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Abstract: In the usual Riemann integral setting, the Riemann norm or a mesh is adopted for Riemann
sums. In this article, we use the p-norm to define the p-integral and show the equivalences between
the Riemann integral and the p-integral. The p-norm provides an alternative approach to define
the Riemann integral. Based on this norm, we also derive some other equivalences of the Riemann
integral and the p-integral.
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1. Introduction

In this article, only the bounded functions defined on a closed interval [a, b] are considered.
A function f is used to denote a bound function defined on [a, b]. To begin with, the usual settings
of a Riemann integral are listed for comparison. Then, some notations for the preparation of our
settings of the p-integral are introduced. Although the p-norm and the Riemann norm turn out to be
equivalent, the p-norm has many merits in connecting functional analysis and integrals. Since the
p-norm is massively used in functional analysis, by defining an alternative Riemann integral via this
norm, one could further look at the typical the Riemann integral from a new aspect. This might further
extend the Riemann integral to other territories. Defining the p-norm from the beginning and deriving
all the equivalences directly gives us some insightful knowledge between all these equivalences.

1.1. Background

Let P = {P(0), P(1), ..., P(n)} denote a partition of [a, b], in which P(0) = a < P(1) < P(2) <
· · · < P(n) = b. Let |P| denote the length of the partition, in this case n. Let Tag(P) denote the set of
all the tags of P. The usual setting of the Riemann integral is based on the concept of meshes [1]. Firstly,
one defines a Riemann sum corresponding to a partition P of [a, b] and its tags ζP as follows [2,3]:

σ( f , P, ζP) =
|P|

∑
j=1

f (ζP
j ) · ∆P

j ,

where ∆P
j = P(j)− P(j− 1) and ζP

j ∈ [P(j− 1), P(j)]. Then, one defines the mesh of the partition P,

λ(P) = max{∆P
j : j ∈ {1, 2, ..., |P|}.

Moreover, if there exists I ∈ R such that ∀ε > 0 ∃δε > 0 such that for all partition P of [a, b]

λ(P) < δε → ∀ζP ∈ Tag(P)|I − σ( f , P, ζP)| < ε,
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then we say f is Riemann integrable [4] and the integral of f is defined as
∫ b

a f (x)dx = I or

∫ b

a
f (x)dx = lim

λ(P)→0
f (ζP

j ) · ∆P
j .

1.2. Notations

In this article, we use the p−norm (where p > 1) instead of a mesh (or the Riemann norm) to
derive some equivalences of the Riemann integral. Unlike the usual setting that combines partitions
and tags, they are reintroduced via two individual parts: partition vectors and their corresponding
product (tag) spaces. For a (partition) vector ~v = (v0, v1, ..., vn) ∈ Rn+1, we use |~v| to denote the length
of~v, i.e., n in this case and~vj to denote the jth element of~v, i.e., vj in this case. To unify the presentation
of the Riemann integral and the p-integral, some notations are defined beforehand:

• FPV(n)[a, b] denotes the set of all the finite partition vectors of [a, b] whose length is n,
i.e., FPV(n)[a, b] = {~B ∈ Rn+1 : B0 = a < B1 < . . . < Bj < Bj+1 < . . . < Bn = b}. For example,
~B = (1, 1.2, 1.5, 2.2, 2.6, 3) ∈ FPV(5)[1, 3], in which B0 = 1, B1 = 1.2, ..., B5 = 3 and |~B| = 5.

• FPV[a, b] =
∞⋃

n=1

FPV(n)[a, b], i.e., the set of all the finite partitions of [a, b]. Observe that

FPV[a, b] ⊆
∞⋃

n=1

Rn+1.

• ∏[~B] =
|~B|−1

∏
j=0

[Bj, Bj+1]. For example, if ~B = (1, 1.2, 1.5, 2.2, 2.6, 3) ∈ FPV(5)[1, 3],

then (1.1, 1.4, 1.5, 2.4, 2.9) ∈ ∏[~B]. ∏[~B] represents the space where the tags are located, given
a partition ~B of [a, b].

