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Abstract: Let T(X, Y) be the semigroup consisting of all total transformations from X into a fixed
nonempty subset Y of X. For an equivalence relation p on X, let ¢ be the restrictionof pon Y, Ra
cross-section of Y/p and define T(X, Y, p, R) to be the set of all total transformations « from X into Y
such that a preserves both p (if (4,b) € p, then (aa, ba) € p) and R (if r € R, thenra € R). T(X, Y, p, R)
is then a subsemigroup of T(X,Y). In this paper, we give descriptions of Green’s relations on
T(X,Y,p,R), and these results extend the results on T(X,Y) and T(X, p, R) when taking p to be the
identity relation and Y = X, respectively.
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1. Introduction

Let X be a nonempty set and T(X) denote the semigroup containing all full transformations
from X into itself with the composition. It is well-known that T(X) is a regular semigroup, as shown
in Reference [1]. Various subsemigroups of T(X) have been investigated in different years. One of
the subsemigroups of T(X) is related to an equivalence relation p on X and a cross-section R of the
partition X/p (i.e., each p-class contains exactly one element of R), namely T(X, p, R), which was first
considered by Aratjo and Konieczny in 2003 [2], and is defined by

T(X,0,R)={aeT(X): Ra < Rand (a,b) € p = (awr, ba) € p},

where Za = {z« : z € Z}. They studied automorphism groups of centralizers of idempotents. Moreover,
they also determined Green’s relations and described the regular elements of T(X, p, R) in 2004 [3].

Let Y be a nonempty subset of the set X. Consider another subsemigroup of T(X), which was
first introduced by Symons [4] in 1975, called T (X, Y), defined by

T(X,Y) = {ae T(X): Xa € Y},

when Xua denotes the image of . He described all the automorphisms of T(X, Y) and also determined
when T(X1, Y1) is isomorphic to T(X3, Y2). In 2009, Sanwong, Singha and Sullivan [5] described all
the maximal and minimal congruences on T(X, Y). Later, in Reference [6], Sanwong and Sommanee
studied other algebraic properties of T(X, Y). They gave necessary and sufficient conditions for T(X, Y)
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to be regular and also determined Green'’s relations on T(X, Y). Furthermore, they obtained a class of
maximal inverse subsemigroups of T(X,Y) and proved that the set

F(X,Y) ={xe T(X,Y): Xa < Ya}

contains all regular elements in T(X, Y), and is the largest regular subsemigroup of T(X,Y).
From now on, we study the subsemigroup T(X, Y, p, R) of T(X, Y) defined by

T(X,Y,0,R)={aeT(X,Y): Ra € Rand (a,b) € p = (ar, ba) € p},

where p is an equivalence relation on X and R is a cross-section of the partition Y/p in which
pP=pn(YxY). IfY = X, then T(X,Y,p,R) = T(X,p,R); and if p is the identity relation,
then T(X,Y,p,R) = T(X,Y), so we may regard T(X,Y,p,R) as a generalization of T(X,p, R)
and T(X,Y).

Green'’s relations play a role in semigroup theory, and the aim of this paper is to characterize
Green's relations on T(X, Y, p, R). As consequences, we obtain Green'’s relations on T(X, p, R) and
T(X,Y) as corollaries.

2. Preliminaries and Notations

For any semigroup S, let S! be a semigroup obtained from S by adjoining an identity if S has no
identity and letting S! = S if it already contains an identity. Green’s relations of S are equivalence
relations on the set S which were first defined by Green. According to such definitions, we define the
L-relation as follows. For any a,b € S,

aLb if and only if S'a = S'b,

or equivalently, aLb if and only if 2 = xb and b = ya for some x,y € S'.
Furthermore, we dually define the R-relation as follows.

aRb if and only if aS! = bS?,

or equivalently, aRb if and only if a = bx and b = ay for some x,y € S'.
Moreover, we define the J-relation as follows.

aJbif and only if S'aS! = §'bS?,

or equivalently, 2Jb if and only if a = xby and b = uav for some x,y,u,v € S'.

Finally, we define H = L n'R and D = L o R, where o is the composition of relations. Since the
relations £ and R commute, it follows that Lo R = Ro L.

In this paper, we write functions on the right; in particular, this means that for a composition a3,
« is applied first. Furthermore, the cardinality of a set A is denoted by |A|.

