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Abstract: Arumugam and Mathew [Discret. Math. 2012, 312, 1584–1590] introduced the notion of
fractional metric dimension of a connected graph. In this paper, a combinatorial technique is devised
to compute it. In addition, using this technique the fractional metric dimension of the generalized
Jahangir graph Jm,k is computed for k ≥ 0 and m = 5.
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1. Introduction and Preliminaries

In this paper, G = (V(G), E(G)) is a finite, undirected, connected and simple graph of order
|V(G)| and size |E(G)|. For any two vertices u, v ∈ V(G), the distance d(u, v) is the length of a shortest
path u ∼ v in G. For graph theoretic terminology, we refer to [1–3].

An ordered set of vertices, we mean a set W = {w1, w2, . . . , wk} on which the ordering
(w1, w2, . . . , wk) has been imposed. For an ordered subset W = {w1, w2, . . . , wk} of V(G), we refer to
the k-vector (ordered k-tuple) r(v|W) = (d(v, w1), d(v, w2), . . . , d(v, wk)) as the (metric) representation
of v with respect to W. The set W is called a resolving set for G if r(u|W) = r(v|W) implies that
u = v for all u, v ∈ V(G). Hence, if W is a resolving set of cardinality k for a graph G of order
n, then the set {r(v|W) : v ∈ V(G)} consists of n distinct k-vectors. A vertex x ∈ V(G) is said to
resolve {u, v} ⊆ V(G) in G if d(u, x) 6= d(v, x). The collection of all such x in V(G) is called resolving
neighbourhood of the pair {u, v}, denoted by R{u, v}. Explicitly, R{u, v} = {x ∈ V(G) : d(u, x) 6=
d(v, x)}. Let Vp denote the collection of all (|V(G)|

2 ) pairs of vertices of G. Then for each x ∈ V(G) the
set R{x} = {{u, v} ∈ Vp : d(u, x) 6= d(v, x)} is called resolvent neighbourhood of x.

Definition 1 ([4]). Let G = (V(G), E(G)) be a connected graph of order n. A function f : V(G) → [0, 1]
is called a resolving function (RF) of G if f (R{u, v}) ≥ 1 for any two distinct vertices u, v ∈ V(G),
where f (R{u, v}) = ∑

x∈R{u,v}
f (x). A resolving function g of a graph G is minimal (MRF) if any

function f : V(G) → [0, 1] such that f ≤ g and f (v) 6= g(v) for at least one v ∈ V(G) is not
a resolving function of G. Then, the fractional metric dimension of the graph G is dim f (G) = min{|g| :
g is a minimal resolving function of G}, where |g| = ∑

v∈V(G)
g(v).

In [5,6], Slatter introduced the notion of resolving set of a connected graph under the term locating
set. Harary and Melter in [7], independently discovered these concepts and termed them as the metric
dimension of graph. Resolving sets enjoy their several applications in various areas of computer
sciences such as network discovery and verification [8], robot navigation [9], mastermind game [10],

Mathematics 2019, 7, 100; doi:10.3390/math7010100 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-9620-7692
https://orcid.org/0000-0002-1097-3450
http://www.mdpi.com/2227-7390/7/1/100?type=check_update&version=1
http://dx.doi.org/10.3390/math7010100
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 100 2 of 10

coin weighing problem [11], integer programming [12] and drug discovery [13]. The problem of
finding metric dimension of a graph as an integer programming problem (IPP) has been introduced
by Chartrand et al. [13], and independently by Currie and Oellermann [12]. As a further refinement,
Currie and Oellermann [8] devised the notion of fractional metric dimension as the optimal solution
of the linear relaxation of the IPP. An equivalent formulation for the fractional metric dimension of
a graph has been proposed by Fehr et al. [14] as follows:

Suppose V = {v1, v2, . . . , vn} and Vp = {s1, s2, . . . , s(n
2)
}. Let A = (aij) be the (n

2)×n matrix with
aij = 1 if sivj ∈ E(R(G)) and 0 otherwise, where 1 ≤ i ≤(n

2) and 1 ≤ j ≤ n. The IPP of the metric
dimension is given by;

Minimize f (x1, x2, . . . , xn) = x1 + x2+, . . . ,+xn subject to Ax̄ ≥ 1̄, where x̄ = (x1, x2, . . . , xn)T ,
xi ∈ {0, 1} and 1̄ is the (n

2)×1 column vector with all entries as 1.
The optimal solution of the aforementioned linear programming relaxation, with replacement

xi ∈ {0, 1} by 0 ≤ xi ≤ 1 gives the fractional metric dimension of G, represented by dim f (G).
The optimal solution of the dual of this LPP is referred to as the metric independence number of
G (mi f (G)). Therefore, the duality and weak duality theorem in linear programming implies that
mi(G) ≤ mi f (G) = dim f (G) ≤ dim(G), as discussed by Arumugam and Mathew in [4]. For further
details of the duality and weak duality theorem, we refer to [15].

In [16], Ali et al. introduced the generalized Jahangir graph as follows:

Definition 2. The generalized Jahangir graph Jm,k, for m ≥ 3, k ≥ 1, is a graph on m(k + 1) + 1
vertices i.e., a graph consisting of a cycle Cm(k+1) with one additional vertex which is adjacent to m
vertices of Cm(k+1) at distance k + 1 to each other on Cm(k+1). The vertex set of Jm,k is V(Jm,k) =

{u, u0, u1, ..., um−1}
⋃{v1

i , v2
i , ..., vk

i |i = 0, 1, ..., m− 1} with |V(Jm,k)| = n = m(k + 1) + 1.