• ∏ FPV[a, b] =
∞

∏
j=1

FPV[a, b]. ∏ FPV[a, b] represents an ordered sequence of finite partition vectors.

• (Riemann norm) 〈〈~B〉〉 := max{Bj+1 − Bj : 0 ≤ j ≤ |~B| − 1}. This is exactly the usual definition of
a mesh.

• (Riemann sum) A f (~B, ~H) :=
|~B|−1

∑
j=0

(Bj+1 − Bj) · f (Hj), where ~Hj ∈ [Bj, Bj+1], where ~H represents

a sequence of tags, i.e., ~H ∈ ∏[~B].

• (p-norm) ‖~B‖p = p

√√√√|~B|−1

∑
j=0
|Bj+1 − Bj|p, where p > 1. For example, if ~B = (1, 2, 4, 7, 10),

then ‖~B‖3 = 3
√
(1 + 23 + 33 + 33) = 3

√
63. By exploiting Minkowski inequality, one could easily

verify ‖ · ‖p is a norm.
• For any δ > 0, define FPV(δ) = {~B ∈ FPV[a, b] : 〈〈~B〉〉 < δ}.
• For any δ > 0, define FPVp(δ) = {~B ∈ FPV[a, b] : ‖~B‖p < δ}.

FPV(δ) collects all the finite partition vectors whose Riemann norms are less than δ, while FPVp(δ)

collects all the finite partition vectors whose p-norms are less than δ. One could easily verify that
FPVp(δ) ( FPV(δ). The equality is obvious not true. For example, if ~B = (0, 0.2, 1, 1.5, 2) and
δ = 1, then ~B ∈ FPV(1), but ~B /∈ FPVp(1). We use the notation ~C = (~C0,~C1,~C2, . . . ,~Cn, . . .) ∈
∏ FPV[a, b] to denote a sequence of partition vectors in FPV[a, b], where each ~Cj ∈ FPV[a, b] and
denotes the (j + 1)th partition vectors in ~C.

Definition 1. [0] = {~C ∈ ∏ FPV[a, b] : lim
j→∞
〈〈~Cj〉〉 = 0}.
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Definition 2. [0]p = {~C ∈ ∏ FPV[a, b] : lim
j→∞
‖~Cj‖p = 0}.

For example, if ~C = (~C0,~C1,~C2, . . . ,~Cn, . . .) = ((a, b), (a, a + 1
2 (b − a), b), (a, a + 1

3 (b − a),
a + 2

3 (b− a), b), . . . , (a, a + 1
n (b− a), a + 2

n (b− a), . . . , a + n−1
n (b− a), b), . . .), then one has

lim
j→∞
〈〈~Cj〉〉 = lim

j→∞

b− a
j + 1

= 0,

and

lim
j→∞
‖~Cj‖p = lim

j→∞

p

√
j ·
(

b− a
j

)p
= 0,

i.e., ~C ∈ [0] and ~C ∈ [0]p. [0] is the set of all the sequences of partitioned vectors whose Riemann
norms converge to 0, while [0]p is the set of all the sequences of partition vectors whose p-norms
converge to 0. Since Riemann norm and p-norm is equivalent, [0] = [0]p.

2. Definitions

To compare the differences between our settings and the usual Riemann integral and to facilitate
our introduction of the p-integral, we rephrase some terminologies regarding the Riemann integral
and have the following definitions.

Definition 3. (Riemann integrable) If there exists s ∈ R such that ∀ε > 0 ∃δε > 0 such that ∀~B ∈ FPV(δε)

and ∀~H ∈ ∏[~B], |A f (~B, ~H)− s| < ε, we say f is Riemann-integrable, denoted by (R)
∫ b

a f = s. Furthermore,
we use R[a, b] to denote the set of all the Riemann-integrable functions defined on [a, b].

