

(
L(M + 3DR) + Q2

(
FM− 2BR
+3DFR

))

+R

(
L(2M + 3DR) + Q2

(
2FM− BR
+3DFR

))
∆2


−(M+DR)


3
(
−BQ2 + D

(
L + FQ2))(M + DR)

+

(
L(M + 3DR)

+Q2(FM− 2BR + 3DFR)

)
∆2




3Q2(M+DR)(M+DR−R∆1)(M+DR+R∆2)

= 0 (18)

After some simplification, Equation (18) can be written in standard quadratic form as

d(TC)
dQ =


L(−(M + dR)(3d(M + dR) + (M + 3dR)∆2) + ∆1((M + dR)(M + 3dR) + R(2M + 3dR)∆2))

+Q2(∆1((M + dR)(FM− 2BR + 3dFR) + R(2FM− BR + 3dFR)∆2) + (M + dR) (3(B− dF)(M + dR)
+(2BR− F(M + 3dR))∆2))


3Q2(M+dR)(M+dR−R∆1)(M+dR+R∆2)

= 0 (19)

Quadratic equation (19) provide two roots, one is negative and the other is positive. It is a
well-known fact that quadratic equation has only one positive root. Thus, the two solutions for the
optimal lot size are obtained as below

Q∗ = ±

√√√√√√√√
 L((M+DR)(3D(M+DR)+(M+3DR)∆2)−∆1((M+DR)(M+3DR)+R∆2(2M+3DR)))∆1

 (M + DR)(FM− 2BR + 3DFR)+
R∆2(2FM− BR + 3DFR)

+(M+DR)

 3(B− DF)(M + DR)
+(2BR− F(M + 3DR))∆2




Negative root seems quite impossible candidate solution for optimal lot size problem, and is thus

discarded. The positive root is taken as the optimal lot size Q∗,

Q∗ =

√√√√√√√√√
 L((M + DR)(3D(M + DR) + (M + 3DR)∆2)− ∆1((M + DR)(M + 3DR) + R∆2(2M + 3DR)))(

∆1

(
(M + DR)(FM− 2BR + 3DFR)+

R∆2(2FM− BR + 3DFR)

)
+ (M + DR)

(
3(B− DF)(M + DR)

+(2BR− F(M + 3DR))∆2

))
 (20)

To satisfy sufficient conditions,

d2(TC)

(dQ)2 =
2L
(

3 + M
(
− 1

M+DR −
1

M+DR−R∆1
− 1

M+DR+R∆2

))
3Q3R

> 0 (21)

As the solution to the above expression is positive, the sufficient condition is also satisfied. Thus
the system cost attains minimum value in the interval (0, T) for Q*.

3. Numerical Experiment and Results

This section analyzes the impact of various numerical values of parameters on the optimal cost of
the system by taking appropriate units. Three numerical experiments are carried out for a five-stage
production system (n = 5).

3.1. Example 1

Parameters Ki = $100/stage, D = 50,000 items/year, Pn = 200,000 items/year, H = $5/item/
year, and ρ = 2.00% per stage are taken from Wee et al. [37] and Biswas and Sarker [19]. Parameters
αi = 1.00% for each stage, Ci = $3/item for each stage, Ji = $0.02/item for each stage, Pn−1 =

210,000 items/year, Pn−2 = 220,500 items/year, Pn−3 = 231,525 items/year, Pn−4 = 243,102 items/year,
and ∆1 = 8000, and ∆2 = 12,000 are considered randomly.
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3.2. Example 2

Numerical values of the parameters in this example are taken from Tayyab and Sarkar [61] as
Ki = $400/stage, D = 15,000 items/year, Pn = 70,000 items/year, H = $4/item/year, ρ = 2.00%
per stage, Ci = $35/item for each stage, Ji = $1/item for each stage, Pn−1 = 73,500 items/year,
Pn−2 = 77,175 items/year, Pn−3 = 81,033 items/year, Pn−4 = 85,085 items/year, and αi = 1.00%
for each production stage is the same as in Example 1. Parameters ∆1 = 3000 and ∆2 = 4000 are
considered randomly.

3.3. Example 3

Numerical values of the parameters in this example are taken from Tayyab and Sarkar [61] as
Ki = $200/stage, D = 12,000 items/year, Pn = 60,000 items/year, H = $20/item/year, ρ = 2.00%
per stage, Ci = $100/item for each stage, Ji = $0.5/item for each stage, Pn−1 = 63,000 items/year,
Pn−2 = 66,150 items/year, Pn−3 = 69,457 items/year, Pn−4 = 72,930 items/year, and αi = 1.00% for
each production stage is same as in Example 1 and 2. Parameters ∆1 = 2000 and ∆2 = 3000 are
considered randomly.

