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Abstract: The field of graph theory plays a vital role in various fields. One of the important areas in
graph theory is graph labeling used in many applications such as coding theory, X-ray crystallography,
radar, astronomy, circuit design, communication network addressing, and data base management.
In this paper, we discuss the totally irregular total k labeling of three planar graphs. If such labeling
exists for minimum value of a positive integer k, then this labeling is called totally irregular total k
labeling and k is known as the total irregularity strength of a graph G. More preciously, we determine
the exact value of the total irregularity strength of three planar graphs.

Keywords: total edge irregularity strength; total vertex irregularity strength; total irregularity
strength; planar graph
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1. Introduction

All graphs considered here are finite, undirected, without loops or multiple edges. Denote by
V(G) and E(G) the set of vertices and the set of edges of a graph G, respectively. Let |V(G)| = n and
|E(G)| = m.

A labeling of a graph is any mapping that sends some set of graph elements to a set of numbers
or colors. Graph labeling provides valuable information used in several application areas (see [1]). It is
interesting to consider labeling the elements of the graph by the elements of a finite field.

For a graph G, we characterize a labeling ζ : V ∪ E→ {1, 2, . . . , k} to be total k-labeling. A total
k-labeling is characterized to be an edge irregular total k−labeling of the graph G if for each two
distinct edges rs and r′s′ their weights φ(r) + φ(rs) + φ(s) and φ(r′) + φ(r′s′) + φ(s′) are distinct. In
addition, total k-labeling is characterized to be a vertex irregular total k-labeling of the graph G if for
each two distinctive vertices r and s their weights wt(r) and wt(s) are distinct. Here, the weight of a
vertex r in G is the sum of the label of r and the labels of all edges incident with the vertex r. The least
k for which the graph G has an edge irregular total k−labeling is called the total irregularity strength
of G, represented by tes(G). Analogously, the minimum k for which the graph G has a vertex irregular
total k−labeling is called the total vertex irregularity strength of G, denoted by tvs(G).
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Chartrand et al. [2] introduced two graph invariants namely irregular assignments and the
irregularity strength. Baca et al. [3] modified these graph invariants and introduced the concept of
total edge irregularity strength and total vertex irregularity strength for a graph G. A simple lower
bound for tes(G) and tvs(G) of a (p, q)—graph G in terms of maximum degree ∆(G) and the minimum
degree δ(G), determine in the following theorems.

Theorem 1. [3] Let G be a finite graph with p vertices, q edges and having maximum degree ∆ = ∆(G),
the upper square brackets represent the ceiling function, and then

tes(G) ≥ max
{⌈

q + 2
3

⌉
,
⌈

∆ + 1
2

⌉}
Theorem 2. [3] Let G be a finite graph with p vertices, q edges, minimum degree δ = δ(G) and maximum
degree ∆ = ∆(G), the upper square brackets represent the ceiling function, and then⌈ p + δ

∆ + 1

⌉
≤ tvs(G) ≤ p + ∆− 2δ + 1

In [4], Ivančo and Jendrol’ posed the following conjecture:

Conjecture 1. [4] Let G be a finite graph with p vertices, q edges, different from K5 with minimum degree
δ = δ(G), maximum degree ∆ = ∆(G), the upper square brackets represent the ceiling function, and then

tes(G) = max
{⌈

q + 2
3

⌉
,
⌈

∆ + 1
2

⌉}
In [5], Nurdin et al. posed the following conjecture:

Conjecture 2. [5] Let G be a connected graph having ni vertices of degree i(i = δ, δ + 1, δ + 2, . . . , ∆), where δ

and ∆ are the minimum and the maximum degree of G, respectively. Moreover, the upper square brackets
represent the ceiling function, and then

tvs(G) = max

{⌈
δ + nδ

δ + 1

⌉
,
⌈

δ + nδ + nδ+1

δ + 2

⌉
, . . . ,

⌈ δ +
∆
∑

i=δ
ni

∆ + 1

⌉}
.

Conjecture 1 has been shown for complete graphs and complete bipartite graphs [6,7], for
hexagonal grid graphs [8] , for toroidal grid [9], for generalized prism [10], for strong product of
cycles and paths [11], for categorical product of two cycles [12], for zigzag graphs [13] and for strong
product of two paths [14].