Let us define a partial ordering � on FPV[a, b]. For any ~P, ~Q ∈ FPV[a, b], ~P � ~Q if and only if
∀j ∈ {1, 2, ..., |~Q|} ∃k ∈ {1, 2, ..., |~P|} such that ~Q(k) = ~P(j). If ~P � ~Q, we say P is a refinement of ~Q.
Then, we define the set of all the refinements of ~Q by REF(~Q) = {~P ∈ FPV[a, b] : ~P � ~Q}. One could
easily check that ∀δ > 0 and ∀~B ∈ FPV(δ)[REF(~B) ⊆ FPV(δ)].

Definition 4. If there exists s ∈ R such that ∀ε′ > 0 ∃~Bε′ ∈ FPV[a, b] ∀~B ∈ REF(~Bε′) ∀~H ∈
∏[~B]|A f (~B, ~H) − s| < ε′, we say f is refinement-integrable, denoted by (REF)

∫ b
a f = s. Furthermore,

we use REF[a, b] to denote the set of all the refinement-integrable functions defined on [a, b].

Let us define the upper Darboux sum of f with respect to ~B as follows:

Ā f (~B) =
|~B|−1

∑
j=0

[Bj − Bj−1] · f ∗([Bj−1, Bj]),

where f ∗([Bj−1, Bj]) = sup{ f (x) : x ∈ [Bj−1, Bj]} and the lower Darboux sum of f with respect to ~B
as follows:

A f (~B) =
|~B|−1

∑
j=0

[Bj − Bj−1] · f∗([Bj−1, Bj]),

where f∗([Bj−1, Bj]) = in f { f (x) : x ∈ [Bj−1, Bj]}. Since f is a bounded function, these definitions are
all well-defined.

Definition 5. (Darboux Cauchy integrable [5,6]) If

∀ε̂ > 0 ∃~Bε̂ ∈ FPV[a, b] such that Ā f (~Bε̂)−A f (~B
ε̂) < ε̂,
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we say f is Darboux Cauchy integrable and use DC[a, b] to denote the set of all the Darboux Cauchy integrable
functions defined on [a, b].

Define
∫ b

a
f = sup{Ā f (~B) : ~B ∈ FPV[a, b]} and

∫̄ b
a f = in f {Ā f (~B) : ~B ∈ FPV[a, b]}.

Since ∀~B ∈ FPV[a, b][A f (~B) ≤ Ā f (~B)], one has
∫ b

a
f ≤

∫̄ b
a f .

Definition 6. (Darboux integrable [7], p. 120) If there exists s ∈ R such that s =
∫ b

a
f =

∫̄ b
a f , we say f

is Darboux integrable, denoted by (DI)
∫ b

a f = s. Furthermore, we use DI[a, b] to denote the set of all the
Darboux integrable functions defined on [a, b].

Based on p-norm, we have the following new definitions.

Definition 7. (p-integrable) If there exists s ∈ R such that ∀ε̃ > 0 ∃δ̃ε̃ > 0 such that ∀~B ∈ FPVp(δ̃ε̃) ∀~H ∈
∏[~B]|A f (~B, ~H)− s| < ε̃, we say f is p-integrable, denoted by (p)

∫ b
a f = s. Furthermore, we use p[a, b] to

denote the set of all the p-integrable functions defined on [a, b].

Example 1. In this example, we demonstrate that if f , g ∈ p[a, b], then
∫ b

a f (x)x +
∫ b

a g(x)dx =
∫ b

a ( f +

g)(x)dx. Suppose
∫ b

a f (x)dx = c and
∫ b

a g(x)dx = d. Let ε̃ > 0 be arbitrary. By f , g ∈ p[a, b], one has there

exist c, d and there exist δ̃
f
ε̃
2

, δ̃
g
ε̃
2

such that

∀~B ∈ FPVp(δ̃
f
ε̃
2
) ∀~H ∈∏[~B]|A f (~B, ~H)− c| < ε̃

2
,

and
∀~B ∈ FPVp(δ̃

g
ε̃
2
) ∀~H ∈∏[~B]|A f (~B, ~H)− c| < ε̃

2
.

