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Abstract: The aim of this paper is to report some recent results regarding second order Lagrangians
corresponding to 2nd and 3rd order Euler–Lagrange forms. The associated 3rd order Hamiltonian
systems are found. The generalized Legendre transformation and geometrical correspondence between
solutions of the Hamilton equations and the Euler–Lagrange equations are studied. The theory is
illustrated on examples of Hamiltonian systems satisfying the following conditions: (a) the Hamiltonian
system is strongly regular and the Legendre transformation exists; (b) the Hamiltonian system is strongly
regular and the Legendre transformation does not exist; (c) the Legendre transformation exists and the
Hamiltonian system is not regular but satisfies a weaker condition.
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1. Introduction

Hamiltonian theory on manifolds has been intensively studied since the 1970s (see e.g., [1–10]).
The aim of this paper is to apply an extension of the classical Hamilton–Cartan variational theory
on fibered manifolds, recently proposed by Krupková [11,12], to the case of a class of second order
Lagrangians and third order Hamiltonian systems. In the generalized Hamiltonian field theory,
one can associate different Hamilton equations corresponding to different Lepagean equivalents of
the Euler–Lagrange form with a variational problem represented by a Lagrangian. With the help of
Lepagean equivalents of a Lagrangian, one obtains an intrinsic formulation of the Euler–Lagrange
and Hamilton equations. The arising Hamilton equations and regularity conditions depend not only
on a Lagrangian but also on some “free” functions, which correspond to the choice of a concrete
Lapagean equivalent. Consequently, one has many different “Hamilton theories” associated to a given
variational problem. A regularization of some interesting singular physical fields, the Dirac field,
the electromagnetic field, and the Scalar Curvature Lagrangian by various methods has been studied
in [3,6,13–15]. Some second order Lagrangians have also been discussed in [16–18].

The multisymplectic approach was proposed in [2,4,8,10]. This approach is not well adapted to
study Lagrangians that are singular in the standard sense. Note that an alternative approach to the
study of “degenerated” Lagrangians (singular in the standard sense) is the constraint theory from
mechanics (see [19,20]) and in the field theory [21].

In this work, we are interested in second order Lagrangians that give rise to Euler–Lagrange
equations of the 3rd order or non-affine 2nd order. All these Lagrangians are singular in the standard
Hamilton–De Donder theory and do not have a Legendre transformation. Examples of these
Lagrangians are afinne (scalar curvature Lagrangians) and many Lagrangians quadratic in second
derivatives. However, in the generalized setting, the question on existence of regular Hamilton
equations makes sense. For such a Lagrangian, we find the set of Lepagean equivalents (respectively
family of Hamilton equations) that are regular in the generalized sense, as well as a generalized
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Legendre transformation. We note that the generalized momenta pij
σ satisfy pij

σ 6= pji
σ . We study

the correspondence between solutions of Euler–Lagrange and Hamilton equations. The regularity
conditions are found (ensuring that the Hamilton extremals are holonomic up to the second order).
These conditions depend on a choice of a Hamiltonian system (i.e., on a choice of “free” functions).
We study the correspondence between the regularity conditions and the existence of the Legendre
transformation. Contrary to the classical approach, the regularity conditions do not guarantee the
existence of a generalized Legendre transformation. On the other hand, the generalized Legendre
conditions do not guarantee regularity. The existence of a generalized Legendre transformation
guarantees that the Hamilton extremals are holonomic up to the first order. The regularization
procedure and properties of the Legendre transformation are illustrated in three examples. We consider
three different Hamiltonian systems for a given Lagrangian. The first system is regular and
possesses a generalized Legendre transformation. The second Hamiltonian system is regular and a
generalized Legendre transformation does not exist. The last one is not regular but a generalized
transformation exists.

Throughout the paper, all manifolds and mappings are smooth and the summation convention
is used. We consider a fibered manifold (i.e., surjective submersion) π : Y → X, dim X = n,
dim Y = n + m. Its r-jet prolongation is πr : JrY → X, r ≥ 1 and its canonical jet projections
are πr,k : JrY → JkY, 0 ≤ k ≤ r (with the obvious notation J0Y = Y). A fibered chart on Y
(respectively associated fibered chart on JrY) is denoted by (V, ψ), ψ = (xi, yσ) (respectively (Vr, ψr),
ψr = (xi, yσ, yσ

i , . . . , yσ
i1 ...ir )).

A vector field ξ on JrY is called πr -vertical (respectively πr,k -vertical) if it projects onto the zeroth
vector field on X (respectively on JkY).

Recall that every q-form η on JrY admits a unique (canonical) decomposition into a sum of q-forms
on Jr+1Y as follows [7]:

π∗r+1,rη = hη +
q

∑
k=1

pkη,

where hη is a horizontal form, called the horizontal part of η, and pkη, 1 ≤ k ≤ q, is a k-contact part
of η.

We use the following notations:

ω0 = dx1 ∧ dx2 ∧ · · · ∧ dxn, ωi = i∂/∂xi ω0, ωij = i∂/∂xj ωi,

and

ωσ = dyσ − yσ
j dxj, . . . , ωσ

i1i2 ...ik = dyσ
i1i2 ...ik − yσ

i1i2 ...ik jdxj.

For more details on fibered manifolds and the corresponding geometric structures, we refer to
sources such as [22].

2. Lepagean Equivalents and Hamiltonian Systems

In this section we briefly recall the basic concepts on Lepagean equivalents of Lagrangians
according to Krupka [7,23], and on Lepagean equivalents of Euler–Lagrange forms and generalized
Hamiltonian field theory according to Krupková [11,12].

