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Abstract: The aim of this paper is to report some recent results regarding second order Lagrangians
corresponding to 2nd and 3rd order Euler-Lagrange forms. The associated 3rd order Hamiltonian
systems are found. The generalized Legendre transformation and geometrical correspondence between
solutions of the Hamilton equations and the Euler-Lagrange equations are studied. The theory is
illustrated on examples of Hamiltonian systems satisfying the following conditions: (a) the Hamiltonian
system is strongly regular and the Legendre transformation exists; (b) the Hamiltonian system is strongly
regular and the Legendre transformation does not exist; (c) the Legendre transformation exists and the
Hamiltonian system is not regular but satisfies a weaker condition.
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1. Introduction

Hamiltonian theory on manifolds has been intensively studied since the 1970s (see e.g., [1-10]).
The aim of this paper is to apply an extension of the classical Hamilton—Cartan variational theory
on fibered manifolds, recently proposed by Krupkova [11,12], to the case of a class of second order
Lagrangians and third order Hamiltonian systems. In the generalized Hamiltonian field theory,
one can associate different Hamilton equations corresponding to different Lepagean equivalents of
the Euler-Lagrange form with a variational problem represented by a Lagrangian. With the help of
Lepagean equivalents of a Lagrangian, one obtains an intrinsic formulation of the Euler-Lagrange
and Hamilton equations. The arising Hamilton equations and regularity conditions depend not only
on a Lagrangian but also on some “free” functions, which correspond to the choice of a concrete
Lapagean equivalent. Consequently, one has many different “Hamilton theories” associated to a given
variational problem. A regularization of some interesting singular physical fields, the Dirac field,
the electromagnetic field, and the Scalar Curvature Lagrangian by various methods has been studied
in [3,6,13-15]. Some second order Lagrangians have also been discussed in [16-18].

The multisymplectic approach was proposed in [2,4,8,10]. This approach is not well adapted to
study Lagrangians that are singular in the standard sense. Note that an alternative approach to the
study of “degenerated” Lagrangians (singular in the standard sense) is the constraint theory from
mechanics (see [19,20]) and in the field theory [21].

In this work, we are interested in second order Lagrangians that give rise to Euler-Lagrange
equations of the 3rd order or non-affine 2nd order. All these Lagrangians are singular in the standard
Hamilton-De Donder theory and do not have a Legendre transformation. Examples of these
Lagrangians are afinne (scalar curvature Lagrangians) and many Lagrangians quadratic in second
derivatives. However, in the generalized setting, the question on existence of regular Hamilton
equations makes sense. For such a Lagrangian, we find the set of Lepagean equivalents (respectively
family of Hamilton equations) that are regular in the generalized sense, as well as a generalized
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Legendre transformation. We note that the generalized momenta pf,j satisfy pg # p{,i . We study
the correspondence between solutions of Euler-Lagrange and Hamilton equations. The regularity
conditions are found (ensuring that the Hamilton extremals are holonomic up to the second order).
These conditions depend on a choice of a Hamiltonian system (i.e., on a choice of “free” functions).
We study the correspondence between the regularity conditions and the existence of the Legendre
transformation. Contrary to the classical approach, the regularity conditions do not guarantee the
existence of a generalized Legendre transformation. On the other hand, the generalized Legendre
conditions do not guarantee regularity. The existence of a generalized Legendre transformation
guarantees that the Hamilton extremals are holonomic up to the first order. The regularization
procedure and properties of the Legendre transformation are illustrated in three examples. We consider
three different Hamiltonian systems for a given Lagrangian. The first system is regular and
possesses a generalized Legendre transformation. The second Hamiltonian system is regular and a
generalized Legendre transformation does not exist. The last one is not regular but a generalized
transformation exists.

Throughout the paper, all manifolds and mappings are smooth and the summation convention
is used. We consider a fibered manifold (i.e., surjective submersion) 7 : ¥ — X, dim X = n,
dim Y = n 4+ m. Its rjet prolongation is 7r, : J'Y — X, r > 1 and its canonical jet projections
are M 2 J'Y — JkY, 0 < k < r (with the obvious notation J°Y = Y). A fibered chart on Y
(respectively associated fibered chart on J"Y) is denoted by (V, ¢), ¢ = (xi, YY) (respectively (V;, ),
Yr= (Y0 Y0 )

A vector field § on J"Y is called 71, -vertical (respectively 7, ; -vertical) if it projects onto the zeroth
vector field on X (respectively on JkY).