Let δ̃ε̃ = min{δ̃ f
ε̃
2
, δ̃

g
ε̃
2
}. Let ~B ∈ FPVp(δ̃ε̃) and let ~H ∈ ∏[~B] be arbitrary. By the property that FPVp(δ̃ε̃) ⊆

FPVp(δ̃
f
ε̃
2
), FPVp(δ̃

g
ε̃
2
), one has ∣∣∣∣∣∣

|~B|−1

∑
j=0

(Bj+1 − Bj) · f (Hj)− c

∣∣∣∣∣∣ < ˜̃ε
2

,

∣∣∣∣∣∣
|~B|−1

∑
j=0

(Bj+1 − Bj) · g(Hj)− d

∣∣∣∣∣∣ < ˜̃ε
2

,

i.e., ∣∣∣∣∣∣
|~B|−1

∑
j=0

(Bj+1 − Bj)( f + g)(Hj)− (c + d)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
|~B|−1

∑
j=0

(Bj+1 − Bj) · f (Hj)− c

∣∣∣∣∣∣+∣∣∣∣∣∣
|~B|−1

∑
j=0

(Bj+1 − Bj) · g(Hj)− d

∣∣∣∣∣∣ < ε̃,

i.e., f + g ∈ p[a, b] and

∫ b

a
( f + g)(x)dx = c + d =

∫ b

a
f (x)x +

∫ b

a
g(x)dx.

Since the main purpose of this article is to show all sorts of equivalences of integrals and since
the Riemann integral and the p-norm integral are equivalent, we do not focus too much on how to
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reinvent the wheel. The interested readers could simply use the p-norm integral to construct a whole
parallel results with respect to the Riemann integral.

Definition 8. (Discrete Darboux Cauchy integrable) If there exists s ∈ R such that ∀ε̈ > 0 ∀~C ∈ [0]p ∃N̈
ε̈,~C

such that ∀n ≥ N̈
ε̈,~C[Ā f (~Cn)−A f (~Cn) < ε̈], we say f is discrete Darboux Cauchy integrable, denoted by

(DDCp)
∫ b

a f = s. Furthermore, we use DDCp[a, b] to denote the set of all the discrete Darboux Cauchy
integrable functions defined on [a, b].

Definition 9. (Discrete p−integrable) If there exists s ∈ R such that ∀ε̌ > 0 ∀~C ∈ [0]p ∃Ň
ε̌,~C ∈ N such that

∀m ≥ Ň
ε̌,~C ∀~H ∈ ∏[~Cm]|A f (~Cm, ~H)− s| < ε̌, we say f is discrete p-integrable, denoted by (Dp)

∫ b
a f = s.

Furthermore, we use Dp[a, b] to denote the set of all the discrete p-integrable functions defined on [a, b].

Definition 10. (Ranged Darboux Cauchy integrable) If there exists s ∈ R such that ∀ε̄ > 0 ∃δ̄ε̄ > 0 such that
∀~B ∈ FPVp(δ̄ε̄)[Ā f (~B)−A f (~B) < ε̄], we say f is ranged Darboux Cauchy integrable, denoted by

(RDCp)
∫ b

a f = s. Furthermore, we use RDCp[a, b] to denote the set of all the ranged Darboux Cauchy
integrable functions defined on [a, b].

3. Theorems

Claim 1. R[a, b] ⊆ REF[a, b].

Proof. Let f ∈ R[a, b] be arbitrary. We show f ∈ REF[a, b]. Let ε′ > 0 be arbitrary. By Definition 3,
it follows

∃δε′ > 0 such that ∀~B ∈ FPV(δε′) ∀~H ∈∏[~B] |A f (~B, ~H)− s| < ε′, (1)

for some s ∈ R. Choose one ~Bε′ ∈ FPV(δε′). Then, REF(~Bε′) ⊆ FPV(δε′) and thus, by (1),

∀~B ∈ REF(~Bε′) ∀~H ∈∏[~B] |A f (~B, ~H)− s| < ε′.