By an r-th order Lagrangian we shall mean a horizontal n-form λ on JrY.
An n-form ρ is called a Lepagean equivalent of a Lagrangian λ if (up to a projection) hρ = λ and p1dρ

is a πr+1,0-horizontal form.
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For an r-th order Lagrangian we have all its Lepagean equivalents of order (2r− 1) characterized
by the following formula

ρ = Θ + µ, (1)

where Θ is a (global) Poincaré–Cartan form associated to λ and µ is an arbitrary n-form of order of
contactness ≥ 2, i.e., such that hµ = p1µ = 0. Recall that for a Lagrangian of order 1, Θ = θλ where
θλ is the classical Poincaré–Cartan form of λ. If r ≥ 2, Θ is no longer unique, however there is a
non-invariant decomposition

Θ = θλ + p1dν, (2)

where

θλ = Lω0 +
r−1

∑
k=0

(
r−k−1

∑
l=0

(−1)ldp1 dp2 . . . dpl

∂L
∂yσ

j1 ...jk p1 ...pl i

)
ωσ

j1 ...jk ∧ωi, (3)

and ν is an arbitrary at least 1-contact (n− 1)-form (see [7,23]).
A closed (n + 1)-form α is called a Lepagean equivalent of an Euler–Lagrange form E = Eσωσ ∧ω0 if

p1α = E.
Recall that the Euler–Lagrange form corresponding to an r-th order λ = Lω0 is the following

(n + 1)-form of order ≤ 2r:

E = Eσ ωσ ∧ω0 =

(
∂L
∂yσ
−

r

∑
l=1

(−1)ldp1 dp2 . . . dpl

∂L
∂yσ

p1 ...pl

)
ωσ ∧ω0.

By definition of a Lepagean equivalent of E, one can find Poincaré lemma local forms ρ such that
α = dρ, where ρ is a Lepagean equivalent of a Lagrangian for E. The family of Lepagean equivalents of
E is also called a Lagrangian system and denoted by [α]. The corresponding Euler–Lagrange equations
now take the form

Jsγ∗iJsξα = 0 for every π−vertical vector field ξ on Y, (4)

where α is any representative of order s of the class [α]. A (single) Lepagean equivalent α of E on JsY is
also called a Hamiltonian system of order s and the equations

δ∗iξ α = 0 for every πs−vertical vector field ξ on JsY (5)

are called Hamilton equations. They represent equations for integral sections δ (called Hamilton extremals)
of the Hamilton ideal, generated by the system Ds

α of n-forms iξ α, where ξ runs over πs-vertical vector
fields on JsY. Also, considering πs+1-vertical vector fields on Js+1Y, one has the ideal Ds+1

α̂ of n-forms
iξ α̂ on Js+1Y, where α̂ (called principal part of α) denotes the at most 2-contact part of α. Its integral
sections, which annihilate all at least 2-contact forms, are called Dedecker–Hamilton extremals. It holds
that if γ is an extremal then its s-prolongation (respectively (s + 1)-prolongation) is a Hamilton
(respectively Dedecker–Hamilton) extremal, and (up to projection) every Dedecker–Hamilton extremal
is a Hamilton extremal (see [11,12]).

Denote by r0 the minimal order of Lagrangians corresponding to E. A Hamiltonian system α on
JsY, s ≥ 1, associated with E is called regular if the system of local generators of Ds+1

α̂ contains all the
n-forms

ωσ ∧ωi, ωσ
(j1
∧ωi), . . . , ωσ

(j1 ...jr0−1
∧ωi), (6)
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where (. . . ) denotes symmetrization in the indicated indices. If α is regular then every
Dedecker–Hamilton extremal is holonomic up to the order r0, and its projection is an extremal. (In the
case of first order Hamiltonian systems, there is a bijection between extremals and Dedecker–Hamilton
extremals). α is called strongly regular if the above correspondence holds between extremals and
Hamilton extremals. It can be proved that every strongly regular Hamiltonian system is regular, and it
is clear that if α is regular and such that α = α̂ then it is strongly regular. A Lagrangian system is
called regular (respectivelystrongly regular) if it has a regular (respectively strongly regular) associated
Hamiltonian system [11].

3. Regular and Strongly Regular 3rd Order Hamiltonian Systems

In this section we discuss a part of variational theory which is singular in the standard sense.
In general, a second order Lagrangian gives rise to an Euler–Lagrange form on J4Y. We shall consider
second order Lagrangians λ that satisfy one of the following conditions:

(1) The corresponding Euler–Lagrange form is of order 3, i.e., the Lagrangians satisfy the conditions(
∂2L

∂yσ
ij∂yν

kl

)
Sym(ijkl)

= 0, (7)

where Sym(ijkl) means symmetrization in the indicated indices.
(2) The Euler–Lagrange expressions Eσ (4) of λ are second order and “non-affine” in the

second derivatives

∂2Eσ

∂yν
kl∂yκ

ij
6= 0 (8)

for some indices i, j, k, l, σ, ν, κ.

In what follows, we shall study Hamiltonian systems corresponding to a special choice of a
Lepagean equivalent of such Lagrangians, namely α of order 3 and α = dρ, where

ρ = Lω0 +

(
∂L
∂yσ

j
− dk

∂L
∂yσ

jk

)
ωσ ∧ωj +

∂L
∂yσ

ij
ωσ

i ∧ωj + µ̄ (9)

+ aij
σνωσ ∧ων ∧ωij + bkij

σνωσ ∧ων
k ∧ωij

+ cklij
σν ωσ ∧ων

kl ∧ωij,

with an arbitrary at least 3-contact n-form µ̄ and functions aij
σν, bkij

σν, cklij
σν dependent on variables xk, yκ ,

yκ
k , yκ

kl and satisfying the conditions

aij
σν = − aji

σν, aij
σν = − aij

νσ; bkij
σν = − bkji

σν; (10)

cklij
σν = clkij

σν , cklij
σν = − cklji

σν .