For each « € T(X), we denote by ker(a) the kernel of «, the set of ordered pairs in X x X having
the same image under «, that is,

ker(a) = {(a,b) € X x X : an = ba}.
Moreover, the symbol 7t(«) denotes the partition of X induced by the map &, namely
m(a) = {xa~': x e Xa}.

We observe that ker(«) is an equivalence relation on X in which the partition X/ker(«) and 7r(x)
coincide. Moreover, for all a, B € T(X), we have ker(a) = ker(B) if and only if rt(x) = 77(B).
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In addition, if p is an equivalence relation on the set X and 4,b € X, we sometimes write a p b
instead of (a,b) € p, and define ap to be the equivalence class that contains 4, thatis, ap = {b € X : bpa}.

For the subsemigroup T(X,Y,p,R) of T(X) where p is an equivalence relation on X, Y is a
nonempty subset of X and R is a cross-section of Y /¢ in which p = p n (Y x Y), we see thatifa € X
and ap nY # (7, then there exists a unique 7 € R such that a p r, and we denote this element by
rq. Furthermore, we observe that F(X,Y) n T(X,Y, p, R) contains all constant maps whose images
belong to R. This implies that F(X,Y) n T(X, Y, p, R) is a subsemigroup of T(X, Y, p, R), which will be
denoted by F.

An element a in a semigroup S is said to be regular if there exists x € S such that a = axa; and S is
a regular semigroup if every element of S is regular.

In general, T(X, Y, p, R) is not a regular semigroup, so we cannot apply Hall’s Theorem to find
the L-relation and the R-relation on T(X, Y, p, R).

Now, we give an example of a non-regular element in T(X,Y,p,R). Let X = {1,2,3,4,5},
Y ={3,4,5}, X/p = {{1,2},{3,4,5}}, Y/p = {{3,4,5}} and R = {3}. Definea € T(X, Y, p, R) by

oy 1 23 45
~\4 335 5)°
Suppose that « is regular. Then o« = apa for some B € T(X,Y,p,R). We see that
4 =1a = 1(aPa) = (4B)a, which implies that 1 = 48 € Y, a contradiction.

Throughout this paper, the set X we study can be a finite or an infinite set. For convenience, we
will denote T(X,Y,p,R) by T.

3. Green’s Relations on T(X, Y, p, R)

Unlike T(X, p, R), in general T has no identity, as shown in the following example.

Example 1. Let X ={1,2,3,4,5,6},Y = {1,3}, X/p = {{1,2},{3,4},{5,6}}, Y/p = {{1},{3}} and
R = {1,3}. Suppose that e is an identity element in T. Consider « € T defined by

‘= 1 2 3 45 6
11113 3)°
We see that (5e)a = 5(ex) = ba = 3, which implies that 5¢ € {5,6}. This leads to a contradiction,
since both 5 and 6 are not in Y.

Therefore, we use the semigroup T with identity adjoined, given by T!, in studying its
Green'’s relations.

From now on, the notation L, (R, Hy, D,) denote the set of all elements of T which are L-related
(R-related, H-related, D-related) to o, where x € T.

Let o7 and % be families of sets. If for each set A € o there is a set B € # such that A < B, we say
that <7 refines %, denoted by &/ — %.

In what follows, most of the notation used are taken from Reference [3]. For each « € T, we denote
by va the family {(xp)a : x € X} and v& the family {(rp)a : r € R}. Furthermore, we define
v = {(xp)a"!: x e X and (xp)a~! # }. In fact, we see that va = {(rp)a—' : r € Rand (rp)a"! # &}.

The following example describes the above notation.

Example 2. Let X = {1,2,3,4,5,6,7,8},Y = {1,2,3,4,5},X/p = {{1,2,3},{4,5,6},{7,8}}, Y/p =
{{1,2,3},{4,5}} and R = {1,4}. Definex € T by

345 6 7 8

512 3 2 3)°

(12
“\4 5
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It follows that

v = {(xp)a : x € X}, viv = {(rp)a : r € R},
= {{1,2,3}a,{4,5,6}x,{7, 8}a}, = {{1,2,3}a,{4,5}a},
= {{4,5},{1,2,3},{2,3}}, = {{4/5}r{1/2}}/

and

va = {(rp)a”t : r e Rand (rp)a"' # &},
= {{1,2,3}a" !, {4,5}a" 1},
= {{4,5,6,7,8},{1,2,3}}.