Recall that every g-form # on J"Y admits a unique (canonical) decomposition into a sum of g-forms
on J™t1Y as follows [7]:

q
T =hy+ ) pi,
k=1

where hy is a horizontal form, called the horizontal part of 7, and pyr, 1 < k < g, is a k-contact part
of 7.
We use the following notations:

wo = dx' ANdx> A A dx", w; = ia/axiWQ, wij = ia/ax]'a)i,

and

oo 4,0 T I o — 4,0 o i
w’ =dy’ — Y; dx/, ..., Wiliyoip = dyiliz...ik - yiliz...ikjdx]'
For more details on fibered manifolds and the corresponding geometric structures, we refer to
sources such as [22].

2. Lepagean Equivalents and Hamiltonian Systems

In this section we briefly recall the basic concepts on Lepagean equivalents of Lagrangians
according to Krupka [7,23], and on Lepagean equivalents of Euler-Lagrange forms and generalized
Hamiltonian field theory according to Krupkova [11,12].

By an r-th order Lagrangian we shall mean a horizontal n-form A on J'Y.

An n-form p is called a Lepagean equivalent of a Lagrangian A if (up to a projection) hp = A and pydp
is a 71,11 p-horizontal form.
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For an r-th order Lagrangian we have all its Lepagean equivalents of order (2r — 1) characterized
by the following formula

p=0+nu 1)

where O is a (global) Poincaré—Cartan form associated to A and y is an arbitrary n-form of order of
contactness > 2, i.e,, such that hy = pjpu = 0. Recall that for a Lagrangian of order 1, ® = 6, where
8, is the classical Poincaré—Cartan form of A. If r > 2, © is no longer unique, however there is a
non-invariant decomposition

0 =0+ pldv, (2)
where
r—1 [r—k—1 | oL
6y =Lwo+) | ), (=1)dpdp, . dp =i Wjr.j N Wir @)
k=0 \ =0 Jidkp1e-pii

and v is an arbitrary at least 1-contact (n — 1)-form (see [7,23]).

A closed (n + 1)-form «a is called a Lepagean equivalent of an Euler-Lagrange form E = E,w’ A wy if
pia = E.

Recall that the Euler-Lagrange form corresponding to an r-th order A = Lwy is the following
(n +1)-form of order < 2r:

14py - .
W 5 LOYGypy

By definition of a Lepagean equivalent of E, one can find Poincaré lemma local forms p such that
« = dp, where p is a Lepagean equivalent of a Lagrangian for E. The family of Lepagean equivalents of
E is also called a Lagrangian system and denoted by [«]. The corresponding Euler-Lagrange equations
now take the form

Iyi ;e = 0 for every rm—vertical vector field ¢ on Y, 4)

where « is any representative of order s of the class [¢]. A (single) Lepagean equivalent « of E on J°Y is
also called a Hamiltonian system of order s and the equations

0*izx = 0 for every 7ts—vertical vector field ¢ on J°Y 5)

are called Hamilton equations. They represent equations for integral sections ¢ (called Hamilton extremals)
of the Hamilton ideal, generated by the system D, of n-forms iza, where ¢ runs over 71;-vertical vector
fields on J°Y. Also, considering 77, 1-vertical vector fields on | st1Y, one has the ideal D;H of n-forms
iz& on J**1Y, where & (called principal part of x) denotes the at most 2-contact part of a. Its integral
sections, which annihilate all at least 2-contact forms, are called Dedecker—Hamilton extremals. It holds
that if 7 is an extremal then its s-prolongation (respectively (s + 1)-prolongation) is a Hamilton
(respectively Dedecker-Hamilton) extremal, and (up to projection) every Dedecker—-Hamilton extremal
is a Hamilton extremal (see [11,12]).

Denote by rg the minimal order of Lagrangians corresponding to E. A Hamiltonian system « on
J?Y, s > 1, associated with E is called regular if the system of local generators of DZH contains all the
n-forms

a X o X o .
w /\Cl}l, (U(-l /\a)l), ceey w(jlm]m—l

j A wi), (6)
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where (...) denotes symmetrization in the indicated indices. If a is regular then every
Dedecker-Hamilton extremal is holonomic up to the order rj, and its projection is an extremal. (In the
case of first order Hamiltonian systems, there is a bijection between extremals and Dedecker—-Hamilton
extremals). « is called strongly reqular if the above correspondence holds between extremals and
Hamilton extremals. It can be proved that every strongly regular Hamiltonian system is regular, and it
is clear that if « is regular and such that « = & then it is strongly regular. A Lagrangian system is
called regular (respectivelystrongly regular) if it has a regular (respectively strongly regular) associated
Hamiltonian system [11].