Theorem 1. Ref. [18] Let dim X ≥ 2. Let λ = Lω0 be a second order Lagrangian with the Euler–Lagrange
form (7) or (8), and α = dρ with ρ of the form (9), (10), be its Lepagean equivalent. Assume that the matrix

Pijkl
σν =

(
∂2L

∂yν
ij∂yσ

kl
+ 2 cklij

νσ

)
Sym(jkl)

, (11)



Mathematics 2018, 6, 163 5 of 15

with mn3 rows (respectively mn columns) labelled by σjkl (respectively νi) has maximal rank equal to mn and
the matrix

Qijkl
σν =

(
∂2L

∂yσ
ij∂yν

kl
− 2cklij

σν

)
, (12)

with mn2 rows (respectively mn2 columns) labelled by σij (respectively νkl) has maximal rank equal to
mn (n + 1) /2. Then the Hamiltonian system α = dρ is regular (i.e. every Dedecker–Hamilton extremal
is of the form π3,2 ◦ δD = J2γ, where γ is an extremal of λ).

Moreover, if µ̄ is closed then the Hamiltonian system α = dρ is strongly regular (i.e., every Hamilton
extremal is of the form π3,2 ◦ δ = J2γ, where γ is an extremal of λ).

Proof. Explicit computation α = dρ gives:

π∗4,3α = Eσωσ ∧ω0 +

(
∂2L

∂yσ
i ∂yν

− ∂

∂yν
dj

∂L
∂yσ

ij
− 2dja

ij
σν

)
ων ∧ωσ ∧ωi

+

(
∂2L

∂yσ
i ∂yν

k
− ∂2L

∂yσ∂yν
ik
− ∂

∂yν
k

dj
∂L
∂yσ

ij
+ 4aik

νσ − 2djb
kij
σν

)
ων

k ∧ωσ ∧ωi

+

(
∂2L

∂yσ
i ∂yν

kl
− ∂

∂yν
kl

dj
∂L
∂yσ

ij
− 2(bkil

σν)Sym(kl) − 2djc
klij
σν

)
ων

kl ∧ωσ ∧ωi

−
(

∂2L
∂yσ

ij∂yν
kl
+ 2cklij

σν

)
Sym(jkl)

ων
jkl ∧ωσ ∧ωi

+

(
∂2L

∂yσ
ij∂yν

k
− 4(bkij

σν)Alt((σj)(νk))

)
ων

k ∧ωσ
j ∧ωi

+

(
∂2L

∂yσ
ij∂yν

kl
− 2cklij

σν

)
ων

kl ∧ωσ
j ∧ωi +

(
∂aij

σν

∂yκ

)
Alt(κσν)

(13)

ωκ ∧ωσ ∧ων ∧ωij +

(
∂aij

σν

∂yκ
p
+

∂bpij
νκ

∂yσ

)
Alt(σν)

ωκ
p ∧ωσ ∧ων ∧ωij

+

(∂aij
σν

∂yκ
pq

)
Sym(pq)

+

(
∂cpqij

νκ

∂yσ
pq

)
Alt(σν)

ωκ
pq ∧ωσ ∧ων ∧ωij

+

(
∂bqij

σν

∂yκ
p

)
Alt((κp)(νq))

ωσ ∧ων
q ∧ωκ

p ∧ωij +

(
∂bkij

σν

∂yκ
pq
− ∂cpqij

σκ

∂yν
k

)
Sym(pq)

ωσ ∧ων
k ∧ωκ

pq ∧ωij −
(

∂cklij
σν

∂yκ
pq

)
Alt((κpq)(νkl))

ωσ ∧ωκ
pq ∧ων

kl ∧ωij + dµ̄,

where Alt((. . . ) . . . (. . . )) means alternation in the indicated multi-indices and Sym(. . . ) means
symmetrization in the indicated indices.
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In the notation of Equations (11) and (12), the principal part of α (13) takes the form

α̂ = Eσωσ ∧ω0 +

(
∂2L

∂yσ
i ∂yν

− ∂

∂yν
dj

∂L
∂yσ

ij
− 2dja

ij
σν

)
ων ∧ωσ ∧ωi

+

(
∂2L

∂yσ
i ∂yν

k
− ∂2L

∂yσ∂yν
ik
− ∂

∂yν
k

dj
∂L
∂yσ

ij
+ 4aik

νσ − 2djb
kij
σν

)
ων

k ∧ωσ ∧ωi

+

(
∂2L

∂yσ
i ∂yν

kl
− ∂

∂yν
kl

dj
∂L
∂yσ

ij
− 2(bkil

σν)Sym(kl) − 2djc
klij
σν

)
ων

kl ∧ωσ ∧ωi (14)

+

(
∂2L

∂yσ
ij∂yν

k
− 4(bkij

σν)Alt((σj)(νk))

)
ων

k ∧ωσ
j ∧ωi

− Pijkl
νσ ων

jkl ∧ωσ ∧ωi + Qijkl
σν ων

kl ∧ωσ
j ∧ωi,

Expressing the generators of the ideal D4
α̂, we obtain

i ∂
∂yν

α̂ = Eνω0 + 2

(
∂2L

∂yσ
i ∂yν

− ∂

∂yν
dj

∂L
∂yσ

ij
− 2dja

ij
σν

)
ωσ ∧ωi

−
(

∂2L
∂yν

i ∂yσ
k
− ∂2L

∂yν∂yσ
ik
− ∂

∂yσ
k

dj
∂L
∂yν

ij
+ 4aik

σν − 2djb
kij
νσ

)
ωσ

k ∧ωi

−
(

∂2L
∂yν

i ∂yσ
kl
− ∂

∂yσ
kl

dj
∂L
∂yν

ij
− 2(bkil

νσ)Sym(kl) − 2djc
klij
νσ

)
ωσ

kl ∧ωi

+ Pijkl
σν ωσ

jkl ∧ωi,

i ∂
∂yν

k

α̂ =

(
∂2L

∂yσ
i ∂yν

k
− ∂2L

∂yσ∂yν
ik
− ∂

∂yν
k

dj
∂L
∂yσ

ij
+ 4aik

νσ − 2djb
kij
σν

)
ωσ ∧ωi (15)