Conjecture 2 has been verified for for circulant graphs [15].
Combining both total edge irregularity strength and total vertex irregularity strength notions,

Marzuki et al. [16] introduced a new irregular total k-labeling of a graph G, which is required to be at
the same time both vertex and edge irregular as follows:

Definition 1. A total labeling φ : V ∪ E → {1, 2, . . . , k} is called totally irregular total k-labeling
of G if every two distinct vertices u and v in V(G) satisfy wt(u) 6= wt(v), and every two distinct
edges u1u2 and v1v2 in E(G) satisfy wt(u1u2) 6= wt(v1v2), where wt(u) = φ(u) + ∑

uv∈E(G)
φ(uv) and

wt(u1u2) = φ(u1) + φ(u1u2) + φ(u2). The minimum k for which a graph G has a totally irregular total
k-labeling is called the total irregularity strength of G, denoted by ts(G).
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Marzuki, et al. [16] gave a lower bond of ts(G) as follows:

For every graph G, ts(G) ≥ max{tes(G), tvs(G)} (1)

Ramdani and Salman [17] showed that the lower bound in Equation (1) for some cartesian product
graphs is tight. Besides that, they determined the total irregularity strength of cycles and paths. For
more details, see [18–20]. In [21], Ahmad et al. found the exact value of total irregularity strength of
generalized Petersen graph.

Example 1. For illustration, the concept of the totally irregular total k-labeling, we give an example from
our recent paper [21] in which we show the totally irregular total 10-labeling for generalized Petersen graph
P(9, 2) (see Figure 1).
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Figure 1. A totally irregular total 10—labeling for P(9, 2).

The weights for all vertices and the weights for all edges under the totally irregular total
10-labeling are given in Figure 2.

Now, from Figure 2, it is easy to check that edge weights are different and represented by blue.
On the other hand, the vertex weights are different and represented by black.

In this paper, we investigate the total irregularity strength of planar graphs.
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Figure 2. The weights of vertices and edges for P(9, 2).
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2. The Planar Graph Tn

Siddiqui introduced the planar graph Sn in [22] and computed the tes(Sn), tvs(Sn). The planar
graph Tn (see Figure 3) is obtained from the planar graph Sn by adding new edges xiyi+1 and having
the same vertex set. The planar graph Tn has

V(Tn) = {xi; yi; zi; 1 ≤ i ≤ n}

E(Tn) = {zizi+1; yiyi+1 : 1 ≤ i ≤ n} ∪ {xiyi; yizi; xiyi+1; yi+1zi : 1 ≤ i ≤ n}

Clearly, the planar graph Tn has 3n vertices and 6n edges. More preciously, we call the cycle
induced by {zi : 1 ≤ i ≤ n} the inner cycle, cycle induced by {yi : 1 ≤ i ≤ n} the outer cycle, and the
set vertices {xi : 1 ≤ i ≤ n}, the outer vertices. All subscripts are taken under modulo n. In the next
theorem, we determine the total irregularity strength of the planar graph Tn.
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Figure 3. The planar graph Sn and Tn.

Theorem 3. Let Tn, n ≥ 3 be a planar graph. Then, ts(Tn) =
⌈

6n+2
3

⌉
.

Proof. Since |E(Tn)| = 6n, from Theorem 1, tes(Tn) ≥
⌈

6n+2
3

⌉
. In addition, Tn has n vertices of degree

2, n vertices of degree 4, and n vertices of degree 6; thus, from Theorem 2, we get tvs(Tn) ≥ d 2n+2
4 e.

From Equation (1), we get ts(Tn) ≥
⌈

6n+2
3

⌉
. Now, we show that ts(Tn) ≤

⌈
6n+2

3

⌉
. For this, we define a

total labeling φ from V(Tn) ∪ E(Tn) into
{

1, 2, . . . ,
⌈

6n+2
3

⌉}
and compute the vertex weight and edge

weights in the following way.