The vertices of the generalized Jahangir graph Jm,k can be classified into three different types.
The vertices of degree 2, 3 and m are respectively named as minors, major and center. The generalized
Jahangir graph Jm,k have km minor vertices, m major vertices and one center vertex. In this article,
we have discussed results for m = 5, shown in Figure 1. For k = 1, the generalized Jahangir graph Jm,k
is the Jahangir graph J2m, for m ≥ 4, discussed by Tomescu et al. in [17].
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Figure 1. Generalized Jahangir graph J5,k.

Arumugam and Mathew [4] formally introduced the notion of fractional metric dimension
and discussed some fundamental results. The fractional metric dimension of the cartesian product,
hierarchical product, corona product, lexicographic product and comb product of connected graphs,
see [18–21]. YI [22] computed the fractional metric dimension of permutation graphs. Mainly,



Mathematics 2019, 7, 100 3 of 10

Arumugama et al. [4] studied the graphs whose fractional metric dimension graphs equals half
of their orders and Feng et al. [23] investigated the fractional metric dimension of vertex transitive
and distance regular graphs. This motivated us to devise a criterion to compute fractional metric
dimension of those graphs which are neither vertex transitive and distance regular graphs nor their
fractional metric dimension is half of their orders. In particular, the criterion is applied to compute
fractional metric dimension of the generalized Jahangir graph Jm,k for k ≥ 0 and m = 5.

The paper is organized as follows: Section 1 is for introduction and preliminaries and in Section 2,
the resolving neighbourhood of each possible pair of the vertices of the generalized Jahangir graph
Jm,k for k ≥ 0 and m = 5 are obtained. The main results are included in Section 3. Finally, the paper is
concluded with some future prospects in Section 4.

2. Resolving Neighbourhoods of the Generalized Jahangir Graph Jm,k for k ≥ 0 and m = 5

The possible pairs of vertices of the generalized Jahangir graph Jm,k for k ≥ 1 and m = 5 are
majors with majors, major with minors, center with majors, center with minors, and minors with
minors. In this section, the resolving neighbourhoods for each pair of vertices of Jm,k k ≥ 0 and m = 5
are classified.

Lemma 1. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then

|Ri| = |R{vk
i−1, v1

i }| =
{

k + 4 if k ≡ 0 (mod 2)
k + 3 if k ≡ 1 (mod 2).

Moreover, ∪4
i=0Ri = {v1

i , v2
i , ..., vk

i |i = 0, 1, ..., m− 1} and β́ = | ∪4
i=0 Ri| = 5k.

Proof. The resolving neighborhood of {vk
i−1, v1

i } for k ≡ 0 (mod 2) is R{vk
i−1, v1

i } = {v
j
i−1|

k
2 − 1 ≤

j ≤ k}⋃{vj
i |1 ≤ j ≤ k

2 + 2} with |Ri| = k + 4. Similarly, the resolving neighborhood of {vk
i−1, v1

i } for

k ≡ 1 (mod 2) is R{vk
i−1, v1

i } = {v
j
i−1|

k−1
2 ≤ j ≤ k}⋃{vj

i |1 ≤ j ≤ k−1
2 + 2} with |Ri| = k + 3.

Also in both cases, ∪4
i=0Ri = {v1

i , v2
i , ..., vk

i |i = 0, 1, ..., m− 1} and hence β́ = | ∪4
i=0 Ri| = 5k.

In the following lemma resolving neighbourhoods of the center vertex with major vertices in J5,k
are computed.

Lemma 2. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{u, ui}| and
|R{u, ui} ∩ (∪4

i=0Ri)| ≥ |Ri|.

Proof. For k ≡ 0 (mod 2), the resolving neighbourhood R{u, ui} is V(J5,k) − {v
k
2
i−1, v

k
2+1
i } with

|R{u, ui}| = 5k + 4 > k + 4 = |Ri| and R{u, ui} ∩ (∪4
i=0Ri) = ∪4

i=0Ri) − {v
k
2
i−1, v

k
2+1
i }. Therefore,

|R{u, ui} ∩ (∪4
i=0Ri)| = 5k − 2 > |Ri|. Similarly, for k ≡ 1 (mod 2), R{u, ui} = V(J5,k) with

|R{u, ui}| = n > k + 3 = |Ri| and R{u, ui} ∩ (∪4
i=0Ri) = ∪4

i=0Ri). Therefore, |R{u, ui} ∩ (∪4
i=0Ri)| =

5k = |Ri|. This completes the proof.

In the following lemma resolving neighbourhoods of center vertex with minor vertices in J5,k
are computed.

Lemma 3. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{u, vj
i}| and

|R{u, vj
i} ∩ (∪4

i=0Ri)| ≥ |Ri|.
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Proof.

Case 1: (When k ≡ 0 (mod 2))

Since, R{u, v1
i } = V(J5,k)− {vk−t

i−1|0 ≤ t ≤ k
2 − 1}⋃{ui} with |R{u, v1

i }| = 4k + k
2 + 5 > k + 4 =

|Ri| and R{u, v1
i } ∩ (∪4

i=0Ri) = ∪4
i=0Ri − {vk−t

i−1|0 ≤ t ≤ k
2 − 1}. Therefore, |R{u, v1

i } ∩ (∪4
i=0Ri)| =

4k + k
2 .Now for 1 ≤ j ≤ k

2 , the resolving neighbourhood R(u, vj
i) = V(J5,k)− {v

k−4
2

i } with |R{u, vj
i}| =

5k + 5 > k + 4 = |Ri|. Also, R{u, vj
i} ∩ (∪4

i=0Ri) = ∪4
i=0Ri − {v

k−4
2

i } and therefore, |R{u, vj
i} ∩

(∪4
i=0Ri)| = 5k + 5 > |Ri|.