+ 2

(
∂2L

∂yσ
ij∂yν

k
− 4(bkij

σν)Alt((σj)(νk))

)
ωσ

j ∧ωi + Qikjl
νσ ωσ

jl ∧ωi,

i ∂
∂yν

kl

α̂ =

(
∂2L

∂yσ
i ∂yν

kl
− ∂

∂yν
kl

dj
∂L
∂yσ

ij
− 2(bkil

σν)Sym(kl) − 2djc
klij
σν

)
ωσ ∧ωi

+ Qijkl
σν ωσ

j ∧ωi,

i ∂
∂yν

jkl

α̂ = −Pijkl
σν ων ∧ωi

Since the ranks of the matrices Pijkl
νσ , Qijkl

σν are maximal then the ωσ ∧ωi and ωσ
(j ∧ωi) are generators

of the ideal D4
α̂. For Dedecker–Hamilton extremals, we obtain δD π3,2 ◦ δD = J2γ, where γ is a section

of π. Substituting this into Equation (5), we get

δ ∗D i ∂
∂yσ

α̂ = Eσ ◦ J3γ

for the 3rd order Euler–Lagrange form (7) and

δ ∗D i ∂
∂yσ

α̂ = Eσ ◦ J2γ

for the 2nd order Euler–Lagrange form (8) and γ is an extremal of λ.
Let us prove strong regularity. We have to show that under our assumptions, for every section δ

satisfying the Hamilton equations, π3,2 ◦ δ = J2γ, where γ is a solution of the Euler–Lagrange equations
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of the Lagrangian λ. Assuming dµ̄ = 0, we obtain δ∗(i∂/∂yσ
jkl

α) = δ∗(Pijkl
σν ων ∧ωi) = 0, i.e., δ∗ων = 0

by the rank condition on Pijkl
σν , i.e., ∂(yσ ◦ δ)/∂xi = yσ

i ◦ δ. Hence, δ∗(i∂/∂yν
kl

α) = δ∗
(

Qijkl
σν ωσ

j ∧ωi

)
= 0.

Note that the matrix Qijkl
σν is symmetric in indices kl and its maximal rank is mn(n + 1)/2. Due to

the rank condition on Qijkl
σν , δ∗ωσ

j = 0, i.e.,
(

∂(yσ
j ◦ δ)/∂xi

)
Sym(ij)

= yσ
ij ◦ δ. The conditions for δ

obtained above mean that every solution of Hamilton equations is holonomic up to the second order,
i.e., we can write π3,2 ◦ δ = J2γ, where γ is a section of π. Now, the equations J3(π3,0 ◦ δ)∗(i∂/∂yσ

k
α) = 0

are satisfied identically and the last set of Hamilton equations—J3(π3,0 ◦ δ)∗(i∂/∂yσ α) = 0—take the
form Eσ ◦ J3γ = 0 (7) or Eσ ◦ J2γ = 0 (8), proving that γ is an extremal of λ.

In the next propositon we study a weaker condition which the Hamilton extremals satisfy.

Theorem 2. Let dim X ≥ 2. Let λ = Lω0 be a second order Lagrangian with the Euler–Lagrange form (7)
or (8), and α = dρ with ρ of the form (9) and (10) be its Lepagean equivalent. Assume that µ̄ is closed and
the matrix

Pijkl
σν =

(
∂2L

∂yν
ij∂yσ

kl
+ 2 cklij

νσ

)
Sym(jkl)

, (16)

with mn3 rows (respectively mn columns) labelled by σ, j, k, l (respectively νi) has rank mn .
Then every Hamilton extremal δ : π(U) ⊂ V → J2Y of the Hamiltonian system α = dρ is of the form

π3,1 ◦ δ = J1γ (i.e., ∂yσ

∂xi = yσ
i ), where γ is an extremal of λ.

Proof. The assertion of Theorem 2 follows from the proof of Theorem 1.

4. Legendre Transformation

In this section the Hamiltonian systems admitting Legendre transformation are studied. By the
Legendre transformation we understand the coordinate transformation onto J3Y.

Writing the Lepagean equivalent ρ (9), (10) in the form of a noninvariant decomposition, we get

ρ = −Hω0 + pj
σdyσ ∧ωj + pij

σ dyσ
i ∧ωj + 2cklij

σν yσ
j dyν

kl ∧ωi (17)

+ aij
σνdyσ ∧ dyν ∧ωij + bkij

σνdyσ ∧ dyν
k ∧ωij

+ cklij
σν dyσ ∧ dyν

kl ∧ωij + µ̄,

where

H = −L +

(
∂L
∂yσ

i
− dj

∂L
∂yσ

ij

)
yσ

i +
∂L
∂yσ

ij
yσ

ij − 2aij
σνyσ

i yν
j

− 2(bkij
σν)Sym(ki)y

σ
i yν

kj − 2(cklij
σν )Sym(klj)y

σ
i yν

klj,

pj
σ =

∂L
∂yσ

j
− di

∂L
∂yσ

ij
+ 4aij

σνyν
i + 2(bkij

σν)Sym(ki)y
ν
ki + 2(cklij

σν )Sym(kli)y
ν
kli, (18)

pij
σ =

∂L
∂yσ

ij
+ 2bijk

νσyν
k .