Let k = d 6n+2
3 e. For 1 ≤ i ≤ n, we have

φ(xi) = φ(yi) = i, φ(zi) = k, φ(xiyi) = 1, φ(yiyi+1) = k + 1− i, φ(yizi) = n + 1, φ(yi+1zi) = k,
wt(xiyi) = 2i + 1, wt(xiyi+1) = 2i + 2, wt(yizi) = k + n + 1 + i, wt(yi) = k + 5n + 8− i,

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
n + 1, for i = n

wt(yiyi+1) =

{
k + 2 + i, for 1 ≤ i ≤ n− 1
k + 2, for i = n
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φ(zizi+1) =



k + 1− i, for 1 ≤ i ≤ n− 3
n + 3, for i = n− 2
n + 4, for i = n− 1
n + 1, for i = n, n is even
n + 2, for i = n, n is odd

wt(yi+1zi) =

{
2k + 1 + i, for 1 ≤ i ≤ n− 1
2k + 1, for i = n

wt(zizi+1) =


3k + 1− i, for 1 ≤ i ≤ n− 3
2k + 5 + i, for n− 2 ≤ i ≤ n− 1
2k + 2 + i, for i = n, n is odd
2k + 1 + i, for i = n, n is even

wt(xi) =

{
2 + i, for 1 ≤ i ≤ n− 1
2n + 2, for i = n

wt(zi) =


3k + 2n + 2, for i = 1, n is even
3k + 2n + 3, for i = 1, n is odd
2k + 5n + 6− 2i, for 2 ≤ i ≤ n− 3
2k + 4n + 7− i, for n− 2 ≤ i ≤ n

Now, the weight of the edges and vertices of Tn under the labeling φ are distinct. It is easy to
check that there are no two edges of the same weight and there are no two vertices of the same weight.
Thus, φ is a totally irregular total k−labeling. We conclude that ts(Tn) = d 6n+2

3 e, which complete the
proof.

3. The Planar Graph Rn (Pentagonal Circular Ladder)

In [23], Bača defined the prism Dn (Circular ladder) for n ≥ 3. It is a cubic graph which can
be defined as the cartesian product P2 × Cn on a path on two vertices with a cycle on n vertices.
Prism Dn, n ≥ 3 is considered of n−cycle y1, y2, y3, . . . , yn, an inner n−cycle x1, x2, x3, . . . , xn, and a
set of n spokes yizi, i = 1, 2, . . . , n, |V(Dn| = 2n, |E(Dn| = 3n. The planar graph (pentagonal circular
ladder) Rn (see Figure 4) is obtained from the graph of prism Dn by adding a new vertex xi between yi
and yi+1, for i = 1, 2, 3, .., n. The planar graph (pentagonal circular ladder) Rn has

V(Rn) = {xi; yi; zi : 1 ≤ i ≤ n}

E(Rn) = {zizi+1; 1 ≤ i ≤ n} ∪ {xiyi; yizi; xiyi+1; 1 ≤ i ≤ n}
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Figure 4. The planar graph Rn(Pentagonal Circular Ladder).
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For our purpose, we call the cycle induced by {zi : 1 ≤ i ≤ n} the inner cycle, and the cycle
induced by {yi : 1 ≤ i ≤ n} ∪ {xi : 1 ≤ i ≤ n} the outer cycle. All subscripts are taken under modulo
n. In the next theorem, we determine the total irregularity strength of the planar graph Rn.

Theorem 4. Let Rn, n ≥ 4 be a planar graph. Then, ts(Rn) =
⌈

4n+2
3

⌉
.

Proof. Since |E(Rn)| = 4n, from Theorem 1, tes(Rn) ≥
⌈

4n+2
3

⌉
. In addition, Rn has n vertices of

degree 2, 2n vertices of degree 3; thus, from Theorem 2, we get tvs(Tn) ≥ d 3n+2
4 e. From Equation (1),

we get ts(Rn) ≥
⌈

4n+2
3

⌉
. Now, we show that ts(Rn) ≤

⌈
4n+2

3

⌉
. For this, we define a total labeling φ

from V(Rn) ∪ E(Rn) into
{

1, 2, . . . ,
⌈

4n+2
3

⌉}
and compute the vertex weight and edge weights in the

following way.

Let k = d 4n+2
3 e and 1 ≤ i ≤ n.