Case 2: (When k ≡ 1 (mod 2))

Since, R{u, v1
i } = V(J5,k)− {vt

i−1|
k+1

2 ≤ t ≤ k}⋃{ui, v
k+3

2
i } with |R{u, v1

i }| = 3k + 3k+1
2 + 3 >

k + 3 = |Ri| and R{u, v1
i } ∩ (∪4

i=0Ri) = ∪4
i=0Ri − {vt

i−1|
k+1

2 ≤ t ≤ k}⋃{v k+3
2

i }. Therefore, |R{u, v1
i } ∩

(∪4
i=0Ri)| = 4k + k−1

2 − 1 > |Ri|. Now for 3 ≤ j ≤ d k
2e& j is odd, the resolving neighbourhood

R(u, vj
i) = V(J5,k)− {v

k+1
2

i , v
k+5

2
i } with |R{u, vj

i}| = 5k + 4 > k + 3 = |Ri|. Also, R{u, vj
i} ∩ (∪

4
i=0Ri) =

∪4
i=0Ri −{v

k+1
2

i , v
k+5

2
i } and therefore, |R{u, vj

i} ∩ (∪
4
i=0Ri)| = 5k− 2 > |Ri|. Finally, for 2 ≤ j ≤ d k

2e & j

is even, R{u, vj
i} = V(J5,k), and the case is easy to see. This completes the proof.

In the following lemma resolving neighbourhoods of the pair of major vertices in J5,k are computed.

Lemma 4. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{ui, ui+p}| and
|R{ui, ui+p} ∩ (∪4

i=0Ri)| ≥ |Ri| for p = 1, 2.

Proof. The symmetry of the generalized Jahangir graph J5,k allows us to discuss only the
following case:

Case 1: (When k ≡ 0 (mod 2) and p = 1)

Since, R{ui, ui+1} = V(J5,k)− {u, ui+2, ui+3, ui+4}
⋃{vr

i+1, vs
i+2, vs

i+3, vt
i+4, | k+4

2 ≤ r ≤ k, 1 ≤ s ≤
k, 1 ≤ t k−2

2 } with |R{ui, ui+1}| = 2(k + 2) > k + 4 = |Ri| and R{ui, ui+1} ∩ (∪4
i=0Ri) = ∪4

i=0Ri −
{vr

i+1, vs
i+2, vs

i+3, vt
i+4, | k+4

2 ≤ r ≤ k, 1 ≤ s ≤ k, 1 ≤ t ≤ k−2
2 }. Therefore, |R{ui, ui+1} ∩ (∪4

i=0Ri)| =
2k + 2 > |Ri|.

Case 2: (When k ≡ 1 (mod 2) and p = 1)

Since, R{ui, ui+1} = V(J5,k)− {u, ui+2, ui+3, ui+4}
⋃{v k+1

2
i , vr

i+1, vs
i+2, vs

i+3, vt
i+4, | k+3

2 ≤ r ≤ k, 1 ≤
s ≤ k, 1 ≤ t ≤ k−1

2 } with |R{ui, ui+1}| = 2(k + 1) > k + 4 = |Ri| and R{ui, ui+1} ∩ (∪4
i=0Ri) =

∪4
i=0Ri − {v

k+1
2

i , vr
i+1, vs

i+2, vs
i+3, vt

i+4, | k+3
2 ≤ r ≤ k, 1 ≤ s ≤ k, 1 ≤ t ≤ k−1

2 }. Therefore, |R{ui, ui+1} ∩
(∪4

i=0Ri)| = 2k > |Ri|.

Case 3: (When k ≡ 0 (mod 2) and p = 2)

Since, R{ui, ui+2} = V(J5,k) − {u, ui+1, ui+3, ui+4}
⋃{vr

i , vs
i+1, vr

i+2, vt
i+3, vs

i+4|
k+4

2 ≤ r ≤ k, 1 ≤
s ≤ k−2

2 , 1 ≤ t ≤ k} with |R{ui, ui+2}| = 2(k + 3) > k + 4 = |Ri| and R{ui, ui+2} ∩ (∪4
i=0Ri) =

∪4
i=0Ri − {vr

i , vs
i+1, vr

i+2, vt
i+3, vs

i+4|
k+4

2 ≤ r ≤ k, 1 ≤ s ≤ k−2
2 , 1 ≤ t ≤ k}. Therefore, |R{ui, ui+2} ∩

(∪4
i=0Ri)| = 2(k + 2) > |Ri|.

Case 4: (When k ≡ 1 (mod 2) and p = 0)

Since, R{ui, ui+2} = V(J5,k) − {u, ui+1, ui+3, ui+4}
⋃{vr

i , vs
i+1, vr

i+2, vt
i+3, vs

i+4|
k+3

2 ≤ r ≤ k, 1 ≤
s ≤ k−1

2 , 1 ≤ t ≤ k} with |R{ui, ui+2}| = 2(k + 2) > k + 4 = |Ri| and R{ui, ui+2} ∩ (∪4
i=0Ri) =

∪4
i=0Ri − {vr

i , vs
i+1, vr

i+2, vt
i+3, vs

i+4|
k+3

2 ≤ r ≤ k, 1 ≤ s ≤ k−1
2 , 1 ≤ t ≤ k}. Therefore, |R{ui, ui+2} ∩

(∪4
i=0Ri)| = 2(k + 1) > |Ri|.
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In the following lemma resolving neighbourhoods of major vertices with minor vertices in J5,k
are computed.