Moreover, if the matrix  ∂pi
σ

∂yν
kl

∂pi
σ

∂yν
klm

∂pij
σ

∂yν
kl

∂pij
σ

∂yν
klm

 (19)
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has maximal rank, then

(xi, yσ, yσ
i , pi

σ, pij
σ)

is part of coordinate system.
We note that the functions pij

σ do not depend on the variables yν
klm. Then the submatrix of the

Jacobi matrix of the transformation takes the form ∂pi
σ

∂yν
kl

∂pi
σ

∂yν
klm

∂pij
σ

∂yν
kl

0

 . (20)

The above matrix has maximal rank if and only if the matrices
(
∂pi

σ/∂yν
klm
)

and
(

∂pij
σ /∂yν

kl

)
have

maximal ranks. Explicit computations lead to(
∂pi

σ

∂yν
klm

)
=

(
∂2L

∂yν
im∂yσ

kl
+ 2 cklim

νσ

)
Sym(klm)

, (21)(
∂pij

σ

∂yν
kl

)
=

∂2L
∂yσ

ij∂yν
kl
+ 2

∂bijq
κσ

∂yν
kl

yκ
q .

Note that in the notation of Equation (11),
(

Pijkl
σν

)T
=
(

∂pi
σ/∂yν

jkl

)
and the maximal rank is equal

to mn. The matrix
(

∂pij
σ /∂yν

kl

)
is symmetric in the indices kl and therefore the maximal rank of the

matrix is equal to mn (n + 1) /2, i.e., the number of independent pij
σ is mn (n + 1) /2. Contrary to the

situation in Hamilton–De Donder theory, the functions pij
σ are not symmetric in the indices ij.

If we suppose that the matrix (19) has maximal rank, then

ψ3 = (xk, yν, yν
k , yν

kl , yν
klm)→ (xi, yσ, yσ

i , pi
σ, pij

σ , zB) = χ (22)

is a coordinate transformation over an open set U ⊂ V2, where zB, 1 ≤ B ≤ mn(n2 + 3n − 1)/6
are arbitrary coordinate functions. We call it a generalized Legendre transformation and χ (22) the
generalized Legendre coordinates. Accordingly, H, pi

σ, pij
σ are called generalized Hamiltonian and generalized

momenta, respectively.
Writing the Lepagean equivalent ρ (9) and (10) in the generalized Legendre transformation, we get

ρ = −Hω0 + pj
σdyσ ∧ωj + pij

σ dyσ
i ∧ωj

+ 2cklij
σν yσ

j

(
∂yν

kl

∂pq
β

dpq
β +

∂yν
kl

∂pqr
β

dpqr
β +

∂yν
kl

∂zB dzB

)
∧ωi

+ aij
σνdyσ ∧ dyν ∧ωij + bkij

σνdyσ ∧ dyν
k ∧ωij (23)

+ cklij
σν dyσ ∧

(
∂yν

kl

∂pq
β

dpq
β +

∂yν
kl

∂pqr
β

dpqr
β +

∂yν
kl

∂zB dzB

)
∧ωij + µ̄,

where yν
kl are functions of variables pi

σ, pij
σ , zB.

The Hamilton Equation (5) in these generalized Legendre coordinates take a rather complicated
form, see Appendix A.
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An interesting case. However, if dη = 0, where

η = 2cklij
σν yσ

j dyν
kl ∧ωi + aij

σνdyσ ∧ dyν ∧ωij + bkij
σνdyσ ∧ dyν

k ∧ωij (24)

+ cklij
σν dyσ ∧ dyν

kl ∧ωij + dklij
σν dyσ

k ∧ dyν
l ∧ωij

then the Hamilton Equation (5) have the following form

∂H
∂yκ

= −∂pj
κ

∂xj ,
∂H
∂yκ

q
= −∂pqj

κ

∂xj ,
∂H
∂pq

κ

=
∂yκ

∂xq ,
∂H
∂pqr

κ

=
∂yκ

q

∂xr ,
∂H
∂zM = 0.

Contrary to the Hamilton–De Donder theory, the regularity conditions of the Lepagean
form (9), (10) and regularity of the generalized Legendre transformation (21) do not coincide.
The regularity conditions do not guarantee the existence of the Legendre transformation. On the other
hand, the existence of the Legendre transformation does not guarantee the regularity. But we can
see that the existence of a Legendre transformation (22) guarantees a weaker relation: π3,1 ◦ δ = J1γ,
where γ is an extremal of λ.

Theorem 3. Let dim X ≥ 2. Let λ = Lω0 be a second order Lagrangian with the Euler–Lagrange form (7)
or (8), and α = dρ with ρ of the form (9), and Equation (10) be the expression of its Lepagean equivalent in a
fiber chart (V, ψ), ψ = (xi, yσ).

Suppose that µ̄ is closed and ρ admits Legendre transformation (22) defined by Equation (18).
Then π3,1 ◦ δ = J1γ, where γ is an extremal of λ.

Proof. The form ρ admits Legendre transformation, so the matrix(
∂pi

σ

∂yν
jkl

)
=

(
∂2L

∂yν
ij∂yσ

kl
+ 2 cklij

νσ

)
Sym(jkl)

has maximal rank equal to mn. In the notation of (11),
(

Pijkl
σν

)T
=
(

∂pi
σ/∂yν

jkl

)
. Acordingly,

from Proposition 2, we obtain π3,1 ◦ δ = J1γ, where γ is an extremal of λ.

5. Examples

The above results (the regularity conditions and the Legendre transformation) can be directly
applied to concrete Lagrangians. Let us consider the following examples as an illustration. For a given
Lagrangian, we find three different Hamiltonian systems satisfying:

(a) The Hamiltonian system is strongly regular and the Legendre transformation exists. (See examples of
strongly regular systems in [17]).