For n = 4, we have,

φ(xi) = i, φ(yi) = i, φ(zi) = k, φ(xiyi) = 1, φ(x1y2) = 1, φ(x2y3) = 1, φ(x3y4) = 1, φ(x4y1) = 6,
φ(y1z1) = 5, φ(y2z2) = 2, φ(y3z3) = 4, φ(y4z4) = 4, φ(zizi+1) = 2+ i, wt(xiyi) = 1+ 2i, wt(x1y2) = 4,
wt(x2y3) = 6, wt(x3y4) = 8, wt(x4y1) = 11, wt(x1) = 3, wt(x2) = 4, wt(x3) = 5, wt(x4) = 11,
wt(y1) = 13, wt(y2) = 6, wt(y3) = 9, wt(y4) = 10, wt(z1) = 20, wt(z2) = 15, wt(z3) = 19,
wt(z4) = 21,

For n = 5, we have,

φ(xi) = i, φ(yi) = i, φ(zi) = k− 1, φ(xiyi) = 1, φ(x1y2) = 1, φ(x2y3) = 1, φ(x3y4) = 1, φ(x4y5) = 1,
φ(x5y1) = 6, φ(y1z1) = 5, φ(y2z2) = 5, φ(y3z3) = 5, φ(y4z4) = 5, φ(y5z5) = 8, φ(z1z2) = 3,
φ(z2z3) = 4, φ(z3z3) = 5, φ(z4z4) = 7, φ(z5z5) = 8, wt(xiyi) = 1 + 2i, wt(xiyi+1) = 2 + 2i, wt(x1) = 3,
wt(x2) = 4, wt(x3) = 5, wt(x4) = 6, wt(x5z) = 12, wt(y1) = 13, wt(y2) = 9, wt(y3) = 10, wt(y4) = 11,
wt(y5) = 15, wt(z1) = 23, wt(z2) = 19, wt(z3) = 21, wt(z4) = 24, wt(z5) = 30,

For n = 7, we have,

φ(yi) = i, φ(z1) = 8, φ(z2) = 9, φ(z3) = 10, φ(z4) = 11, φ(z5) = 12, φ(z6) = 13, φ(z7) = 14,
φ(z8) = 14, φ(z9) = 14, φ(z10) = 14, φ(z1z2) = 7, φ(z2z3) = 7, φ(z3z4) = 7, φ(z4z5) = 7, φ(z5z6) = 7,
φ(z6z7) = 12, φ(z7z8) = 13, φ(z8z9) = 14, φ(z9z10) = 12, φ(z10z1) = 12, wt(z1) = 41, wt(z2) = 37,
wt(z3) = 38, wt(z4) = 39, wt(z5) = 40, wt(z6) = 46, wt(z7) = 53, wt(z8) = 55, wt(z9) = 54,
wt(z10) = 52, φ(yizi) = k,

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
4, for i = n

wt(xi) =

{
2 + i, for 1 ≤ i ≤ n− 1
26, for i = n

wt(yi) =


30, for i = 1
n + 7 + i, for 2 ≤ i ≤ n− 1
31, for i = n

φ(xiyi) =

{
1, for 1 ≤ i ≤ n− 1
k− n + 2, for i = n

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
k, for i = n
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wt(xiyi) =

{
1 + 2i, for 1 ≤ i ≤ n− 1
22, for i = n

wt(xiyi+1) =

{
2 + 2i, for 1 ≤ i ≤ n− 1
21, for i = n

wt(yizi) =

{
2i + 2k− 2(n−1)

3 − 1, for 1 ≤ i ≤ k
2

2k + 1 + i, for k+2
2 ≤ i ≤ n

wt(zizi+1) =



2n + 2 + 2i, for 1 ≤ i ≤ 5
4n− 1, for i = 6
k + 2n + i, for i = 7, 8
4n, for i = 9
3n + 4, for i = 10

For n = 10 , we have,

φ(yi) = i, φ(z1) = 6, φ(z2) = 7, φ(z3) = 8, φ(z4) = 9, φ(z5) = 10, φ(z6) = 10, φ(z7) = 10, φ(z1z2) = 5,
φ(z2z3) = 5, φ(z3z4) = 5, φ(z4z5) = 10, φ(z5z6) = 10, φ(z6z7) = 8, φ(z7z1) = 8, wt(x1) = 3,
wt(x2) = 4, wt(x3) = 5, wt(x4) = 6, wt(x5z) = 7, wt(x6z) = 8, wt(x7) = 19, wt(y1) = 22, wt(y2) = 14,
wt(y3) = 15, wt(y4) = 16, wt(y5) = 17, wt(y6z) = 18, wt(x7) = 23, wt(z1) = 29, wt(z2) = 27,
wt(z3) = 28, wt(z4) = 34, wt(z5) = 40, wt(z) = 38, wt(z7) = 36, φ(yizi) = k,