By Definition 4, this completes our proof.

Claim 2. R[a, b] = DC[a, b] = DI[a, b].

Proof. The proofs could be found in ([4], Theorem 6.6) and ([7], Theorems 3.2.6 and 3.2.7).

Lemma 1. R[a, b] = REF[a, b].

Proof. Due to Claims 1 and 2, it suffices to show REF[a, b] ⊆ DC[a, b]. Let f ∈ REF[a, b] be arbitrary.
We show f ∈ DC[a, b]. Let ε̂ > 0 be arbitrary. Then, by Definition 4

∃~B
ε̂
4 ∈ FPV[a, b] ∀~B ∈ REF(~B

ε̂
4 ) ∀~H ∈∏[~B] |A f (~B, ~H)− s| < ε̂

4
(2)

for some s ∈ R. Furthermore, by the definitions of upper and lower Darboux sums of f with respect to
~B

ε̂
4 , one has ∃~H ε̂

4 , ~K
ε̂
4 ∈ ∏[~B

ε̂
4 ] such that{

Ā f (~B
ε̂
4 )− ε̂

4 < A f (~B
ε̂
4 , ~H

ε̂
4 )

A f (~B
ε̂
4 , ~K

ε̂
4 ) < A f (~B

ε̂
4 ) + ε̂

4 .
(3)
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By Equation (3), it follows directly that

Ā f (~B
ε̂
4 )−A f (~B

ε̂
4 )− ε̂

2
< A f (~B

ε̂
4 , ~H

ε̂
4 )− A f (~B

ε̂
4 , ~K

ε̂
4 )

≤ |A f (~B
ε̂
4 , ~H

ε̂
4 )− A f (~B

ε̂
4 , ~K

ε̂
4 )|

= |(A f (~B
ε̂
4 , ~H

ε̂
4 )− s) + (−A f (~B

ε̂
4 , ~K

ε̂
4 ) + s)|

≤ |(A f (~B
ε̂
4 , ~H

ε̂
4 )− s)|+ |A f (~B

ε̂
4 , ~K

ε̂
4 )− s|.

(4)

By Equations (2) and (4), one has Ā f (~B
ε̂
4 )−A f (~B

ε̂
4 ) < ε̂. Hence, by Definition 5, f ∈ DC[a, b].

Claim 3. ‖~K‖p < γ⇒ 〈〈~K〉〉 < γ, ∀~K ∈ FPV[a, b] .

Proof. By definition, ‖~K‖p =
p

√√√√|~K|−1

∑
i=0
|~Ki+1 − ~Ki|p < γ, i.e.,

∀i ∈ {0, 1, 2, ..., |~K− 1|}[|~Ki+1 − ~Ki| < γ],

i.e., by definition 〈〈~K〉〉 < γ.

By this, we know FPVp(δ) ( FPV(δ), since the equality is obviously false.

Lemma 2. R[a, b] ⊆ p[a, b].

Proof. Let f ∈ R[a, b] be arbitrary. We show f ∈ p[a, b]. Let ε̃ > 0 be arbitrary. Then, by Definition 3

∃δε̃ > 0 such that ∀~B ∈ FPV(δε̃) ∀~H ∈∏[~B] |A f (~B, ~H)− s| < ε̃, (5)

for some s ∈ R. Let us take δ̃ε̃ = δε̃. Let~B ∈ FPVp(δ̃ε̃) = FPVp(δε̃) be arbitrary. Then, by definition, one

has ‖~B‖p = p

√√√√|~B|−1

∑
j=0
|~Bj+1 −~Bj|p < δ̃ε̃, i.e., by Claim 3, 〈〈~B〉〉 < δ̃ε̃, i.e., FPVp(δ̃ε̃) ( FPV(δ̃ε̃) = FPV(δε̃),

then the result f ∈ p[a, b] follows immediately from Equation (5) and Definition 7.