Lemma 5. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{ui, vj
i+p}| and

|R{ui, vj
i+p} ∩ (∪4

i=0Ri)| ≥ |Ri| for p = 0, 1, 2.

Proof.

Case 1: (When k ≡ 0 (mod 2) and p = 0)

For 1 ≤ j ≤ k − 2 , the resolving neighbourhood R{ui, vj
i} = V(J5,k)− {v

j
2
i } and R{ui, vj

i} =

V(J5,k)− {v
k+j+3

2
i } for j is even and odd respectively. Also, |R{ui, vj

i}| = 5k + 5 > k + 4 > |Ri| and

|R{ui, vj
i} ∩ (∪4

i=0Ri)| = 5k − 1 > |Ri|. Now R{ui, vk−1
i } = V(J5,k) − {ui+1, vj

i+1|1 ≤ j ≤ k
2} and

R{ui, vk
i } = V(J5,k)− {v

k
2
i , v

k
2+1
i+1 }, therefore, |R{ui, vk−1

i }| = 9k+10
2 > |Ri|, |R{ui, vk

i }| = 5k + 4 > |Ri|,
|R{ui, vk−1

i } ∩ (∪4
i=0Ri)| = 5k− k

2 > |Ri| and |R{ui, vk
i } ∩ (∪4

i=0Ri)| = 5k− 2 > |Ri|.

Case 2: (When k ≡ 0 (mod 2) and p = 1)

In this case, the resolving neighbourhoods are R{ui, v1
i+1} = V(J5,k)−{v

k
2+1
i , v

k+4
2

i+1}, R{ui, v2
i+1} =

V(J5,k) − {ui, vj
i |

k+4
2 ≤ j ≤ k}, R{ui, vj

i+1}
k−2
j=3 = V(J5,k) − {v

j−2
2

i+1} for even j, R{ui, vj
i+1}

k−2
j=3 =

V(J5,k) − {v
k+j+3

2
i+1 } for odd j, R{ui, vk−1

i } = V(J5,k) − {ui+2, vj
i+2|1 ≤ j ≤ k

2} and R{ui, vk
i } =

V(J5,k)− {v
k
2−1
i+1 , v

k
2+1
i+2 }. Therefore, |R{ui, vj

i+1}
k−2
j=3 | = 5k + 5 > 5k + 4 = |R{ui, v1

i+1}| = |R{ui, vk
i }| >

4k + k
2 + 6 = |R{ui, v2

i+1}| > 4k + k
2 + 5 = |R{ui, vk−1

i }| > k + 4 = |Ri|. Also, |R{ui, vj
i+1}

k−2
j=3 ∩

(∪4
i=0Ri)| = 5k− 1 > 5k− 2 = |R{ui, v1

i+1} ∩ (∪4
i=0Ri)| = |R{ui, vk

i+1} ∩ (∪4
i=0Ri)| > 4k + k

2 + 1 =

|R{ui, v2
i+1} ∩ (∪4

i=0Ri)| > 4k + k
2 = |R{ui, vk−1

i+1 } ∩ (∪4
i=0Ri)| > |Ri|.

Case 3: (When k ≡ 0 (mod 2) and p = 2)

In this case, the resolving neighbourhoods are R{ui, v1
i+2} = V(J5,k)−{v

k
2
i+1, v

k
2+2
i+2 }, R{ui, v2

i+2} =

V(J5,k) − {ui+2, vj
i+1|

k
2 + 1 ≤ j ≤ k}, R{ui, vj

i+2}
k
2
j=3 = V(J5,k) − {v

k+j+3
2

i+2 } for odd j and

R{ui, vj
i+2}

k−2
j=3 = V(J5,k) − {v

j−2
2

i+2} for even j. Therefore, |R{ui, vj
i+2}

k
2
j=3| = 5k + 5 > 5k + 4 =

|R{ui, v1
i+2}| > 4k + k

2 + 5 = |R{ui, v2
i+2}| > k + 4 = |Ri|. Also, |R{ui, vj

i+2}
k
2
j=3 ∩ (∪4

i=0Ri)| =
5k− 1 > 5k− 2 = |R{ui, v1

i+2} ∩ (∪4
i=0Ri)| > 4k + k

2 = |R{ui, v2
i+2} ∩ (∪4

i=0Ri)| > |Ri|.

Case 4: (When k ≡ 1 (mod 2) and p = 0)

In this case, R{ui, vj
i} = V(J5,k) − {v

j
2
i , v

k+j+3
2

i } for even j ∈ {2, . . . , k − 3}, R{ui, vj
i} = V(J5,k)

for odd j ∈ {3, . . . , k − 2} and R{ui, vk−1
i } = V(J5,k) − {ui+1, v

k−1
2

i , vj
i+1|1 ≤ j ≤ k+1

2 }. Therefore,

in each of the above cases |R{ui, vj
i}| = 5k + 4, 5k + 6, 4k + k+7

2 respectively, is greater than |Ri|.
Also each of |R{ui, vj

i}
k−3
j=2 ∩ (∪4

i=0Ri)| = 5k− 2, for even j, |R{ui, vj
i}

k−2
j=3 ∩ (∪4

i=0Ri)| = 5k for odd j

and |R{ui, vk−1
i } ∩ (∪4

i=0Ri)| = 5k− 2 are greater than |Ri| = k + 3.