(b) The Hamiltonian system is strongly regular and the Legendre transformation does not exist.
(c) The Legendre transformation exists and the Hamiltonian system is not regular but satisfies a

weaker condition.

Let X = R2, Y = R2 × R2 (i.e., n = 2, m = 2). Denote (V, ψ), ψ = (xi, yσ) a fibered chart on
R2 × R2. Let us consider the following Lagrangian

λ = Lω0, L = y1
11y2

22 − y1
22y2

11 (25)

which satisfies (7).
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5.1. Example (a)

View of the above considerations, we take a Lepagean equivalent ρ (of the Euler–Lagrange form
E of Lagrangian (25)) in the form α = dρ, where ρ is (9), (10).

We consider functions aij
σν, bkij

σν, cijkl
σν (see Equation (10)) on an open set U ⊂ J3R2 with the

conditions y1
1 6= 0, y1

2 6= 0, y1
12 6= 0 and y2

12 6= 0.

The functions aij
σν are arbitrary. The functions bijp

κσ are linear in variables yν
kl . We denote dijpkl

κσν =

∂bijp
κσ /∂yν

kl . Suppose that dijpkl
κσν are constant functions, then we have only eight non-zero constants

and we put d12112
112 = d12121

112 = −d11212
112 = −d11221

112 = 1 and d22112
121 = d22121

121 = −d21212
121 = −d21221

121 = 1.

Similarly, we assume that cijkl
σν are constant functions. We have again only eight non-zero constants,

and we choose c1212
11 = c2112

11 = −c2121
11 = −c1221

11 = 1 and c1212
22 = c2112

22 = −c2121
22 = −c1221

22 = 1. Then the
Lepagean equivalent takes the form

ρ1 = θλ + aij
σνωσ ∧ων ∧ωij − 4y1

12ω2 ∧ω1
2 ∧ω12 − 4y2

12ω1 ∧ω2
1 ∧ω12

+ 4 ω1 ∧ω1
12 ∧ω12 + 4 ω2 ∧ω2

12 ∧ω12 + µ̄,

where µ̄ is an arbitrary closed n-form.
The matrices (11), (12), and (21) take the following form

(Pijkl
σν )T =

1
3


0 0 0 0 4 4 4 0 0 0 0 0 1 1 1 0
0 −4 −4 −4 0 0 0 0 0 −1 −1 −1 0 0 0 0
0 0 0 0 −1 −1 −1 0 0 0 0 0 4 4 4 0
0 1 1 1 0 0 0 0 0 −4 −4 −4 0 0 0 0

 ,

and

Qijkl
σν =



0 0 0 0 0 0 0 1
0 −2 −2 0 0 0 0 0
0 2 2 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 −2 −2 0
0 0 0 0 0 2 2 0
1 0 0 0 0 0 0 0


,

and

(
∂pij

σ

∂yν
kl

)
=



0 0 0 0 0 −y1
2 −y1

2 1
0 0 0 0 0 y1

1 y1
1 0

0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 −y1

2 −y1
2 0 0 0 0 0

1 y1
1 y1

1 0 0 0 0 0


,

We can easily see that rank(Pijkl
σν ) = 4 and rank(Qijkl

σν ) = 6. Since y1
1 6= 0 and y1

2 6= 0

rank
(

∂pij
σ /∂yν

kl

)
= 6. The form α = dρ is strongly regular and a generalized Legendre

transformation exists.
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The generalized Hamiltonian and momenta (18) take the form

H = −y1
12y2

22 + y1
22y2

11 − y1
1(8y1

122 + y2
122) + y1

2(8y1
112 + y2

122)

− y2
1(8y2

122 + y1
122) + y2

2(8y2
112 + y1

122)− 4a12
12(y

1
1y2

2 − y1
2y2

1),

p1
1 = y2

122 − 8y1
122 + 4a12

12y2
2, p1

2 = −y1
122 + 8y2

122 − 4a12
12y1

2, (26)

p2
1 = −y2

112 − 8y1
112 − 4a12

12y2
1, p2

2 = y1
112 + 8y2

112 + 4a12
12y1

1,

p11
1 = y2

22 − 4y1
2y2

12, p12
1 = 4y1

1y2
12, p22

1 = −y2
11,

p22
2 = y1

11 + 4y1
1y1

12, p21
2 = −4y1

2y1
12, p22

1 = −y1
22.

We have only six independent generalized momenta pij
σ . We note that p21

1 = p12
2 = 0.

5.2. Example (b)

For the given Lagrangian (25), we consider another Hamiltonian system on an open set U ⊂ J3R2

ρ2 = θλ + aij
σνωσ ∧ων ∧ωij + bkij

σνωσ ∧ων
k ∧ωij

+ 4 ω1 ∧ω1
12 ∧ω12 + 4 ω2 ∧ω2

12 ∧ω12 + µ̄,

where aij
σν, bkij

σν are arbitrary constant functions satisfying Equation (10) and µ̄ is an arbitrary closed
n-form.

We can easily see that matrices (11) and (12) have the same form as in Example (a), i.e.,
the Hamiltonian system is strongly regular. The matrix (21) takes the form

(
∂pij

σ

∂yν
kl

)
=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


,

and rank
(

∂pij
σ /∂yν

kl

)
= 4. Therefore the generalized Legendre transformation does not exist.

5.3. Example (c)

On an open set U ⊂ J3R2 where y1
1 6= 0, y1

2 6= 0, y1
12 6= 0 and y2

12 6= 0, the Lepagean equivalent
takes the form

ρ3 = θλ + aij
σνωσ ∧ων ∧ωij − 4y1

12ω2 ∧ω1
2 ∧ω12 − 4y2

12ω1 ∧ω2
1 ∧ω12

+ 4 ω1 ∧ω1
12 ∧ω12 + µ̄,

where µ̄ is an arbitrary closed n-form and aij
σν are arbitrary functions satisfying Equation (10).