Since each FPVp(δ) is a proper subset of FPV(δ), it appears that R[a, b] = p[a, b] is doubtful.
However, the following lemma proves otherwise.

Lemma 3. p[a, b] ⊆ REF[a, b].

Proof. Let f ∈ p[a, b] be arbitrary. We show f ∈ REF[a, b]. Let ε′ > 0 be arbitrary. Then, by Definition 7

∃δ̃ε′ > 0 such that ∀~B ∈ FPVp(δ̃ε′) ∀~H ∈∏[~B] |A f (~B, ~H)− s| < ε′, (6)

for some s ∈ R. Let us arbitrarily choose one ~Bε′ ∈ FPVp(δ̃ε′). Let ~B ∈ REF(~Bε′) be arbitrary. Then,

‖~B‖p =
p

√√√√|~B|−1

∑
i=0
|~Bi+1 − ~Bi|p ≤ ‖~Bε′‖p =

p

√√√√√|~Bε′ |−1

∑
j=0
|~Bε′

j+1 − ~Bε′
j |p < δ̃ε′ ,

i.e., REF(~Bε′) ⊆ FPVp(δ̃ε′). Then, the result f ∈ REF[a, b] follows immediately from Equation (6).

Theorem 1. p[a, b] = R[a, b].
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Proof. From Lemmas 1–3, one has

R[a, b] ⊆ p[a, b] ⊆ REF[a, b] = R[a, b]

and thus the result follows immediately.

Example 2. Take [a, b] = [0, 1] and f (x) = x for example. Then, f ∈ R[a, b]. Here, based on the definition
of p-norm integral, we give a detailed proof showing f ∈ p[a, b]. Let ε̃ > 0 be arbitrary. Let Nε̃ ∈ N be the
natural number satisfying 1

Nε̃
≤ ε̃ < 1

Nε̃−1 for all Nε̃ ≥ 2. Observe that when ε̃ decreases, Nε̃ increases. Now,
take δ̃ε̃ = 1

Nε̃
. Let ~B ∈ FPVp(

1
Nε̃
) and ~H ∈ ∏[~B] be arbitrary. Then,

|~B|−1

∑
j=0

(~Bj+1 − ~Bj) · ~Bj ≤ A f (~B, ~H) =
|~B|−1

∑
j=0

(~Bj+1 − ~Bj) · f (~Hj) ≤
|~B|−1

∑
j=0

(~Bj+1 − ~Bj) · ~Bj+1.

Since ~B ∈ FPVp(
1

Nε̃
), one has

(
|~B|−1

∑
j=0

~Bp
j )

1
p <

1
Nε̃

,

i.e., (
|~B|−1

∑
j=0

~Bp
j ) < (

1
Nε̃

)p, i.e., ~Bj <
1

Nε̃
for all 0 ≤ j ≤ |~B| − 1. Hence, one has

1
Nε̃
· [ 1

Nε̃
+ 2

1
Nε̃

+ ... + (Nε̃ − 1) · 1
Nε̃

] ≤
|~B|−1

∑
j=0

(~Bj+1 − ~Bj) · ~Bj,

|~B|−1

∑
j=0

(~Bj+1 − ~Bj) · ~Bj+1 ≤
1

Nε̃
· [ 1

Nε̃
+ 2

1
Nε̃

+ ... + Nε̃ ·
1

Nε̃
].

Hence, one has

(
1

Nε̃
)2 · [ (Nε̃ − 1)Nε̃

2
] ≤ A f (~B, ~H) ≤ (

1
Nε̃

)2 · [( (Nε̃)(Nε̃ + 1)
2

],

i.e.,
1
2
− 1

Nε̃
≤ A f (~B, ~H) ≤ 1

2
+

1
Nε̃

.