3. Regular and Strongly Regular 3rd Order Hamiltonian Systems

In this section we discuss a part of variational theory which is singular in the standard sense.
In general, a second order Lagrangian gives rise to an Euler-Lagrange form on J*Y. We shall consider
second order Lagrangians A that satisfy one of the following conditions:

(1) The corresponding Euler-Lagrange form is of order 3, i.e., the Lagrangians satisfy the conditions

*L )
— =0, (7)
(ay ;?jay i Sym(ijkl)

where Sym (ijkl) means symmetrization in the indicated indices.
(2) The Euler-Lagrange expressions E, (4) of A are second order and “non-affine” in the
second derivatives

9%E,
Y} 9V

#0 ®)

for some indices i, j,k, I, 0, v, k.

In what follows, we shall study Hamiltonian systems corresponding to a special choice of a
Lepagean equivalent of such Lagrangians, namely « of order 3 and « = dp, where

oL oL oL
p = Lwo+ | = —dx W ANwj+ =—w) Nw; +fi 9)
(ay;’ ayﬁ) g

iy kil
+ tlngg ANw’ A wjj + bgl,lwg A w}é N wij

+ C’f,lvl]w” A wiy A wij,
with an arbitrary at least 3-contact n-form ji and functions al,, b(k#, clffllﬁ] dependent on variables xk, v",
Y, y§; and satisfying the conditions

ij _ jiooh_ ij . pkij _ kji .
Agy = — Agy, Agy = — Ayg; bey = — bgy; (10)
Kij  Ikij Klij _ Klji
Cov =Cov, Cov = — Cgy -

Theorem 1. Ref. [18] Let dim X > 2. Let A = Lwy be a second order Lagrangian with the Euler—Lagrange
form (7) or (8), and « = dp with p of the form (9), (10), be its Lepagean equivalent. Assume that the matrix

ikl aZL Klii
P = (ayv.aya +2cw”) : G
ij= 7kl Sym(jkl)
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with mn® rows (respectively mn columns) labelled by o jkl (respectively vi) has maximal rank equal to mn and
the matrix

2
ikl _ (0L, Kij (12)
ov (ayzay%l ov ’

with mn? rows (respectively mn? columns) labelled by cij (respectively vkl) has maximal rank equal to
mn (n+1) /2. Then the Hamiltonian system a« = dp is regular (i.e. every Dedecker—Hamilton extremal
is of the form 71135 0 6p = J?vy, where 7y is an extremal of A).

Moreover, if fi is closed then the Hamiltonian system « = dp is strongly regular (i.e., every Hamilton
extremal is of the form 1135 0 8 = J%7y, where vy is an extremal of A).

Proof. Explicit computation & = dp gives:

0°L 9 . oL i
i - 7 - - 4. — ) v o )
s = Eqw” Awo+ (E)yfayv By fay% Zd]aw> w' AN w’ A w;
?L L d ;oL ik Ki\ v . o
’ (ayi’ay}é ayeoy, oy gy i A J N @@
0L o , oL , Wi
+ <ay¢ay%l ~ oy ey 2(b5)) sym(y — 2djcor) | wiy Aw” Aw;
1 l]
0°L Klii
- <a 7Y + 2C(717> ‘U]Vkl Aw? A wj
Ty sym(jk1)
+ —4(bot) ate((oj) (k) | Wi N WT A w;
(aygjay; ov) Alt((of)(vk)) i i
0°L Klii 94l
U Alt(xov)

dall, . obri
By’;, oy’

ij paij
+ Gl + s W AW AW’ A wi;
ayK aya Pq ]
pa Sym(pq) pa Alt(ov)

abqij abkif aCWif
+ <8y[:<]/> “’UA“’ZA“’zA“’iJ'JF(ayZU_ a;’i
P/ Alt((xp)(vq)) P k- / sym(pq)