It is easy to see that rank
(

∂pij
σ /∂yν

kl

)
= 6 and the matrix has the same form as in Example (a).



Mathematics 2018, 6, 163 12 of 15

The matrices (11) and (12) take take the form

(Pijkl
σν )T =

1
3


0 0 0 0 4 4 4 0 0 0 0 0 1 1 1 0
0 −4 −4 −4 0 0 0 0 0 −1 −1 −1 0 0 0 0
0 0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

 ,

Qijkl
σν =



0 0 0 0 0 0 0 1
0 −2 −2 0 0 0 0 0
0 2 2 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


,

and rank(Pijkl
σν ) = 4 and rank(Qijkl

σν ) = 5. The Hamiltonian system is not regular but it is holonomic up
to first order and the generalized Legendre transformation exists (see Theorem 3).

6. Conclusions

This paper presents a generalization of classical Hamiltonian field theory on a fibered manifold.
The regularization procedure of the first order Lagrangians proposed by Krupkova and Smetanová
is applied to the case of a third order Hamiltonian system satisfying the conditions (7) or (8).
Hamilton equations are created from the Lepagean equivalent whose order of contactness is more than
2-contact (contrary to the Hamilton p2-equations in [16]). The generalized Legendre transformation
was studied and the generalized momenta pij

σ 6= pji
σ were found. The theory was illustrated using

examples of Hamilton systems satisfying:

(a) The Hamiltonian system is strongly regular and the Legendre transformation exists.
(b) The Hamiltonian system is strongly regular and the Legendre transformation does not exist.
(c) The Legendre transformation exists and the Hamiltonian system is not regular but satisfies a

weaker condition.

Contrary to the standard approach, where all afinne and many quadratic Lagrangians are singular,
we show that these Lagrangians are regularizable, admit Legendre transformation, and provide
Hamilton equations that are equivalent to the Euler–Lagrange equations (i.e., they do not contain
constraints). Within this setting, a proper choice of a Lepagean equivalent can lead to a “regularization”
of a Lagrangian. The method proposed in this article is appropriate for the regularization of 2nd order
Lagrangians (e.g., scalar curvature Lagrangians). The proposed procedure is different from [6,13,15]
since it does not change order of the Lepagean equivalent .

Funding: This research was funded by the Institute of Technology and Business in České Budějovice (project No.
IGS201805—Innovation of mathematical part of study programs).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Hamilton Equations (5) with dµ̄ = 0 (9) in Legendre coordinates take the following explicit form:
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∂H
∂yκ = − ∂pj

κ

∂xj + 2 ∂cklij
σν

∂yκ yσ
j

(
∂yν

kl
∂pq

β

∂pq
β

∂xi +
∂yν

kl
∂pqr

β

∂pqr
β

∂xi +
∂yν

kl
∂zB

∂zB

∂xi

)
+4 ∂aij

κν

∂xj
∂yν

∂xi + 6
(

∂aij
σν

∂yκ

)
Alt(κνσ)

∂yσ

∂xi
∂yν

∂xj + 4 ∂aij
κν

∂yσ
q

∂yσ
q

∂xi
∂yν

∂xj

+4 ∂aij
κν

∂pq
σ

∂pq
σ

∂xi
∂yν

∂xj + 4 ∂aij
κν

∂pqr
σ

∂pqr
σ

∂xi
∂yν

∂xj + 4 ∂aij
κν

∂zM
∂zM

∂xi
∂yν

∂xj

+2 ∂bkij
κν

∂xj
∂yν

k
∂xi + 4

(
∂bij

σν
∂yκ

)
Alt(κσ)

∂yσ

∂xi
∂yν

k
∂xj

+2
(

∂bkij
κν

∂yσ
q

)
Alt((νk)(σq))

∂yν
k

∂xi
∂yσ

q

∂xj + 2 ∂bkij
κν

∂pq
σ

∂yν
k

∂xi
∂pq

σ

∂xj

+2 ∂bkij
κν

∂pqr
σ

∂yν
k

∂xi
∂pqr

σ

∂xj + 2 ∂bkij
κν

∂zM
∂yν

∂xi
∂zM

∂xj

+2 ∂cklij
κν

∂xj

(
∂yν

kl
∂pq

β

∂pq
β

∂xi +
∂yν

kl
∂pqr

β

∂pqr
β

∂xi +
∂yν

kl
∂zB

∂zB

∂xi

)
+4
(

∂cklij
σν

∂yκ

)
Alt(κσ)

∂yσ

∂xi

(
∂yν

kl
∂pq

β

∂pq
β

∂xj +
∂yν

kl
∂pqr

β

∂pqr
β

∂xj +
∂yν

kl
∂zB

∂zB

∂xj

)

+2 ∂cklji
κν

∂yσ
q

∂yσ
q

∂xi

(
∂yν

kl
∂pq

β

∂pq
β

∂xj +
∂yν

kl
∂pqr

β

∂pqr
β

∂xj +
∂yν

kl
∂zB

∂zB

∂xj

)
+2 ∂cklji

κν

∂pq
σ

∂pq
σ

∂xi

(
∂yν

kl
∂pq

β

∂pq
β

∂xj +
∂yν

kl
∂pqr

β

∂pqr
β

∂xj +
∂yν

kl
∂zB

∂zB

∂xj

)
+2 ∂cklji

κν

∂pq
σ

∂pq
σ

∂xi

(
∂yν

kl
∂pq

β

∂pq
β

∂xj +
∂yν

kl
∂pqr

β

∂pqr
β

∂xj +
∂yν

kl
∂zB

∂zB

∂xj

)
+2 ∂cklji

κν

∂pqr
σ

∂pqr
σ

∂xi

(
∂yν

kl
∂pq

β

∂pq
β

∂xj +
∂yν

kl
∂pqr

β

∂pqr
β

∂xj +
∂yν

kl
∂zB

∂zB

∂xj

)
+2 ∂cklji

κν

∂zM
∂zM

∂xi

(
∂yν

kl
∂pq

β

∂pq
β

∂xj +
∂yν

kl
∂pqr

β

∂pqr
β

∂xj +
∂yν

kl
∂zB

∂zB

∂xj

)