3.1. L-Relation and R-Relation

We begin with characterizing the Green’s L-relation on T by using the idea of the proof for the
L-relation on T(X, p, R) (see Reference [3] [Lemma 2.4]) with the idea of restricted range concerned.
The following example shows why the restricted range is involved.

Example 3. Let X = {1,2,3,4,5,6,7,8,9,10}, Y = {1,2,3,4,5,6,7}, X/p = {{1,2,3},{4,5},{6,7,8},
{9,10}}, Y/p = {{1,2,3},{4,5},{6,7}} and R = {1,4, 6}. Define «, B1, B2,y € T as follows.

a712345678910ﬁ712 8 9 10
“"\1 22671227 7]'PP7{1 2 2 6 7]’

,3_12345678910_12
2“1 22674553 3) 7 12
We see that a« # /By forall ' € T, for if & = /' Bq for some ' € T, then 7 = 9a = 9v'By, and thus

10 = 99/ € Y, a contradiction. However, va = {{1,2},{6,7},{7}} — {{1,2,3},{4,5},{6,7}} = vB1.
But a = B, since va — vBy = {{1,2},{6,7},{4,5}}.

W W
~

6 7
1 3

5
5

N W

Theorem 1. Let a, 8 € T. Then « =  for some v € T' if and only if & = B or va < v'B. Consequently,
wLpBifand only if & = B; or va < v'B and vB — va.

Proof. Assume that & = 7 for some o € T'. Suppose that & # B. Thus v # 1. We prove that
va < vB. Let A € va. Then A = (xp)a = ((xp)7y)p for some x € X and (xp)y < rp for some r € R.
Therefore A < (rp)B € v'B, and thus, va < v'B.

Conversely, assume that & = B or va < vB. If & = B, then « = 18, where v = 1 € T'. For the
case va < vIB, we define 7 on each p-class as follows. Let xp € X/p. Then (xp)a < (rp)B < sp for
some 7, s € R (since vt — vl'/B). So, for each a € xp, we choose b, € rp such thatax = b, (ifa =t e R,
we choose b, = r since ta = s = rB) and define ay = b,. From b, € rp for all a € xp we obtain
(xp)y < rp. By the definition of vy, ty = b; = r. Since xp is arbitrary, we conclude that vy € T. To see
thata = yB,leta € X. Then ayp = (ay)f = by = an,and sox = yB. O

If we replace Y with X in Theorem 1, then T = T(X, p, R), and v = va for all « € T. Therefore,
we have the L-relation on T(X, p, R).

Corollary 1. [3] [Theorem 2.5] Let &, B € T(X, p, R). Then a LB if and only if va — v and v — va.

Similarly to T(X, Y), there are two types of £L-classes on T. In order to describe these L-classes,
the following lemma is needed.
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Lemma 1. Let &, B € T be such that va < v'Band v < v. Then a, p € F and Xa = XB.

Proof. For each an € Xa, we have ax € (ap)a < (rp)p for some r € R, since va — v!B. Thus, Xa < YB.
Similarly, XB < Ya, since v < vi. It follows that Xa € YB < XB < Ya € Xa, and thus &, 8 € F and
Xe=Xp. O

Corollary 2. For a € T, the following statements hold.

(i) IfaeF, thenLy ={a} u{BeF:va— vBandvp — v}.
(i) Ifae T\F, then Ly = {a}.

Proof. Let a be any element in T and let 8 € L,. Then a £, which implies that « = ; or va < v and
v < v by Theorem 1.

(i) Assume that a € F. It is clear by Theorem 1 that {a} U { € F: va < vBand v < v} < L,.
To prove the other containment, we consider when f # a. Since BL«, we obtain va < vBand vf < vi.
By Lemma 1, we obtain 8 € F. Thus, we have L, € {a} U{B € F: va = vBand v8 < vi}.

(ii) Assume that L, # {a}. Then there is 7 # a such that yLa, so va <> v¥ and vy < vi.

By Lemmal, wegetae F. [
As a direct consequence of Corollary 2, we obtain the L-relation on T(X,Y) as follows.

Corollary 3. [6] [Theorem 3.2] For a € T(X,Y), the following statements hold.

(i) IfaeF(X)Y) thenLy={BeF(X,Y): Xa =XB}.
() IfaeT(X,Y)\F(X,Y), then L, = {«a}.