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
6, for i = n

φ(xiyi) =

{
1, for 1 ≤ i ≤ n− 1
k− n + 2, for i = n

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
k, for i = n

wt(xiyi) =

{
1 + 2i, for 1 ≤ i ≤ n− 1
16, for i = n

wt(xiyi+1) =

{
2 + 2i, for 1 ≤ i ≤ n− 1
15, for i = n

wt(yizi) =

{
2i + 2k− 2n

3 − 1, for 1 ≤ i ≤ k+2
2

2k + i, for k+4
2 ≤ i ≤ n

wt(zizi+1) =


2n + 2 + 2i, for 1 ≤ i ≤ k

2 − 2
3n + 4 + i, for k+2

2 ≤ i ≤ n− 2
k + 2n + 4, for i = n− 1
k + 2n, for i = n

For n ≥ 6 and n 6= 7, 10, we have φ(yi) = i, φ(yizi) = k,

φ(xiyi) =

{
1, for 1 ≤ i ≤ n− 1
k− n + 2, for i = n

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
k, for i = n
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Case 1. when n ≡ 0 (mod 3)

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
k−3

2 , for i = n

φ(zi) =

{
k− 2n

3 − 1 + i, for 1 ≤ i ≤ k+1
2

k, for k+3
2 ≤ i ≤ n

φ(zizi+1) =


k+1

2 for 1 ≤ i ≤ k+1
2 − 2

n + 2, for i = k+1
2 − 1

k− n + i, for k+1
2 ≤ i ≤ n− 1

k− 1, for i = n

wt(xi) =

{
i + 2, for 1 ≤ i ≤ n− 1
3k− 5n

3 , for i = n

wt(yi) =


2k + 2, for i = 1
4(k− n)− 1 + i, for 2 ≤ i ≤ n− 1
2k + 3, for i = n

wt(zi) =



7(k+1)
2 − 2n

3 − 4, for i = 1
3k− 2n

3 + i, for 2 ≤ i ≤ k−3
2

5(k+1)
2 + n− 1, for i = k−1

2
3k + 2 + i, for k+1

2 ≤ i ≤ k+3
2

4(k− 1)− 2n + 3 + 2i, k+5
2 ≤ i ≤ n− 1

4k− 2, for i = n

wt(xiyi) =

{
2i + 1, for 1 ≤ i ≤ n− 1
2k− 2n

3 , for i = n

wt(xiyi+1) =

{
2i + 2, for 1 ≤ i ≤ n− 1
2k− 2n

3 − 1, for i = n

wt(yizi) =

{
2i + 2k− 2n

3 − 1, for 1 ≤ i ≤ k+1
2 − 1

2k + i, for k+1
2 ≤ i ≤ n

wt(zizi+1) =


2n + 2 + 2i, for 1 ≤ i ≤ k+1

2 − 2
3n + 3 + i, for k+1

2 − 1 ≤ i ≤ n− 1
k + 2n + 1, for i = n

Case 2. when n ≡ 1 (mod 3)

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
k− (2n+1)

3 − 1, for i = n

φ(zi) =

{
k− 2n+1

3 + i, for 1 ≤ i ≤ k
2

k, for k
2 + 1 ≤ i ≤ n

φ(zizi+1) =


k
2 , for 1 ≤ i ≤ k

2 − 2
n + 2, for i = k

2 − 1
k− n + 1 + i, for k

2 ≤ i ≤ n− 1
k− 2, for i = n
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wt(xi) =

{
i + 2, for 1 ≤ i ≤ n− 1
3k− 5n+1

3 + 1, for i = n

wt(yi) =


2k + 2, for i = 1
4(k− n) + i, for 2 ≤ i ≤ n− 1
2k + 3, for i = n

wt(zi) =



7k
2 −

2n+1
3 − 1, for i = 1

3k− 2n+1
3 + i, for 2 ≤ i ≤ k

2 − 2
5k
2 + n + 1, for i = k

2 − 1
3k + 3 + i, for k

2 ≤ i ≤ k
2 + 1

4k− 2n + 1 + 2i, for k
2 + 2 ≤ i ≤ n− 1

4k− 2, for i = n

wt(xiyi) =

{
2i + 1, for 1 ≤ i ≤ n− 1
2k− 2n+1

3 + 1, i = n.