Klij
acmi]

g ) Alt((xpq) (vk1))

w"Aw”/\w’//\wij+< ) wy Aw? Aw' A w;j
Alt(ov)

w"/\w%/\wquwij—< w”/\w;q/\w%l/\wij—i-dﬁ,

where Alt((...) ... (...)) means alternation in the indicated multi-indices and Sym(...) means
symmetrization in the indicated indices.
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In the notation of Equations (11) and (12), the principal part of « (13) takes the form

L9 oL
dyfoy’ oy oy

( 92L 2L o . oL

& = E;w” Awg+ < — 2d]-af,jv> W’ A w’ A w;

k
ay a]/ ay”ayk ay" d] 8_1/‘7 +4a 11/157 - 2d b l]> Wl AW A w
azL ) oL i
(o~ gy 20w =20 Jonar
1 l]

2 iy

% - 4(553)14”((0]')(1/@) wi Aw A w;
SHEIp

i ijkl

Py ]kl/\w /\wﬂrQwa)kl/\w;’/\wi,

Expressing the generators of the ideal D}, we obtain

[ 5 & PL 9 , 0L i
la%a = Eywo+2 (W — w ]ayl] Zd] m/> w” A\ wj
9%L 9°L 9 oL " i
(%”f’y‘k’ “ayay, oy agy e Mt @i n
L J oL kil klij o
B (ay voyg, oYY ]WZV]- = 2(bve)sym() — 2djcuo | wig A wi
+ Pl]kl ]kl N wi,
%L %L 9 oL y
i —d; 4zk_2dbl] TN s 15
l%“ (8]/1 a]/k ayoay 3 ayV ]aya +4ay, w w; (15)
PL kij zk]l
+ 2 (ay a]/k 4(bav)Alt((aj)(yk)) w ANw; + Quor ?'l A wj,
L 9 . oL il .
ia 8 = | S gyrdige — 20 20, ) @ oo,
ayZl (ayo—ayzl ayZl ]ayzj av Sym(kl) ] ov 1
+ 1]klw A w,
li& — PZ]klw A w;
Wi

Since the ranks of the matrices P,l,];d, 3’,51 are maximal then the w? A w; and w‘(’j A\ w;y are generators

of the ideal D%. For Dedecker-Hamilton extremals, we obtain dp 7132 0 6p = J?7, where v is a section
of 7. Substituting this into Equation (5), we get

Op'i o & = Eyo Py
oy’
for the 3rd order Euler-Lagrange form (7) and
Op'i o & = EyoJy
ay’

for the 2nd order Euler-Lagrange form (8) and +y is an extremal of A.
Let us prove strong regularity. We have to show that under our assumptions, for every section ¢
satisfying the Hamilton equations, 713, 0 § = J?7, where v is a solution of the Euler-Lagrange equations
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of the Lagrangian A. Assuming dji = 0, we obtain 5*(la/ay” a) = 6*(P, l]klw Aw;) =0,ie., 6w’ =0

”klw /\w) =0.

by the rank condition on Pg]l, ,ie, d(y" 04)/9x' = y7 o 4. Hence, 5* (13/(9%0() = 6* (
Note that the matrix Q:n]fl is symmetric in indices kI and its maximal rank is mn(n + 1) /2. Due to

the rank condition on Q%l, 5w’ =0, ie, (a(y‘-f o 5)/8xi)
] ] Sym(if)
obtained above mean that every solution of Hamilton equations is holonomic up to the second order,
i.e., we can write 7135 0 6 = J?7, where 7y is a section of 77. Now, the equations J3 (7139 0 §)* (i3 /aygl") =0

= _1/;.7]. 0. The conditions for §

are satisfied identically and the last set of Hamilton equations—]3(7r39 0 )* (i3 /ayr&) = O—take the
form E, o J>y = 0 (7) or E; o J>y = 0 (8), proving that v is an extremal of A. [J

In the next propositon we study a weaker condition which the Hamilton extremals satisfy.
Theorem 2. Let dim X > 2. Let A = Lwy be a second order Lagrangian with the Euler-Lagrange form (7)

or (8), and o = dp with p of the form (9) and (10) be its Lepagean equivalent. Assume that fi is closed and
the matrix

ikl 0L Klij
Pl = <8yf48yz, +2 ¢y ) o (16)
] Sym(jkl)

with mn® rows (respectively mn columns) labelled by o, j, k, I (respectively vi) has rank mn .
Then every Hamilton extremal 6 : T(U) C V — J2Y of the Hamiltonian system « = dp is of the form

3100 = Tty (ze, W = y7), where <y is an extremal of A.