Case 5: (When k ≡ 1 (mod 2) and p = 1)

In this case, R{ui, vj
i+1} = V(J5,k) for odd j ∈ {1, . . . , k}, R{ui, v2

i+1} = V(J5,k) −

{ui+1, vj
i , v

k+5
2

i+1 |
k+3

2 ≤ j ≤ k}, R{ui, vj
i+1} = V(J5,k) − {v

j−2
2

i+1, v
k+j+3

2
i+1 } for even j ∈ {4, . . . , k − 3}

and R{ui, vk−1
i+1 } = V(J5,k) − {ui+2, v

k−3
2

i+1 , vj
i+2|1 ≤ j ≤ k+1

2 }. Therefore, in each of the above

cases |R{ui, vj
i+1}| = 5k + 6, 4k + k+9

2 , 5k + 4, 4k + k+7
2 respectively, is greater than |Ri| = k + 3.
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Also each of |R{ui, vj
i+1}

2
j=1 ∩ (∪4

i=0Ri)| = 5k, for odd j, |R{ui, vk
i+1} ∩ (∪4

i=0Ri)| = 4k + k−1
2 ,

|R{ui, vj
i+1}

k−2
j=4 ∩ (∪4

i=0Ri)| = 5k− 2 for even j and |R{ui, vk−1
i+1 } ∩ (∪4

i=0Ri)| = 5k + k−3
2 are greater

than |Ri| = k + 3.

Case 6: (When k ≡ 1 (mod 2) and p = 2)

In this case, R{ui, vj
i+2} = V(J5,k) for odd j ∈ {1, . . . , k−1

2 }, R{ui, v2
i+2} = V(J5,k) −

{ui+2, vj
i+1, v

k+5
2

i+2 |
k+1

2 ≤ j ≤ k} and R{ui, vj
i+2} = V(J5,k)− {v

j−2
2

i+2, v
k+j+3

2
i+2 } for even j ∈ {4, . . . , k−1

2 }.
Therefore, in each of the above cases |R{ui, vj

i+2}| = 5k + 6, 4k + k+7
2 and 5k + 4 respectively, is greater

than |Ri| = k + 3. Also each of |R{ui, vj
i+2}

k
j=1 ∩ (∪4

i=0Ri)| = 5k, for odd j, |R{ui, v2
i+2} ∩ (∪4

i=0Ri)| =
4k + k+3

2 and |R{ui, vj
i+1}

k−2
j=4 ∩ (∪4

i=0Ri)| = 5k− 2 for even j are greater than |Ri| = k + 3.

In the following lemma resolving neighbourhoods of each pair of minor vertices in J5,k
are computed.

Lemma 6. Let Jm,k be the generalized Jahangir graph for k ≥ 4 and m = 5. Then |Ri| < |R{vr
i , vj

i+l}| and

|R{vr
i , vj

i+l} ∩ (∪4
i=0Ri)| ≥ |Ri| for l = 0, 1, 2.

Proof.

Case 1: When k ≡ 0 (mod 2):

Case 1.1: For r = 1 and 0 ≤ l ≤ 1

Here, R{v1
i , vk−2

i } = V(J5,k)− {ui+1, vs
i+1|1 ≤ s ≤ k

2}, R{v1
i , vk−1

i } = V(J5,k)− {v
k
2
i , v

k+2
2

i+1} and
R{v1

i , vk
i } = V(J5,k)− {u, ui+2, ui+3, ui+4, vs

i+1, vt
i+2, vt

i+3, vp
i+4, | k+4

2 ≤ s ≤ k, 1 ≤ t ≤ k, 1 ≤ p ≤ k−2
2 }.

Also, |R{v1
i , vk−2

i }| = 9k
2 + 5 > k + 4 = |Ri|, |R{v1

i , vk−1
i }| = 5k + 4 > |Ri| and |R{v1

i , vk
i }| =

2k + 4 > |Ri|. Now |R{v1
i , vk−1

i } ∩ (∪4
i=0Ri)| = 5k− 2 ≥ |R{v1

i , vk−2
i } ∩ (∪4

i=0Ri)| = 9k
2 > |R{v1

i , vk
i } ∩

(∪4
i=0Ri)| = 2k− 6 > |Ri|.

Case 1.2: For r = 1, 0 ≤ l ≤ 2 and 2 + 2d l
2e ≤ j ≤ k− 3

R{v1
i , vj

i+l} = V(J5,k)− {v
k+j+4

2
i+l } for even j and 0 ≤ l ≤ 2, R{v1

i , vj
i} = V(J5,k)− {v

j+1
2

i } for odd j

and R{v1
i , vj

i+l} = V(J5,k)−{v
j−3

2
i+l } for odd j and 1 ≤ l ≤ 2. Also, |R{v1

i , vj
i+l}| = 5k+ 5 > k+ 4 = |Ri|.

Now |R{v1
i , vj

i+l} ∩ (∪4
i=0Ri)| = 5k− 1 > |Ri|.