wt(xiyi+1) =

{
2i + 2, 1 ≤ i ≤ n− 1
2k− 2n+1

3 , for i = n

wt(yizi) =

{
2i + 2k− 2n+1

3 , for 1 ≤ i ≤ k
2

2k + i, for k
2 + 1 ≤ i ≤ n

wt(zizi+1) =


2n + 2 + 2i, for 1 ≤ i ≤ k

2 − 2
3n + 3 + i, for k

2 − 1 ≤ i ≤ n− 1
k + 2n, for i = n

Case 3. when n ≡ 2 (mod 3)

φ(xi) =

{
i, for 1 ≤ i ≤ n− 1
k−4

2 , for i = n

φ(zi) =

{
k− 2n+2

3 − 1 + i, for 1 ≤ i ≤ k+2
2

k, for k+4
2 ≤ i ≤ n

φ(zizi+1) =


k
2 + 1, for 1 ≤ i ≤ k

2 − 1
n + 2, for i = k

2
k− n− 1 + i, for k

2 + 1 ≤ i ≤ n− 1
k, for i = n

wt(xi) =

{
i + 2, for 1 ≤ i ≤ n− 1
3k− 5n+5

3 + 1, for i = n

wt(yi) =


2k + 2, for i = 1
4(k− n)− 2 + i, for 2 ≤ i ≤ n− 1
2k + 3, for i = n

wt(zi) =



7k
2 −

2(n+1)
3 + 1, for i = 1

3k− 2(n+1)
3 + 1 + i, for 2 ≤ i ≤ k

2 − 1
5k
2 + n + 2, for i = k

2
3k + 2 + i, for k

2 + 1 ≤ i ≤ k
2 + 2

4k− 2n− 1 + 2i, for k
2 + 3 ≤ i ≤ n− 1

4k− 2, for i = n
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wt(xiyi) =

{
2i + 1, for 1 ≤ i ≤ n− 1
2k + 2n+2

3 , for i = n

wt(xiyi+1) =

{
2i + 2, for 1 ≤ i ≤ n− 1
2k− 2n+2

3 − 1, for i = n

wt(yizi) =

{
2i + 2k− 2n+2

3 − 1, for 1 ≤ i ≤ k
2

2k + i, for k
2 + 1 ≤ i ≤ n

wt(zizi+1) =


2n + 2 + 2i, for 1 ≤ i ≤ k

2 − 1
3n + 3 + i, for k

2 ≤ i ≤ n− 1
k + 2n + 2, for i = n

The weight of the edges and vertices under the labeling φ are distinct. It is easy to check that there
are no two edges of the same weight and there are no two vertices of the same weight. Thus, φ is a
totally irregular total k−labeling. We conclude that ts(Rn) = d 4n+2

3 e, which complete the proof.

4. The Planar Graph Qn

In [23], Bača defined the planar graph (pentagonal circular ladder) Rn. The planar graph Qn

(see Figure 5) is obtained from the planar graph (pentagonal circular ladder) Rn by adding new edges
yiyi+1, ziwi, wiwi+1. The planar graph Qn has

V(Qn) = {xi; yi; zi; wi : 1 ≤ i ≤ n}

E(Qn) = {yiyi+1; wiwi+1; zizi+1; xiyi; xiyi+1; yizi; ziwi : 1 ≤ i ≤ n}

The planar graph Qn has 4n vertices and 7n edges. For our purpose, we call the cycle induced
by {wi : 1 ≤ i ≤ n} the inner cycle, the cycle induced by {zi : 1 ≤ i ≤ n} the middle cycle, the cycle
induced by {yi : 1 ≤ i ≤ n} the outer cycle, and the set of vertices {xi : 1 ≤ i ≤ n} the set of outer
vertices. The subscript n + 1 must be replaced by 1.

x x

x1

x

x

yz

z

y

yy

y

x

y

z

z z1

n-2

n-1 n

n-1

n

n-3

n-2

n-1

n-2

n

1

2

2

3

2

3
z

w3

w2

wn-2

wn-1

wn w1

x4

x3

y4
y
n-3

z4

n-3z w4wn-3

Figure 5. The planar graph Qn.