Since lim
ε̃→0

1
Nε̃

= 0, one has f ∈ p[a, b].

Lemma 4. Dp[a, b] ⊆ DC[a, b].

Proof. Let f ∈ Dp[a, b] be arbitrary, we show f ∈ DC[a, b]. Let ~C ∈ [0]p be arbitrary. Let ε̂ > 0 be
arbitrary. Then, by Definition 9, ∃Ň ε̂

4 ,~C ∈ N such that

∀m ≥ Ň ε̂
4 ,~C ∀~H ∈∏[~Cm] |A f (~Cm, ~H)− s| < ε̂

4
, (7)

for some s ∈ R. Take ~Bε̂ = ~CŇ ε̂
4 ,~C

. Then, by the definitions of upper and lower Darboux integral,

one has ∃~H ε̂
4 , ~K

ε̂
4 ∈ ∏[~B

ε̂
4 ] such that{

Ā f (~B
ε̂
4 )− ε̂

4 < A f (~B
ε̂
4 , ~H

ε̂
4 )

A f (~B
ε̂
4 , ~K

ε̂
4 ) < A f (~B

ε̂
4 ) + ε̂

4 .
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Then, by the identical proof of Equation (4) in Lemma 1, the result follows.

Lemma 5. R[a, b] ⊆ Dp[a, b].

Proof. Let f ∈ R[a, b] be arbitrary. We show f ∈ Dp[a, b]. Let ε̌ > 0,~C ∈ [0]p be arbitrary.
By Definition 3

∃δε̌ > 0 ∀~B ∈ FPV(δε̌) ∀~H ∈∏[~B] |A f (~B, ~H)− s| < ε̌, (8)

for some s ∈ R. By ~C ∈ [0]p, it follows

∀γ > 0 ∃Nγ ∈ N such that ∀k ≥ Nγ[‖~Ck‖p < γ].

Now, take γ = δε̌, one has ∃Nδε̌
∈ N such that ∀k ≥ Nδε̌

‖ ~Ck‖p < δε̌, i.e., by Claim 3, 〈〈 ~Ck〉〉 < δε̌,
i.e., FPVp(δε̌) ⊆ FPV(δε̌). Take Ň

ε̌,~C = Nδε̌
. Let m ≥ Ň

ε̌,~C = Nδε̌
, ~H ∈ ∏[ ~Cm] be arbitrary. Then,

the result f ∈ Dp[a, b] follows immediately from Equation (8) and Definition 9.

Theorem 2. R[a, b] = Dp[a, b].

Proof. From Claim 2, and Lemmas 4 and 5, one has

R[a, b] ⊆ Dp[a, b] ⊆ DC[a, b] = R[a, b]

and thus the result follows immediately.

Lemma 6. DDCp[a, b] ⊆ DC[a, b].

Proof. Let f ∈ DDCp[a, b] be arbitrary. We show f ∈ DC[a, b]. Let ε̂ > 0 be arbitrary. Let ~C ∈ [0]p be
arbitrary. By Definition 8,

∃N̈
ε̂,~C such that ∀n ≥ N̈

ε̂,~C[Ā f ( ~Cn)−A f ( ~Cn) < ε̂].

Now, take ~Bε̂ = ~CN̈
ε̂,~C

. Then, Ā f (~Bε̂) − A f (~Bε̂) < ε̂ and thus the result f ∈ DC[a, b] follows

immediately from Definition 5.

Lemma 7. Dp[a, b] ⊆ DDCp[a, b].

Proof. Let f ∈ Dp[a, b] be arbitrary. We show f ∈ DDCp[a, b]. Let ε̈ > 0, ~C ∈ [0]p be arbitrary.
By f ∈ Dp[a, b], it follows

∃N ε̈
4 ,~C ∈ N such that ∀m ≥ N ε̈

4 ,~C ∀~H ∈∏[~Cm]|A f ( ~Cm, ~H)− s| < ε̈

4
, (9)

for some s ∈ R. Now, take N̈
ε̈,~C = N ε̈

4 ,~C. Let n ≥ N̈
ε̈,~C be arbitrary. By the definitions of upper and

lower Darboux integral, ∃~H, ~K ∈ ∏[ ~Cn] such that{
Ā f (~Cn)− ε̈

4 < A f (~Cn, ~K),

A f (~Cn, ~H) < A f (~Cn) +
ε̈
4 .