Case 1.3: For r = 1 and 1 ≤ l ≤ 2

Here, R{v1
i , v1

i+1} = V(J5,k) − {u, ui+1, ui+2, ui+3, ui+4, vs
i+1, vt

i+2, vt
i+3, vp

i+4|
k+6

2 ≤ s ≤
k, 1 ≤ t ≤ k, 1 ≤ p ≤ k−2

2 }, R{v1
i , v1

i+2} = V(J5,k) − {u, ui+1, ui+3, ui+4, vs
i , vt

i+1,

vs
i+2, vp

i+3, vt
i+4|

k+6
2 ≤ s ≤ k, 1 ≤ t ≤ k−2

2 , 1 ≤ p ≤ k}, R{v1
i , v2

i+1} = V(J5,k) − {v
k+4

2
i , v

k+6
2

i+1 |k > 4},

R{v1
i , v2

i+2} = V(J5,k) − {v
k
2
i+1, v

k+6
2

i+2 |k > 4}, R{v1
i , v2

i+1} = V(J5,k) − {ui+2, vk
i , v1

i+2, v2
i+2|k = 4},

R{v1
i , v2

i+2} = V(J5,k) − {ui+3, v2
i+1, v1

i+3, v2
i+3|k = 4},R{v1

i , v3
i+1} = V(J5,k) − {ui+1, vr

i |
k+6

2 ≤ r ≤
k, k > 4}, R{v1

i , v3
i+2} = V(J5,k) − {ui+2, vr

i+1|
k+6

2 ≤ r ≤ k, k > 4}, R{v1
i , v3

i+1} = V(J5,k) −
{ui+1, v3

i+2|k = 4}, R{v1
i , v3

i+2} = V(J5,k) − {ui+2, v1
i+1, v2

i+1, v3
i+3|k = 4}. Also, |R{v1

i , v2
i+l |k >

4}| = |R{v1
i , v3

i+1|k = 4}| = 5k + 4 > |R{v1
i , v2

i+l}k=4| = |R{v1
i , v3

i+2|k = 4}| = 5k + 2 >

|R{v1
i , v3

i+l |k > 4}| = 4k + k
2 + 7 > |R{v1

i , v1
i+2}| = 2k + 8 > |R{v1

i , v1
i+l}| = 2k + 5 > |Ri| = k + 4.

Now |R{v1
i , v3

i+1|k = 4}∩ (∪4
i=0Ri)| = 5k− 1 >, |R{v1

i , v2
i+1|k > 4}∩ (∪4

i=0Ri)| = |R{v1
i , v2

i+2|k >

4} ∩ (∪4
i=0Ri)| = 5k − 2 > |R{v1

i , v2
i+1|k = 4} ∩ (∪4

i=0Ri)| = |R{v1
i , v2

i+2|k = 4} ∩ (∪4
i=0Ri)| =

|R{v1
i , v3

i+2|k = 4} ∩ (∪4
i=0Ri)| = 5k− 3 > |R{v1

i , v3
i+1|k > 4} ∩ (∪4

i=0Ri)| = 9k
2 + 2 > |R{v1

i , v1
i+2} ∩

(∪4
i=0Ri)| = 2k + 6 > |R{v1

i , v1
i+1} ∩ (∪4

i=0Ri)| = 2k + 3 > |Ri| = k + 4. Similarly, it can be done for
2 ≤ r ≤ k.
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Case 2: When k ≡ 1 (mod 2):

The proof is same as of case 1.

3. Fractional Metric Dimension of the Generalized Jahangir Graph Jm,k for k ≥ 0 and m = 5

In this section, the fractional metric dimension of the generalized Jahangir graph Jm,k for k ≥ 0 and
m = 5 is computed. Before achieving the main result a combinatorial criterion to compute fractional
metric dimension of a graph is devised in Lemma 7. The criteria is then used in main theorems of
this section.

Lemma 7. Let R = {Ri, R̄j|i ∈ I &j ∈ J} be the collection of all pair wise resolving sets of G = (V, E) such
that |Ri| = α < |R̄j| and |R̄j ∩ (∪Ri)| ≥ α. Then

dim f (G) =
β

∑
t=1

1
α

,

where, β(G) = | ∪i∈I Ri|.

Proof. Define a function g : V → [0, 1] defined by

g(v) =
{

1
α if v ∈ ∪Ri
0 if v ∈ V −∪Ri.

Then g is indeed a minimal resolving function for G. Since |Ri| = α < |R̄j| and |R̄j ∩ (∪Ri)| ≥ α,
therefore, assigning zero to all v ∈ R̄j − ∪Ri is required to attain minimum possible weight of |g|.
Consequently, zero is assigned to all v ∈ V − ∪Ri. Therefore, computing summation of 1

α over all

v ∈ ∪Ri gives dim f (G) =
β

∑
t=1

1
α

Theorem 1. The fractional metric dimension of the generalized Jahangir graph Jm,k for 0 ≤ k ≤ 3 and m = 5 is

dim f (Jm,k) =



3
2 if k = 0

5
2 if k = 1

15
8 if k = 2

5
2 if k = 3.

Proof.

Case 1: When k = 0;

The resolving neighbourhood of all possible pairs of vertices in V(J5,0) are R{ui, ui+1} =

{ui, ui+1, ui+2, ui+4}, R{ui, ui+2} = {ui, ui+2, ui+3, ui+4} and R{u, ui} = {u, ui, ui+2, ui+3}. Hence,
α = |R{u, v}| = 4 for all u, v ∈ V(J5,0). Also,

⋃4
i=0 R{ui, ui+1}

⋃⋃4
i=0 R{ui, ui+2}

⋃⋃4
i=0 R{u, ui} =

V(J5,0). Therefore, from Lemma 7 dim f (J5,0) = ∑6
i=1

1
4 = 3

2 .