Optimal results of the above numerical examples are provided in Table 1.

Table 1. Optimal results of the numerical experiments.

Production Stages
Example 1 Example 2 Example 3

Q* (items) TC* ($) Q* (items) TC* ($) Q* (items) TC* ($)

Single-stage 1664.93 159,552 1984.44 552,648 557.94 1,236,016
Two-stage 2346.56 252,080 2795.5 905,477 786.79 2,051,893

Three-stage 2867.7 316,070 3414.82 1,160,906 961.72 2,652,656
Four-stage 3306.35 364,808 3935.67 1,360,773 1108.92 3,127,405
Five-stage 3692.53 404,441 4393.98 1,525,950 1238.47 3,522,058

4. Discussion

Decision makers of the multi-stage production systems can get the advantage of the proposed
production model to reduce system cost in the presence of defective production and imprecise
information. The proposed production model has provided global optimal results for lot size decision
to achieve the minimum cost of the multi-stage production system. The detailed procedure of fuzzy
theory application provided for uncertainty control can enable the managers and decision-makers to
conveniently address the uncertain conditions of respective shop-floors. Each numerical example is
solved for five-stage production systems and results are summarized in Table 1. Figures 6–8 illustrate
the convexity of minimum cost objective in each case, which verifies the robustness of the model.
Optimal results indicate that the larger lot sizes provide more benefit to the production systems
comprising of higher number of stages. For instance, in Example 3, optimal lot size for single-stage
production system is 557.94 items and 1238.47 items for five-stage production system. Consistency in
the obtained results assures that this research work has achieved the desired goal of analyzing product
imperfection and imprecise information in multi-stage production modeling.
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Optimal results are further evaluated for the possible variations in key parameters of the given
examples. The effect of key parameters on the optimal cost function for up-to five-stage production
system is summarized in Tables 2–4 for Example 1 to Example 3, respectively. The values of the
parameters are varied from −50% to +50%.

1. It is evident from the change in optimal cost function that the order processing cost (Ci) is the
most sensitive factor than other parameters. One can observe that with each percentage increase
in Ci there exists almost similar amount of percentage increase in the system cost. For instance,
regarding four-stage production system in Example 2, system cost increases by 24.17% by the
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increment of 25% in order of processing cost, and 48.34% increase in system cost is observed by a
50% rise in the order of processing cost.

2. Next to the effect of order processing cost is the impact of production rate (Pi) on the system cost.
It can be noted that the effect of production rate on the production system with higher number of
stages is more than the system with a lower number of production stages. This illustrates the
necessity of wisely adjusting production rate at each production stage to keep the system cost at
its minimum value.

3. An interesting observation from the sensitivity analysis of all the numerical examples reveal that
the impact of setup cost (Ki) and the inventory holding cost (H) is same on the system cost for
all the production systems with any number of stages. Thus, the decision makers have to make
intelligent decision in putting efforts to reduce one of these costs first. Here arises the importance
of lean philosophy, as Single Minute Exchange of Dyes (SMED) is the best possible solution for
setup cost reduction. Therefore, managers should make efforts to apply SMED for setup cost
reduction first, as it is much more beneficial than cutting down stock management equipment
and inventory holding staff.

4. Inspection cost (Ji) and defective proportion (αi) bear trivial impact on the system cost that
gradually varies as the system moves towards a higher number of stages.

The sensitivity analysis provides important inferences for the managers to develop optimal
policies that can achieve the best outcomes at their shop floors.

Table 2. Sensitivity analysis of key parameters for Example 1.

Parameters Change (%)
Percentage Change in TC(Q)*

Single-Stage
Process

Two-Stage
Process

Three-Stage
Process

Four-Stage
Process

Five-Stage
Process

Pi

−50 −0.73 −17.09 −24.92 −29.53 −32.57
−25 −0.23 −6.41 −9.94 −12.24 −13.85
+25 +0.13 +4.27 +7.09 +9.13 +10.67
+50 +0.21 +7.33 +12.40 +16.20 +19.15

Ki

−50 −1.11 −0.80 −0.65 −0.57 −0.51
−25 −0.51 −0.36 −0.30 −0.26 −0.23
+25 +0.45 +0.32 +0.26 +0.23 +0.21
+50 +0.85 +0.61 +0.50 +0.44 +0.39