Proof. The assertion of Theorem 2 follows from the proof of Theorem 1. [

4. Legendre Transformation

In this section the Hamiltonian systems admitting Legendre transformation are studied. By the
Legendre transformation we understand the coordinate transformation onto J3Y.
Writing the Lepagean equivalent p (9), (10) in the form of a noninvariant decomposition, we get

p = —Hwo+p), dy Awj+ pgdyl A wj+ 2cH i dyjg A wi (17)
+ awdy /\dy A wij + b dy A dyy A\ wij
where
JL JL ii
H = -L+ <aya d]ay> y +7yl] gvy(iry}/
kij klij oo
= 2(bov) sym(xiy¥i Yij — 2(Cov’ ) sym(kij)¥i Yijo
i oL oL
Po = a7 —diz—= a7 +4“avyz +2(b UV)Sym(kl)ykz +2(Cav )Sym(klz)yklz' (18)
]
.. oL "
pe = W +2byay%'
Moreover, if the matrix
Iy Iph
ayy, oy
o ®

ay Ilél ay%l m
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has maximal rank, then
(', v, ¥, o pd)

is part of coordinate system.

We note that the functions p ! do not depend on the variables yj;,,. Then the submatrix of the
Jacobi matrix of the transformation takes the form

o

ay1§]1, Yim ] (20)
Pc 0

WY

The above matrix has maximal rank if and only if the matrices (9p},/ ayy,,,) and (8;7 / aykl> have
maximal ranks. Explicit computations lead to

i 2 ‘

( i ) = ( rL +2c{§{}m> , (21)
Yiim 9Yim Vi Sym (klm)
apl _ 2L Habi‘gﬁyk'
WYy WGIy, 9 Cl

Note that in the notation of Equation (11), ( P kl) (apf, / ay]v,d) and the maximal rank is equal
to mn. The matrix (8;70 / ayk,) is symmetric in the indices kI and therefore the maximal rank of the

matrix is equal to mn (n + 1) /2, i.e., the number of independent pf,j ismn (n+1) /2. Contrary to the
situation in Hamilton-De Donder theory, the functions p are not symmetric in the indices ij.
If we suppose that the matrix (19) has maximal rank, then

w3 = (X5 v%, vl Yim) = (Y7 Y Pl pd 2P) = x (22)

is a coordinate transformation over an open set U C V,, where z8, 1 < B < mn(n?> +3n—1)/6
are arbitrary coordinate functions. We call it a genemlzzed Legendre transformation and x (22) the
generalized Legendre coordinates. Accordingly, H, p., pd are called generalized Hamiltonian and generalized
momenta, respectively.

Writing the Lepagean equivalent p (9) and (10) in the generalized Legendre transformation, we get

P = —Hw0+pgdy A w;j —i—padyZ A w;j
Kij o [ O a4 Wi, qr a]/kl
+ 2c/ Y7 | =5dpg+ dp, + dz8 | A w;
o <8Pqﬁ Popp T T e l
+ am,dy A dy” /\wl]+bk”dy Ady} A wjj (23)

klz] a]/kl q aykl qr a]/kl _
+ AT dp dp -+ d A wii + i,
Y (8 /3 B 2 %r B dz 3.B Z ]

where yy, are functions of variables P, pg, zB
The Hamilton Equation (5) in these generalized Legendre coordinates take a rather complicated
form, see Appendix A.
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An interesting case. However, if di7 = 0, where

N o= 20k yj dy A w;i + agvdy” Ady" A\ wij + bf%dy” A dyp A wij (24)
+ c];l,fjdy” A dyg N wij + d];lvijdyz Ady] A wj
then the Hamilton Equation (5) have the following form

OH  apk oaH  op¥ oH oy 9H Yy 9H

ays  ox dys  ow apl  oxVopl  ox’ 9zM

Contrary to the Hamilton-De Donder theory, the regularity conditions of the Lepagean
form (9), (10) and regularity of the generalized Legendre transformation (21) do not coincide.
The regularity conditions do not guarantee the existence of the Legendre transformation. On the other
hand, the existence of the Legendre transformation does not guarantee the regularity. But we can
see that the existence of a Legendre transformation (22) guarantees a weaker relation: 731 06 = Jlv,
where v is an extremal of A.