Thus,

Ā f (~Cn)−A f (~Cn) < A f (~Cn, ~K)− A f (~Cn, ~H) +
ε̈

2

< |A f (~Cn, ~K)− s|+ |A f (~Cn, ~H)− s|+ ε̈

2
<

ε̈

4
+

ε̈

4
+

ε̈

2
= ε̈.
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Thus, the result f ∈ DDCp[a, b] follows immediately from Definition 8.

Theorem 3. DDCp[a, b] = DC[a, b].

Proof. By Claim 2, Theorem 2, and Lemmas 6 and 7,

DC[a, b] = R[a, b] = Dp[a, b] ⊆ DDCp[a, b] ⊆ DC[a, b]

and thus the result follows immediately.

Lemma 8. RDCp[a, b] ⊆ DC[a, b].

Proof. Let f ∈ RDCp[a, b] be arbitrary. We show f ∈ DC[a, b]. Let ε̂ > 0 be arbitrary. By Definition 10,

∃δ̄ε̂ > 0 such that ∀~B ∈ FPVp(δ̄ε̂)|Ā f (~B)−A f (~B)| < ε̂.

Now, choose one ~Bε̂ ∈ FPVp(δ̄ε̂) ⊆ FPV[a, b], then the result f ∈ DC[a, b] follows immediately
via Definition 5.

Lemma 9. R[a, b] ⊆ RDCp[a, b].

Proof. Let f ∈ R[a, b] be arbitrary. We show f ∈ RDCp[a, b]. Let ε̄ > 0 be arbitrary. By Definition 3,

∃δ ε̄
4
> 0 such that ∀~B ∈ FPV(δ ε̄

4
) ∀~H ∈∏[~B]|A f (~B, ~H)− s| < ε̄

4
, (10)

for some s ∈ R. Now, take δ̄ε̄ = δ ε̄
4
. Let ~B ∈ FPVp(δ̄ε̄) be arbitrary. By Claim 3,

~B ∈ FPVp(δ̄ε̄) ( FPV(δ̄ε̄) = FPV(δ ε̄
4
). By the definitions of upper and lower Darboux integral,

one has ∃~H, ~K ∈ ∏[~B] such that {
A f (~B, ~H) < A f (~B) +

ε̄
4

Ā f (~B)− ε̄
4 < A f (~B, ~K).

Thus, by Equation (10) and the identical proof of Equation (4) in Lemma 1, one has

Ā f (~B)−A f (~B) < ε̄.

Thus the result f ∈ DDCp[a, b] follows immediately from Definition 10.

Theorem 4. RDCp[a, b] = DC[a, b].

Proof. From Claim 2, and Lemmas 8 and 9, DC[a, b] = R[a, b] ⊆ RDCp[a, b] ⊆ DC[a, b], the result
follows immediately.

Theorem 5. R[a, b] = REF[a, b] = DC[a, b] = DI[a, b] = p[a, b] = Dp[a, b] = DDCp[a, b] =

RDCp[a, b].

Proof. By Lemma 1, Claim 2, and Theorems 1–4, the result follows immediately.

4. Conclusions

In this article, we have shown how to give a new equivalent definition of the Riemann integral
based on the p-norm. This norm could easily link functional analysis and the Riemann integral.
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By directly defining an alternative definition based on this norm, one gains more insightful knowledge
about all sorts of equivalences of the Riemann integral. Furthermore, we also derive some related
equivalences based on this norm. The p-norm provides an alternative to the usual definition of the
Riemann integral.
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