Theorem 5. Let Qn, n ≥ 4 be a planar graph. Then, ts(Qn) =
⌈

7n+2
3

⌉
.

Proof. Since |E(Qn)| = 7n, from Theorem 1 tes(Qn) ≥
⌈

7n+2
3

⌉
. In addition, Qn has n vertices of degree

2, n vertices of degree 3, n vertices of degree 4 and n vertices of degree 5; thus, from Theorem 2, we get

tvs(Qn) ≥ d 4n+2
6 e. From Equation (1), we get ts(Qn) ≥

⌈
7n+2

3

⌉
. Now, we show that ts(Qn) ≤

⌈
7n+2

3

⌉
.
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For this, we define a total labeling φ from V(Qn) ∪ E(Qn) into
{

1, 2, . . . ,
⌈

7n+2
3

⌉}
and compute the

vertex weight and edge weights in the following way.

Let k = d 7n+2
3 e and 1 ≤ i ≤ n,

φ(xi) = i, φ(yi) = i, φ(zi) = k, φ(xiyi) = 1, wt(xiyi) = 1 + 2i, wt(xiyi+1) = 2 + 2i,
wt(yizi) = 4n + 2 + i, wt(yiyi+1) = 2n + 2 + i, wt(wiwi+1) = 3n + 2 + i,

φ(xiyi+1) =

{
1, for 1 ≤ i ≤ n− 1
n + 1, for i = n

φ(yiyi+1) =

{
2n + 1− i, for 1 ≤ i ≤ n− 1
2n + 1, for i = n

φ(wiwi+1) =

{
i, for 1 ≤ i ≤ n, n is even
i + 1, for 1 ≤ i ≤ n, n is odd

wt(xi) =

{
2 + i, for 1 ≤ i ≤ n− 1
2n + 2, for i = n

Case 1. when n ≡ 0 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3n
2 + 1, φ(yizi) =

5n
3 + 1, φ(zizi+1) =

4n
3 + i, wt(zizi+1) = 2k + 4n

3 + i, wt(zi) =
53n

6 + 3 + i,
wt(wi) =

11n
3 + 2 + i,

φ(ziwi) =

{
7n
6 + 1, for i = 1

13n
6 + 2− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8n

3 + 2, for i = 1
k + 11n

3 + 3− i, for 2 ≤ i ≤ n

wt(yi) =


20n

3 + 5, for i = 1
17n

3 + 6− i, for 2 ≤ i ≤ n− 1
17n

3 + 6, for i = n

Case 2. when n ≡ 1 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3(n−1)

2 + 2, φ(yizi) =
5(n−1)

3 + 3, φ(zizi+1) =
4(n−1)

3 + 2 + i, wt(zizi+1) = 2k + 4(n−1)
3 + 2 + i,

wt(zi) =
53(n−1)

6 + 14 + i, wt(wi) =
11(n−1)

3 + 8 + i,

φ(ziwi) =

{
7(n−1)

6 + 3, for i = 1
13(n−1)

6 + 5− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8(n−1)

3 + 5, for i = 1
k + 11(n−1)

3 + 7− i, for 2 ≤ i ≤ n

wt(yi) =


20(n−1)

3 + 12, for i = 1
17(n−1)

3 + 12− i, for 2 ≤ i ≤ n− 1
17(n−1)

3 + 12, for i = n

Case 3. when n ≡ 2 (mod 6) and 1 ≤ i ≤ n
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φ(wi) =
3(n−2)

2 + 4, φ(yizi) =
5(n−2)

3 + 4, φ(zizi+1) =
4(n−2)

3 + 2 + i, wt(zizi+1) = 2k + 4(n−2)
3 + 2 + i,

wt(zi) =
53(n−2)

6 + 19 + i, wt(wi) =
11(n−2)

3 + 9 + i,

φ(ziwi) =

{
7(n−2)

6 + 3, for i = 1
13(n−2)

6 + 6− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8(n−2)

3 + 7, for i = 1
k + 11(n−2)

3 + 10− i, for 2 ≤ i ≤ n

wt(yi) =


20(n−2)

3 + 18, for i = 1
17(n−2)

3 + 17− i, for 2 ≤ i ≤ n− 1
17(n−2)