Theorem 3. Let dim X > 2. Let A = Lwy be a second order Lagrangian with the Euler—Lagrange form (7)
or (8), and a = dp with p of the form (9), and Equation (10) be the expression of its Lepagean equivalent in a

fiber chart (V, ), ¥ = (x', y”).
Suppose that fi is closed and p admits Legendre transformation (22) defined by Equation (18).
Then 1131 0 8 = J1vy, where vy is an extremal of A.

Proof. The form p admits Legendre transformation, so the matrix

apff ) ( 2L klij
= = T2 cy0
< ay}'/kl %Y ivfayk’ Sym(jkl)

A\ T .
has maximal rank equal to mn. In the notation of (11), (ngl) = (apg,/ aijk,). Acordingly,

from Proposition 2, we obtain 7131 0§ = | Ly, where 7 is an extremal of A. [

5. Examples

The above results (the regularity conditions and the Legendre transformation) can be directly
applied to concrete Lagrangians. Let us consider the following examples as an illustration. For a given
Lagrangian, we find three different Hamiltonian systems satisfying:

(@) The Hamiltonian system is strongly regular and the Legendre transformation exists. (See examples of
strongly regular systems in [17]).

(b) The Hamiltonian system is strongly regular and the Legendre transformation does not exist.

(c) The Legendre transformation exists and the Hamiltonian system is not regular but satisfies a
weaker condition.

Let X = R%, Y = R?> x R? (i.e., n = 2, m = 2). Denote (V, ¢), ¥ = (!, y7) a fibered chart on
R? x R2. Let us consider the following Lagrangian

A = Lwo, L = y11y5 — Yooyt (25)

which satisfies (7).
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5.1. Example (a)

View of the above considerations, we take a Lepagean equivalent p (of the Euler-Lagrange form

E of Lagrangian (25)) in the form a = dp, where p is (9), (10).

We consider functions affjv, bf%, c(%l (see Equation (10)) on an open set U C J?R? with the
conditions y! # 0, y3 # 0, yl, # 0and y3, # 0.

The functions aév are arbltrary The functions b are linear in variables y;;. We denote d%,]fl =
abK]‘f /9yy,. Suppose that dm/ are constant functions, then we have only eight non-zero constants

and we put dﬁ%n 412121 _ dﬂ%lZ — d11221 = 1and d%%%u d2212l — d21212 d21221 —

112 =
Similarly, we assume that cm/ are constant functions. We have again only eight non-zero constants,
1212 _ 2112 _ _ 2121 _ _ 1221 _ 212 _ 2112 — _ 2121 — _ 121
and we choose ¢;7'“ = cf; 11 —c177 = landcy5” = ¢, —C5 —cy5~ = 1. Then the

Lepagean equivalent takes the form

01 = 0, + al,w’ Aw' A wjj — dylyw? A wd A wip — 4ol Aw? Awr
+ 4wl ANwiy Awip +4 WP Awi, Awyy + i,

where fi is an arbitrary closed n-form.
The matrices (11), (12), and (21) take the following form

0 0 0 0 4 4 400 0 0 01110
(pijkz)T:1 0 4 4 -4 0 0 000 -1 -1 -10000
o 3o o o 0 -1 -1 -100 0 0 04 440|
0o 1 1 1 0 0 000 -4 -4 —-40000
and
0o 0 0 0 0 0 01
0 -2 -2 0 0 0 00
0 2 2 0 0 0 00
ijg |0 0O O 0 -1 0 00
10 o 0-1 0 0 00|
0 0 0 0 0 -2 -20
o0 0o 0 0 0 2 20
1 0 0 0O 0 0 00O
and
0o 0 0 0 0 -y —yi1
0 0 0 0 0 wyi wyi o0
) o 0 0 0 0 0 00
sy |0 o o0 0 -1 0 00
awy,) (o o o -1 0o o 00|’
o 0 0 0 0 0 00
0 -y -y» 0 0 0 00
1 vy 0 0 o0 00

We can easily see that rank(P, l]kl) = 4 and rank( l]kl) = 6. Since y} # 0 and y} #0
rank (ap / 8ykl) = 6. The form a« = dp is strongly regular and a generalized Legendre

transformation exists.
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The generalized Hamiltonian and momenta (18) take the form

H = —yhys + ynyi — yi8vin + Yin) + v2(8yin + Yixn)
_ 2(82 T )+ 2(82 1yl )—41112(12—12)
Y1(0Y122 T Y122) T Y2\SY112 T Y122 12\Y1Y2 — Y2Yy1),

Pi = Yim—8viyn +4ai5y3, p3 = —Yixn +8yin — 4413y, (26)
Pl = —Yin — 8yl — 4413y, Ps = Yin + 8yin + 4aliy,
pi' = Vn -4y P =41V PT = Vi
2 1 1.1 21 1.1 .2 1
py" = yut4vivie P2 = —4l1 P1T = Y-

We have only six independent generalized momenta pf,j . We note that p?! = pi? = 0.