Proof. If we replace p with the identity relation in Corollary 2, then T = T(X,Y), F = F(X,Y) n
T(X,Y) = F(X,Y) and Y = R. Therefore, (ii) holds. To see that (i) holds, it suffices to prove that for
x,BeF,

va < vBand vB — v if and only if Xa = XB.

By Lemma 1, we have the “only if” part of the above statement. Now, if #, § € F and Xa = Xp,
then for each xa € Xa there exist y € X and r € Y such that xa = yp = rp, since Xa < XBand € F.
Hence, va = {{xa} : x € X} < {{rB} : r € Y} = v!B. Similarly, by using X8 < Xa and « € F, we obtain
V‘B — VliX. O

As we know, aRB on T(X,Y) (or T(X, p,R)) if and only if ker(a) = ker(B). However, for the
semigroup T, this is true only on F (see Corollary 5). For &, § outside F, there are more terminologies
involved.

The following example shows that there are «, § € T with ker(8) < ker(a) but & # B for all
yeT.

Example 4. Considering «, B1 and By defined in Example 3, we see that ker(f,) < ker(a) but & # B17y
forall vy € T, forif &« = By for some y € T, then 7 = 9a = 9B17y = 6 € R, a contradiction. Moreover,
we have 5B1 = {{1,2,3,6,7,8},{4,5}, {9,10}} — {{1,2,3,6,7,8},{4,5,9,10}} = va but (R;)a =
{1,4,6,9}a € R. In the same way, ker(Ba) < ker(a) but a # Bo7y' forall o' € T, for if « = Bo7y' for some
v e T, then (17/,39") = (1B27,9B827') = (&, %) = (1,7) ¢ p, which is a contradiction. Furthermore,
(RBy 1) < Rbut 5B, = {{1,2,3,9,10}, {4,5},{6,7,8}} > va.

The proof below is completely different from those for T(X, Y) and T(X, p, R), especially when
proving the existence of such y € T.

Theorem 2. Let a, 8 € T. Then « = By for some v € T if and only if ker(B) < ker(«),vB — va and
(RB~1)a < R. Consequently, a R if and only if ker(a) = ker(B), va = vBand (RB~1)a, (Ra~1)B < R.
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Proof. Assume that # = B7 for some ¢ € T!. If v = 1, then « = B and the theorem holds. Now,
we prove for v € T. Let a,b € X be such that ap = bf. Then an = aBy = bpy = ba. Thus,
ker(B) < ker(a). Foreach U € ¥4, UB < rp for some r € R and so Ux = UBy < (rp)y < sp for some
s € R. Thus, U < (sp)a~! € va, which implies that v8 < va. Now, let c € (RB~!)a. Then ¢ = da and
dB =tforsomed e X and t € R. Hence, c = da = dBy = ty € R, thatis, (RB~})a < R.

Conversely, assume that ker(B) < ker(a),v8 < va and (RB~1)a < R. Let ry € R be fixed,
and define y € T on each p-class as follows. Let xp € X/p.

If xp n XB = J, then define ay = r( for all a € xp. Therefore (xp)y = {ro} < rop.

Ifxon XB # &, thenxpnY # . LetxpnY = rp for some r € R. We obtain (rp)f~! # &.
Since vB < va, it follows that (rp)B~! < (sp)a~! for some s € R. Now, let a € xp and consider two
cases. If a ¢ X, then defineay = s e sp. If a € XB, thena e xpnY = rp and a = bp for some
be X. Thus, b e ap™! < (rp)B~! < (sp)a—! which implies ba € sp. Now, we define ay = ba € sp
(this is well-defined since ker(B) < ker(a)). We observe that (xp)y < sp. To see that ry = s, we get
by the definition of y that ry = s if r ¢ XB. For r € XB, we have r = ¢ for some ¢ € X and then
cerB~l < (rp)B~ < (sp)a?!, hence ca € sp n (RB~1)a < R since (RB~1)a < R. Thus, ry = ca = s.

To prove that & = B, let b € X. Then b € XB, and so (bB)p n XB # . By the definition of v,
we obtain by = (bB)y = ba. Therefore, « = py. O

The R-relation on T(X,Y) is as follows.

Corollary 4. [6] [Theorem 3.3] Let a, p € T(X,Y). Then « R if and only if («) = 1t(P).