3 + 17, for i = n

Case 4. when n ≡ 3 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3(n−3)

2 + 5, φ(yizi) =
5(n−3)

3 + 6, φ(zizi+1) =
4(n−2)

3 + 4 + i, wt(zizi+1) = 2k + 4(n−3)
3 + 4 + i,

wt(zi) =
53(n−3)

6 + 30 + i, wt(wi) =
11(n−3)

3 + 15 + i,

φ(ziwi) =

{
7(n−3)

6 + 5, for i = 1
13(n−3)

6 + 9− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8(n−3)

3 + 10, for i = 1
k + 11(n−3)

3 + 14− i, for 2 ≤ i ≤ n

wt(yi) =


20(n−3)

3 + 25, for i = 1
17(n−3)

3 + 23− i, for 2 ≤ i ≤ n− 1
17(n−3)

3 + 23, for i = n

Case 5. when n ≡ 4 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3(n−4)

2 + 7, φ(yizi) =
5(n−4)

3 + 8, φ(zizi+1) =
4(n−4)

3 + 6 + i, wt(zizi+1) = 2k + 4(n−4)
3 + 6 + i,

wt(zi) =
53(n−4)

6 + 40 + i, wt(wi) =
11(n−4)

3 + 17 + i,

φ(ziwi) =

{
7(n−4)

6 + 6, for i = 1
13(n−4)

6 + 11− i, for 2 ≤ i ≤ n

wt(ziwi) =

{
k + 8(n−4)

3 + 13, for i = 1
k + 11(n−4)

3 + 18− i, for 2 ≤ i ≤ n

wt(yi) =


20(n−4)

3 + 32, for i = 1
17(n−4)

3 + 29− i, for 2 ≤ i ≤ n− 1
17(n−4)

3 + 29, for i = n

Case 6. when n ≡ 5 (mod 6) and 1 ≤ i ≤ n

φ(wi) =
3(n−5)

2 + 8, φ(yizi) =
5(n−5)

3 + 9, φ(zizi+1) =
4(n−5)

3 + 6 + i, wt(zizi+1) = 2k + 4(n−5)
3 + 6 + i,

wt(zi) =
53(n−5)

6 + 46 + i, wt(wi) =
11(n−5)

3 + 22 + i,

φ(ziwi) =

{
7(n−5)

6 + 7, for i = 1
13(n−5)

6 + 13− i, for 2 ≤ i ≤ n
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wt(ziwi) =

{
k + 8(n−5)

3 + 15, for i = 1
k + 11(n−5)

3 + 21− i, for 2 ≤ i ≤ n

wt(yi) =


20(n−5)

3 + 38, for i = 1
17(n−5)

3 + 34− i, for 2 ≤ i ≤ n− 1
17(n−5)

3 + 34, for i = n

The weight of the edges and vertices of Sn under the labeling φ are distinct. It is easy to check that there are
no two edges of the same weight and there are no two vertices of the same weight. Thus, φ is a totally irregular
total k−labeling. We conclude that ts(Qn) = d 7n+2

3 e, which completes the proof.

5. Conclusions

In this paper, we discus the total edge irregular k labeling, total vertex irregular k labeling and
totally irregular total k labeling of planar graphs. We provide exact result of total irregularity strength
ts for the planar graph Tn, the planar graph Rn (Pentagonal Circular Ladder) and the planar graph
Qn. In the future, we are interested in computing the total irregularity strength ts for the other planar
graphs.
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12. Ahmad, A.; Bača, M.; Siddiqui, M.K. On edge irregular total labeling of categorical product of two cycles.

Theory Comp. Syst. 2014, 54, 1–12. [CrossRef]

http://dx.doi.org/10.1016/j.disc.2005.11.075
http://dx.doi.org/10.1016/j.disc.2010.06.041
http://dx.doi.org/10.1016/j.endm.2007.01.041
http://dx.doi.org/10.1016/j.disc.2009.03.006
http://dx.doi.org/10.1016/j.amc.2014.03.001
http://dx.doi.org/10.1007/s00224-013-9470-3


Mathematics 2018, 6, 150 14 of 14

13. Ahmad, A.; Siddiqui, M.K.; Afzal, D. On the total edge irregularity strength of zigzag graphs.
Australas. J. Comb. 2012, 54, 141–149.
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