5.2. Example (b)

For the given Lagrangian (25), we consider another Hamiltonian system on an open set U C J3R?

02 = 0, + adyw’ A w' A wij + blﬂw” NN

+ 4wt Nwly Nwpp +4 WP AWk Awp + 7,

where a?,, bf% are arbitrary constant functions satisfying Equation (10) and ji is an arbitrary closed
n-form.

We can easily see that matrices (11) and (12) have the same form as in Example (a), i.e.,
the Hamiltonian system is strongly regular. The matrix (21) takes the form

000 0 0001
000 0 0000
) 000 0 0000
sl | 000 0 -1000
awy) |ooo0o -1 0000 [’
000 0 0000
000 0 0000
100 0 000O0O

and rank (8;7? / ay;,) = 4. Therefore the generalized Legendre transformation does not exist.

5.3. Example (c)

On an open set U C J°R? where y} # 0, y3 # 0, yl, # 0 and y3, # 0, the Lepagean equivalent
takes the form

3= O)+ al,w’ A w' A wjj — dyl,w? A wd Awip — 4yl Aw? Awrp
+ Ao Ao Ao+,

where ji is an arbitrary closed n-form and af,jv are arbitrary functions satisfying Equation (10).
It is easy to see that rank (8;93 / ay%l) = 6 and the matrix has the same form as in Example (a).
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The matrices (11) and (12) take take the form

0 0 O O 4 4 400 0 O 01110
(P"fkl)T:1 0 -4 -4 -4 0 0 00O0O-1 -1 -10000
ov 3o o 0 O -1 -1 -100 0 0 O0O0O0OO0OTO0O]|"
o 1 1 1 0o 0 00O O O O0O0OO0OTO
0 0 0O 0 0001
0 -2 -2 0 0000
0 2 2 0 0000
ik | 0O 0O 0 0 -10 00
v~ 10 0o 0 -1 00001
0O 0 O 0O 0O0O0O
0 0 O 0O 0O0O00O
1 0 0 0O 0000

and rank(Pé]Z( l) = 4 and rank( Zﬁl) = 5. The Hamiltonian system is not regular but it is holonomic up

to first order and the generalized Legendre transformation exists (see Theorem 3).

6. Conclusions

This paper presents a generalization of classical Hamiltonian field theory on a fibered manifold.
The regularization procedure of the first order Lagrangians proposed by Krupkova and Smetanova
is applied to the case of a third order Hamiltonian system satisfying the conditions (7) or (8).
Hamilton equations are created from the Lepagean equivalent whose order of contactness is more than
2-contact (contrary to the Hamilton p2-equations in [16]). The generalized Legendre transformation
was studied and the generalized momenta py # ply were found. The theory was illustrated using
examples of Hamilton systems satisfying:

(a) The Hamiltonian system is strongly regular and the Legendre transformation exists.

(b) The Hamiltonian system is strongly regular and the Legendre transformation does not exist.

(c) The Legendre transformation exists and the Hamiltonian system is not regular but satisfies a
weaker condition.

Contrary to the standard approach, where all afinne and many quadratic Lagrangians are singular,
we show that these Lagrangians are regularizable, admit Legendre transformation, and provide
Hamilton equations that are equivalent to the Euler-Lagrange equations (i.e., they do not contain
constraints). Within this setting, a proper choice of a Lepagean equivalent can lead to a “regularization”
of a Lagrangian. The method proposed in this article is appropriate for the regularization of 2nd order
Lagrangians (e.g., scalar curvature Lagrangians). The proposed procedure is different from [6,13,15]
since it does not change order of the Lepagean equivalent .

Funding; This research was funded by the Institute of Technology and Business in Ceské Bud&jovice (project No.
1GS201805—Innovation of mathematical part of study programs).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Hamilton Equations (5) with dji = 0 (9) in Legendre coordinates take the following explicit form:
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