Ci

−50 −47.79 −48.32 −48.56 −48.70 −48.80
−25 −23.89 −24.16 −24.28 −24.35 −24.40
+25 +23.89 +24.16 +24.28 +24.35 +24.40
+50 +47.79 +48.32 +48.56 +48.70 +48.80

Ji

−50 −0.32 −0.32 −0.32 −0.32 −0.33
−25 −0.16 −0.16 −0.16 −0.16 −0.16
+25 +0.16 +0.16 +0.16 +0.16 +0.16
+50 +0.32 +0.32 +0.32 +0.32 +0.33

H

−50 −1.11 −0.80 −0.65 −0.57 −0.51
−25 −0.51 −0.36 −0.30 −0.26 −0.23
+25 +0.45 +0.32 +0.26 +0.23 +0.21
+50 +0.85 +0.61 +0.50 +0.44 +0.39

αi

−50 −0.47 −0.38 −0.32 −0.28 −0.25
−25 −0.24 −0.19 −0.16 −0.14 −0.12
+25 +0.24 +0.19 +0.16 +0.14 +0.12
+50 +0.47 +0.38 +0.32 +0.28 +0.25
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Table 3. Sensitivity analysis of key parameters for Example 2.

Parameters Change (%)
Percentage Change in TC(Q)*

Single-Stage
Process

Two-Stage
Process

Three-Stage
Process

Four-Stage
Process

Five-Stage
Process

Pi

−50 −0.17 −15.12 −22.75 −27.42 −30.57
−25 −0.05 −5.61 −8.95 −11.20 −12.81
+25 +0.03 +3.70 +6.28 +8.20 +9.69
+50 +0.05 +6.33 +10.94 +14.48 +17.28

Ki

−50 −0.32 −0.23 −0.19 −0.16 −0.15
−25 −0.15 −0.10 −0.09 −0.07 −0.07
+25 +0.13 +0.09 +0.08 +0.07 +0.06
+50 +0.25 +0.18 +0.14 +0.12 +0.11

Ci

−50 −48.08 −48.23 −48.30 −48.34 −48.37
−25 −24.04 −24.12 −24.15 −24.17 −24.18
+25 +24.04 +24.12 +24.15 +24.17 +24.18
+50 +48.08 +48.23 +48.30 +48.34 +48.37

Ji

−50 −1.37 −1.38 −1.38 −1.38 −1.38
−25 −0.69 −0.69 −0.69 −0.69 −0.69
+25 +0.69 +0.69 +0.69 +0.69 +0.69
+50 +1.37 +1.38 +1.38 +1.38 +1.38

H

−50 −0.32 −0.23 −0.19 −0.16 −0.15
−25 −0.15 −0.10 −0.09 −0.07 −0.07
+25 +0.13 +0.09 +0.08 +0.07 +0.06
+50 +0.25 +0.18 +0.14 +0.12 +0.11

αi

−50 −0.49 −0.40 −0.35 −0.31 −0.27
−25 −0.24 −0.20 −0.17 −0.15 −0.14
+25 +0.24 +0.20 +0.17 +0.15 +0.14
+50 +0.49 +0.40 +0.35 +0.30 +0.27

Table 4. Sensitivity analysis of key parameters for Example 3.

Parameters Change (%)
Percentage Change in TC(Q)*

Single-Stage
Process

Two-Stage
Process

Three-Stage
Process

Four-Stage
Process

Five-Stage
Process

Pi

−50 −0.10 −14.38 −21.92 −26.61 −29.80
−25 −0.03 −5.31 −8.57 −10.79 −12.41
+25 +0.02 +3.48 +5.97 +7.84 +9.31
+50 +0.03 +5.95 +10.37 +13.80 +16.55

Ki

−50 −0.21 −0.15 −0.12 −0.10 −0.09
−25 −0.09 −0.07 −0.05 −0.05 −0.04
+25 +0.08 +0.06 +0.05 +0.04 +0.04
+50 +0.16 +0.11 +0.09 +0.08 +0.07

Ci

−50 −49.40 −49.50 −49.55 −49.58 −49.59
−25 −24.70 −24.75 −24.77 −24.79 −24.80
+25 +24.70 +24.75 +24.77 +24.79 +24.80
+50 +49.40 +49.50 +49.55 +49.58 +49.59

Ji

−50 −0.25 −0.25 −0.25 −0.25 −0.25
−25 −0.12 −0.12 −0.12 −0.12 −0.12
+25 +0.12 +0.12 +0.12 +0.12 +0.12
+50 +0.25 +0.25 +0.25 +0.25 +0.25

H

−50 −0.21 −0.15 −0.12 −0.10 −0.09
−25 −0.09 −0.07 −0.05 −0.05 −0.04
+25 +0.08 +0.06 +0.05 +0.04 +0.04
+50 +0.16 +0.11 +0.09 +0.08 +0.07
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Table 4. Cont.