Case 2: When k = 1;

The resolving neighbourhood of any pair of consecutive major vertices ui, ui+1 in V(J5,1) is
R{ui, ui+1} = {ui, ui+1, v1

i−1, v1
i+1} and

⋃4
i=0 R{ui, ui+1} = V(J5,1) − {u0}. It is indeed easy to

see that |R{ui, ui+1}| = 4 ≤ |R{u, v}| and |R{ui, ui+1}| = 4 ≤ |R{u, v} ∩ (∪4
i=0R{ui, ui+1})| for

any pair of vertices u, v in V(J5,1) such that u 6= ui and v 6= ui+1. Therefore, from Lemma 7
dim f (J5,1) = ∑10

i=1
1
4 = 5

2 .
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Case 3: When k = 2;

The resolving neighbourhood of any pair of consecutive major vertices ui, ui+1 in V(J5,2)

is R{ui, ui+1} = {ui, ui+1, v1
i−1, v2

i−1, v1
i , v2

i , v1
i+1, v2

i+1} and the resolving neighbourhood of
the pair of minors v2

i−1, v1
i in V(J5,2) is R{v2

i−1, v1
i } = {ui−1, ui+1, v2

i−2, v1
i−1, v2

i−1, v1
i , v2

i , v1
i+1}.

Also,
⋃{⋃4

i=0 R{ui, ui+1},
⋃4

i=0 R{v2
i−1, v1

i }} = V(J5,1) − {uo}. It is indeed easy to see that
|R{ui, ui+1}| = |R{v2

i−1, v1
i }| = 8 ≤ |R{u, v}| and |R{ui, ui+1}| = |R{v2

i−1, v1
i }| = 4 ≤ |R{u, v} ∩

(
⋃{⋃4

i=0 R{ui, ui+1},
⋃4

i=0 R{v2
i−1, v1

i }})| for any pair of vertices u, v in V(J5,2) such that either u 6= ui

and v 6= ui+1 or u 6= v2
i−1 and v 6= v1

i . Therefore, from Lemma 7 dim f (J5,2) =
15
∑

i=1

1
8 = 15

8 .

Case 4: When k = 3;

The resolving neighbourhood of the pair of minors v2
i−1, v1

i in V(J5,3) is R{v2
i−1, v1

i } =

{v1
i−1, v2

i−1, v3
i−1, v1

i , v2
i , v3

i }. Also,
⋃4

i=0 R{v3
i−1, v1

i } = V(J5,3)− {u, u0, u1, u2, u3, u4}. It is indeed easy
to see that |R{v3

i−1, v1
i }| = 6 ≤ |R{u, v}| and |R{v3

i−1, v1
i }| = 6 ≤ |R{u, v} ∩ (

⋃4
i=0 R{v3

i−1, v1
i })|

for any pair of vertices u, v in V(J5,3) such that u 6= v3
i−1 and v 6= v1

i . Therefore, from Lemma 7

dim f (J5,3) =
15
∑

i=1

1
6 = 5

2 .

Remark 1. In [4], Arumugam and Mathew computed fractional metric dimension of the wheel graph Wn as
3
2 for n = 6. It is to be noted that the graph W6 is a special case of the generalized Jahangir graph Jm,k for
m = 5, k = 0. Also, the fractional dimension dim f (Jm,k) =

3
2 for m = 5, k = 0 computed above is in consensus

with [4].

Theorem 2. The fractional metric dimension of the generalized Jahangir graph Jm,k for k ≥ 4 and m = 5 is

dim f (Jm,k) =


5k

k+4 if k ≡ 0 (mod 2)

5k
k+3 if k ≡ 1 (mod 2).

Proof. In view of Lemma 1,

|Ri| = |R{vk
i−1, v1

i }| =
{

k + 4 if k ≡ 0 (mod 2)
k + 3 if k ≡ 1 (mod 2).

and β́ = | ∪4
i=0 Ri| = 5k. Also from Lemma 2 to Lemma 6 , |R{vk

i−1, v1
i }| ≤ |R{x, y}| for all x, y ∈ V(J5,k)

such that x 6= vk
i−1 and y 6= v1

i . Therefore, from the criteria given in Lemma 7, the fractional metric of
J5,k is given as follows:

dim f (J5,k) =
β

∑
t=1

1
|Ri|

.

Here, β = β́ = 5k. This implies

dim f (J5,k) =
5k

∑
t=1

1
|R{vk

i−1, v1
i }|

.

Hence,

dim f (J5,k) =

{
5k

k+4 if k ≡ 0 (mod 2)
5k

k+3 if k ≡ 1 (mod 2).

This completes the proof.

Theorem 3. The fractional metric dimension of the generalized Jahangir graph Jm,k is 5
2 for m = 5, k = 4 and

25
8 for m = 5, k = 5.
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Proof. Clear from Theorem 2.

4. Conclusions

In this paper, a combinatorial criteria is developed to compute fractional metric dimension of
a connected graph. The criteria is applied to compute fractional metric dimension of the generalized
Jahangir graph Jm,k for k ≥ 0 and m = 5. The problem to investigate the fractional metric dimension of
the generalized Jahangir graph Jm,k for k ≥ 0 and m > 5 is still open.