Proof. If p is the identity relation, then T = T(X,Y), F = F(X,Y) and R = Y. Moreover,
o = {(rp)a"l :reYand (rp)a! # &} = {ra”' : r e Xa} = m(a) forall a € T(X,Y). In addition,
(RB~1)a < R always holds for all a, 8 € T(X,Y) since (RB™")a = (YB~!1)a = Xa < Y = R. Since we
have ker(a) = ker(p) if and only if 7t(a) = 7t(B), it follows from Theorem 2 that a RS if and only if
n(e) = m(B). O

As one might expect, there are two types of the R-classes on T, the one that lies inside F and the
other outside F. To see this, we need the two lemmas below.

Lemma 2. Let o, 5 € F and ker(a) = ker(B). Then the following statements hold.

(i) va=vpB.
(i) (RB Y, (Ra~hHB < R

Proof. (i) Let (rp)a—! € va. Then (rp)a~! = Y A;, where A; is a p-class such that A;x < rp forallie I.
From a € F, there exists A;; such that A; le # (J. Therefore there is s € A;; n R and sa = r. Thus,
sp = t for some t € R, which implies that A; B < tp. We prove that A;f < tp forallie I. Letie I.

If A; nY # &, then there exists u € A; n R and ua = r. It follows that ux = sa, and souff =sp =t
since ker(a) = ker(B). Thus, A;B < tp.

If A;nY = g, then since A;a < 1P, there exists a € A; such that an € rp. From « € F, we obtain
that ba = aw € rp for some b € Y. Hence, b € (rp)oz_1 =y Aj, thatis,be AjnY # J for some j € I,
which implies A;B < tp. Since ker(a) = ker(p), we obtain that ap = bp € A;f < tp, where a € A;,
and it follows that A;B < tp.

Therefore, A;f < tp for all i € I, that is, (rp)a™" = Y A; € (tp)B~! and va — vB as required.
Similarly, since B € F, we obtain v — va. Thus, va = vf5. "

(ii) Let a € (RB~1)a. Then a = ba and bB = r for some b € X and r € R. From B € F, we get
bB = r = sp for some s € R. Since ker(a) = ker(p), we obtain that 4 = ba = sa € R, and thus
(RB~Y)a < R. Similarly, (Re~1) < R. O

Lemma 3. Let o, f € T. If ker(a) = ker(B), then either both « and B are in F, or neither is in F.
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Proof. Assume that ker(a) = ker(B). Suppose that one of « and f is not in F. Without loss of generality,
assume that « ¢ F. Then there exists x € X\Y such that xa # ya for all y € Y. Thus, (x,y) ¢ ker(a),
which implies that x # yp forall y € Y. Hence, YB & X, whichleadsto f ¢ F. [

Using Theorem 2, Lemmas 2 and 3, we have the following corollary.

Corollary 5. For a € T, the following statements hold.

(i) IfaeF, then Ry ={p € F :ker(B) = ker(a)}.
(i) Ifa e T\F, then Ry = {B e T\F : ker(B) = ker(a), v = va and (RB~")a, (Ra—1)B < R}.

IfY =X, thenF = F(X,Y)nT = T(X) nT(X,p,R) = T(X,p,R), and so T\F = &. Thus,
Corollary 5 gives us a description of the R-relation on T(X, p, R).

Corollary 6. [3] [Theorem 2.3] Let «, B € T(X, p, R). Then a'R B if and only if ker(a) = ker(B).
As direct consequences of Corollaries 2 and 5, we have the H-relation on T as follows.

Corollary 7. For a € T, the following statements hold.

(i) IfaeF, then Hy = {a} U {BeF:va— vB,vB — vaand ker(a) = ker(B)}.
(i) Ifa e T\F, then Hy = {a}.

3.2. D-relation and J -relation

Let ¢ : B — C be a function from a set B to a set C. For a family <7 of subsets of B, (<7 )¢ denotes
the family {(A)¢ : A € o7} of subsets of C.

The main results used for characterizing the Green’s D-relation on T below are Corollaries 5 and 2.
Moreover, the technique for defining such a function ¢ in (i) is taken from Reference [3] [Theorem 2.6].

Theorem 3. For « € T, the following statements hold.

(i) Ifa e F, then Dy = {Bp € F : ker(B) = ker(a); or there exists a bijection ¢ : Xa — XPB such that
(R~ Xa)p S R, (va)p ~— vBand vf — (v)¢}.
(i) Ifae T\F,then Dy = {B e T\F : ker(B) = ker(a),vB = va and (R~ 1)a, (Ra—1)B < R}.