Parameters Change (%)
Percentage Change in TC(Q)*

Single-Stage
Process

Two-Stage
Process

Three-Stage
Process

Four-Stage
Process

Five-Stage
Process

αi

−50 −0.49 −0.41 −0.35 −0.31 −0.28
−25 −0.25 −0.20 −0.18 −0.16 −0.14
+25 +0.25 +0.20 +0.18 +0.16 +0.14
+50 +0.49 +0.41 +0.35 +0.31 +0.28

5. Conclusions

Agreeing to lean philosophy, high inventory levels are considered as one of the major non-value
added aspect of the production system. For true implementation of lean culture, inventory as a form
of non-value added activity should be reduced to its minimum. Therefore, there must be a defined
optimal lot size in accordance with the input requirements of each production stage at minimum system
cost. Cárdenas-Barrón [14] provided interpretation of considering defective rate in his inventory model
to achieve optimal cost at the single-stage production facility. This inference is carried forward in this
paper for its implication on a multi-stage production system.

This study is made-up to support production and planning managers, especially in the textile
production sector where defective production and uncertain product demand are faced. It introduces
an imperfect multi-stage production model with the consideration of defective proportion in the
production process and uncertain product demand. Thus, the novelty of this study is the introduction
of imperfect production proportion at each stage of the multi-stage production system and imprecise
product demand. Fuzzy theory is applied to handle the uncertainty in demand information and center
of gravity approach is utilized to defuzzify the objective function. This defuzzified cost objective is
solved through the analytical optimization technique and closed form solution of the optimal lot size
is obtained.

Numerical experiment comprising of three examples is conducted and optimal results are
analyzed through sensitivity analysis. Optimal results indicate that as the number of stages increase,
lots of larger sizes are cost effective. Sensitivity analysis indicates that the order processing cost bears
the highest effect on the system cost and its effect increases slightly as the system moves towards
higher number of stages. Creditably, this study can work as an elementary support in implementing
lean culture in the production system. Analysis of the model illustrates the major advantage of this
study by highlighting the importance of lean activities to reduce the system cost, as the results suggest
application of SMED for setup cost reduction in the multi-stage production system prior to making
efforts for inventory holding cost reduction.

Despite various benefits, this study has some limitations. It has considered constant defective
proportion in the production system, whereas defective rate becomes imprecise in long run production
processes. Secondly, the proposed model has incorporated a perfect reworking opportunity that
is very rare in the real life production systems, as defective products are also produced during
reworking. The analysis of the results state that the effect of order processing cost on the total system
cost is highest among all other system parameters. However, this study has not provided order
processing cost reduction policy to minimize system cost for future runs. Further, the model can be
extended with several ideas including consideration of shortages backordered [39,65,66], variable
production rate [67–69], trade credit policies [70,71], allocation problem [72,73], and different rework
options [19]. The immediate possible extension to this paper can be the incorporation of uncertain
defective rate [61,62].
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Nomenclature

Indices
k production stages (k = 1, 2, 3 . . . (n − 1))
i production stages (i = 1, 2, 3 . . . n)
Decision variable
Q lot size (items)
Parameters
n number of production stages
Pk production rate for kth production stage (items per unit time)
Pn production rate for nth production stage (items per unit time, where Pk > Pn > D)
D̃ demand rate (fuzzy, and fulfilled at nth production stage)
αk defective proportion at kth production stage
αn defective proportion at nth production stage
Tk cycle time of kth production stage (years)
Tn cycle time of nth production stage (years)
T time between production runs (total cycle time of n-stages, years)
Ki setup cost of ith production stage ($/setup)
H inventory holding cost of finished items ($/item/year)
Ci order processing cost at ith production stage ($/item/stage)
Ji inspection cost at ith production stage ($/item/stage)
ρ percentage setup time per stage
I average inventory of finished items in the system
TC(Q) total cost of the production system ($ per unit time)

Abbreviations

Below enlisted abbreviations are used for the multi-stage production model development in this research work.
EOQ Economic order quantity
EPQ Economic production quantity
TFN Triangular fuzzy number
FMF Fuzzy membership function
SMED Single minute exchange of dyes
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