Author Contributions: J.-B.L. contributed the discussion on problem, validation of results, funding and final
reading, A.K. and M.J. contributed the source of problem, collection of material, analyze and compute the results,
and wrote the paper, and T.R. contributed for discussion on problem, methodology, and prepared the final draft.

Funding: The work was partially supported by the China Postdoctoral Science Foundation under Grant
No. 2017M621579 and the Postdoctoral Science Foundation of Jiangsu Province under Grant No. 1701081B.
Project of Anhui Jianzhu University under Grant No. 2016QD116 and 2017dc03. Anhui Province Key Laboratory
of Intelligent Building & Building Energy Saving.

Acknowledgments: The authors are indebted to all the anonymous referees for their careful reading and valuable
comments to improve the original version of this paper.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of
this paper.

References

1. Chartrand, G.; Lesniak, L. Graphs & Digraphs, 4th ed.; Chapman & Hall, CRC: London, UK, 2005.
2. Gross, J.L.; Yellen, J. Graph Theory and Its Applications, 2nd ed.; Chapman and Hall/CRC: London, UK, 2005.
3. West, D.B. Introduction to Graph Theory; Prentice Hall: Upper Saddle River, NJ, USA, 2001.
4. Arumugam, S.; Mathew, V. The fractional metric dimension of graphs. Discret. Math. 2012, 312, 1584–1590.

[CrossRef]
5. Slater, P.J. Leaves of trees. Congr. Numer. 1975, 14, 549–559.
6. Slater, P.J. Domination and location in acyclic graphs. Networks 1987, 17, 55–64. [CrossRef]
7. Harary, F.; Melter, R.A. On the metric dimension of a graph. ARS Combin. 1976, 2, 191–195.
8. Beerliova, Z.; Eberhard, F.; Erlebach, T.; Hall, A.; Hoffman, M.; Mihalak, M.; Ram, L. Network discovery and

verification. IEEE J. Sel. Areas Commun. 2006, 24, 2168–2181. [CrossRef]
9. Khuller, S.; Raghavachari, B.; Rosenfield, A. Landmarks in graphs. Discret. Appl. Math. 1996, 70, 217–229.

[CrossRef]
10. Chvátal, V. Mastermind. Combinatorica 1983, 3, 325–329. [CrossRef]
11. Shapiro, H.; Soderberg, S. A combinatory detection problem. Am. Math. Mon. 1963, 70, 1066–1070.
12. Currie, J.; Oellermann, O.R. The metric dimension and metric independence of a graph. J. Combin. Math.

Combin. Comput. 2001, 39, 157–167.
13. Chartrand, G.; Eroh, L.; Johnson, M.; Oellermann, O.R. Resolvability in graphs and the metric dimension of

a graph. Discret. Appl. Math. 2000, 105, 99–113. [CrossRef]
14. Fehr, M.; Gosselin, S.; Oellermann, O.R. The metric dimension of Cayley digraphs. Discret. Math. 2006,

306, 31–41. [CrossRef]
15. Bot, R.I.; Grad, S.M.; Wanka, G. Duality in Vector Optimization; Springer: Berlin, Germany, 2009;

ISBN 978-3-642-02885-4.
16. Ali, K.; Baskoro, E.T.; Tomescu, I. On the Ramsey numbers for paths and generalized Jahangir graphs Js,m.

Bull. Math. Soc. Sci. Math. 2008, 51, 177–182.
17. Tomescu, I.; Javaid, I. On the metric dimension of the Jahangir graph. Bull. Math. Soc. Sci. Math. 2007,

50, 371–376.
18. Arumugam, S.; Mathew, V.; Shen, J. On fractional metric dimension of graphs Discrete Mathematics.

Algorithms Appl. 2013, 5, 1–8.
19. Feng, M.; Wang, K. On the metric dimension and fractional metric dimension of the hierarchical product of

graphs. Appl. Anal. Discret. Math. 2013, 7, 302–313. [CrossRef]
20. Feng, M.; Wang, K. On the fractional metric dimension of corona product graphs and lexicographic product

graphs. arXiv 2012, arXiv:1206.1906v1.

http://dx.doi.org/10.1016/j.disc.2011.05.039
http://dx.doi.org/10.1002/net.3230170105
http://dx.doi.org/10.1109/JSAC.2006.884015
http://dx.doi.org/10.1016/0166-218X(95)00106-2
http://dx.doi.org/10.1007/BF02579188
http://dx.doi.org/10.1016/S0166-218X(00)00198-0
http://dx.doi.org/10.1016/j.disc.2005.09.015
http://dx.doi.org/10.2298/AADM130521009F


Mathematics 2019, 7, 100 10 of 10

21. Saputro, S.W.; Fenovcikova, A.S.; Baca, M.; Lascsakova, M. On fractional metric dimension of comb product
graphs. Stat. Optim. Inf. Comput. 2018, 6, 150–158. [CrossRef]

22. Yi, E. The fractional metric dimension of permutation graphs. Acta Math. Sin. 2015, 31, 367–382. [CrossRef]
23. Feng, M.; Lv, B.; Wang, K. On the fractional metric dimension of graphs. Discret. Appl. Math. 2014, 170, 55–63.

[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.19139/soic.v6i1.473
http://dx.doi.org/10.1007/s10114-015-4160-5
http://dx.doi.org/10.1016/j.dam.2014.01.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	Resolving Neighbourhoods of the Generalized Jahangir Graph Jm,k for k0 and m=5
	Fractional Metric Dimension of the Generalized Jahangir Graph Jm,k for k0 and m=5
	Conclusions
	References