(A1)

∂H
∂yκ

q
= −∂pqj

κ

∂xj + 2ckliq
κν

(
∂yν

kl

∂pq
β

∂pq
β

∂xi +
∂yν

kl

∂pqr
β

∂pqr
β

∂xi +
∂yν

kl
∂zB

∂zB

∂xi

)
+ 2

∂aij
σν

∂yκ
q

∂yσ

∂xi
∂yν

∂xj

+2
∂bqij

σκ

∂xj
∂yσ

∂xi + 2

(
∂bqij

σκ

∂yν

)
Alt(νσ)

∂yν

∂xi
∂yσ

∂xj + 4

(
∂bkij

σν

∂yκ
q

)
Alt((κq)(νk))

∂yσ

∂xi

∂yν
k

∂xj

+2
∂bqij

σκ

∂pk
ν

∂pk
ν

∂xi
∂yσ

∂xj + 2
∂bqij

σκ

∂pkl
ν

∂pkl
ν

∂xi
∂yσ

∂xj + 2
∂bqij

σκ

∂zM
∂zM

∂xi
∂yσ

∂xj (A2)

+2
∂cklji

σν

∂yκ
q

∂yσ

∂xi

(
∂yν

kl

∂pq
β

∂pq
β

∂xj +
∂yν

kl

∂pqr
β

∂pqr
β

∂xj + 2
∂yν

kl
∂zB

∂zB

∂xj

)
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∂H
∂pq

κ

=
∂yκ

∂xq + 2
∂cklji

σν

∂xi

∂yν
kl

∂pq
κ

yσ
j + 2

∂cklji
σν

∂yβ

∂yν
kl

∂pq
κ

∂yβ

∂xi yσ
j + 2

∂cklji
σν

∂yβ
r

∂yν
kl

∂pq
κ

∂yβ
r

∂xi yσ
j

+2
∂cklji

σν

∂yβ
r

∂yν
kl

∂pq
κ

∂pr
β

∂xi yσ
j ++2

∂cklji
σν

∂pq
κ

yσ
j

(
∂yν

kl

∂pq
β

∂pq
β

∂xi +
∂yν

kl

∂pqr
β

∂pqr
β

∂xi +
∂yν

kl
∂zB

∂zB

∂xi

)

+2
∂cklji

σν

∂prs
β

∂yν
kl

∂pq
κ

∂prs
β

∂xi yσ
j + 2

∂cklji
σν

∂zM
∂yν

kl

∂pq
κ

∂zM

∂xi yσ
j + 2cklji

σν
∂yν

kl

∂pq
κ

∂yσ
j

∂xi

+2
∂aij

σν

∂pq
κ

∂yσ

∂xi
∂yν

∂xj + 2
∂bkij

σν

∂pq
κ

∂yσ

∂xi

∂yν
k

∂xj + 2

(
∂cklij

σν

∂yβ

)
Alt(βν)

∂yβ

∂xi
∂yσ

∂xj

∂yν
kl

∂pq
κ

+2
∂cklji

σν

∂xj

∂yν
kl

∂pq
κ

∂yσ

∂xi + 2
∂cklij

σν

∂pq
κ

∂yσ

∂xi

(
∂yν

kl

∂pq
β

∂pq
β

∂xj +
∂yν

kl

∂pqr
β

∂pqr
β

∂xj +
∂yν

kl
∂zB

∂zB

∂xj

)

+2
∂cklij

σν

∂yβ
r

∂yν
kl

∂pq
κ

∂yβ
r

∂xi
∂yσ

∂xj + 2
∂cklij

σν

∂pr
β

∂yν
kl

∂pq
κ

∂pr
β

∂xi
∂yσ

∂xj + 2
∂cklij

σν

∂prs
β

∂yν
kl

∂pq
κ

∂prs
β

∂xi
∂yσ

∂xj

+2
∂cklij

σν

∂zM
∂yν

kl

∂pq
κ

∂zM

∂xi
∂yσ

∂xj

∂H
∂pqr

κ

=
∂yκ

q

∂xr + 2
∂cklji

σν

∂xi

∂yν
kl

∂pqr
κ

yσ
j + 2

∂cklji
σν

∂yβ

∂yν
kl

∂pqr
κ

∂yβ

∂xi yσ
j + 2

∂cklji
σν

∂yβ
s

∂yν
kl

∂pqr
κ

∂yβ

∂xi yσ
j

+2
∂cklji

σν

∂ps
β

∂yν
kl

∂pqr
κ

∂ps
β

∂xi yσ
j + 2

∂cklji
σν

∂pst
β

∂yν
kl

∂pqr
κ

∂pst
β

∂xi yσ
j

+2
∂cklij

σν

∂pqr
κ

∂yσ

∂xi

(
∂yν

kl
∂ps

β

∂ps
β

∂xi +
∂yν

kl
∂pst

β

∂pst
β

∂xi +
∂yν

kl
∂zB

∂zB

∂xi

)
yσ

j

+2
∂cklji

σν

∂zM
∂yν

kl

∂pqr
κ

∂zM

∂xi yσ
j + 2cklji

σν
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