Proof. Let « be any element in T and let § € D,. Then Ry and yLp for some y € T.

(i) Assume that & € F. By Corollary 5, v € F and ker(y) = ker(a). By Corollary 2, 8 € F; also,
B =yorvB — v, vy < vB. If B = 7, then ker(8) = ker(a). Now, assume that vf < vy and
vy < vB. Define ¢ : Xa — XpB by (an)¢ = ay. We have ay € (ap)y < (rp)B < Xp for some r € R,
since vy <> v, so ay € XB. Since ker(7y) = ker(a), we obtain that ¢ is well-defined and injective.
To see that ¢ is surjective, let b € XB. Then bp e (bp)B < (sp)7 for some s € R, since v — v.
It follows that b = c7y for some ¢ € sp, and so (ca)¢ = ¢y = bB, hence ¢ is surjective. To show
that (R n Xa)¢p < R, lett € Rn Xa. Since t € Xa and « € F, there exists p € R such thatt € (pp)a,
thus t = pa and t¢ = (pa)¢ = py € R. Moreover, by the definition of ¢, (va)¢ = vy and (vt)p = v¥y.
Hence, (va)¢ — vBand v — (vt)¢.

Conversely, assume that A € F. If ker(A) = ker(a), then ARa, and it follows that A € D,. If there
exists a bijection ¢ : Xa — XA such that (R n Xa)¢ < R, (va)¢ < vA and vA < (vix)¢, then we define
v:X — Xbyay = (an)¢ for all 2 € X. From (R n Xa)¢p < R, we obtain that ry = (ra)¢ € R for all
r € R. Thus, Ry < R. To show that (xp)y < sp for some s € R, considering (xp)y = ((xp)a)p € (va)¢
and (va)¢p < vA, we get (xp)y S (tp)A < sp for somess, t € R. Thus, (xp)7y < sp, thatis, y € T. To see
that y € F, leta € X. Then ay = (an)¢p = (ba)¢ = by for some b € Y, since « € F. It follows that
ve F(X,Y) nT = F. Since ¢ is an injective map, we obtain that ker(y) = ker(«). By the definition of
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7, vy = (va)¢ and vy = (v)¢. Hence, vy <> v!A and vA < v*. By Corollaries 5 and 2, « Ry and yLA.
Therefore, A € D,,.

(ii) Assume that « € T\F. Corollaries 5 and 2 imply that § = ¢ € T\F. Thus, aRp. Again by
Corollary 5, we have ker(8) = ker(a), ¥8 = va and (RB~")a, (Ra—!)B < R. Therefore, D, < {B €
T\F : ker(B) = ker(«),vB = va and (RB1)a, (Ra~1)B < R}. The other containment is clear since
RcD. O

The two corollaries below are the D-relations on T(X, p, R) and T (X, Y), respectively.

Corollary 8. [3] [Theorem 2.6] Let a,f € T(X,p,R). Then «Dp if and only if there is a bijection
¢ Xa — XBsuch that (R n Xa)p € R, (va)p — vBand v — (va).

Proof. If we replace Y with X in Theorem 3, then T\F = &. Therefore we have that: For « € T(X, p, R),
D, = {B e T(X,p,R) : ker(B) = ker(a); or there is a bijection ¢ : Xa — X such that (R n Xa)¢ < R,
(VD()(P — V’B and V‘B — (vtx)(l)}

Now, we assert that ker(B) = ker(a) implies that there is a bijection ¢ : Xa — X such that
(RnXa)p € R, (va)¢ — vB and vp — (va)¢. Assume that ker(B) = ker(a) and define ¢ : Xa — X
by (ax)¢ = ap for all a € X. Then ¢ is a well-defined injective map, since ker(f) = ker(«). It is obvious
that ¢ is surjective. By the definition of ¢, [(ap)a]¢ = (ap)B. Thus, (va)¢ — vB and v — (va)¢. Finally,
(Rn Xa)p < RB < R. Hence, we have our assertion, and, therefore, D, = { € T(X, p,R) : There is a
bijection ¢ : Xa — X such that (R n Xa)¢p S R, (va)¢ — vpand v — (va)¢}, as required. [

Corollary 9. [6] [Theorem 3.7] For a € T(X,Y), the following statements hold.
(i) IfaeF(X)Y) thenDy ={Bpe F(X,Y):|XB| = |Xal}.
() IfaeT(X,Y)\F(X,Y), then Dy ={fe T(X,Y)\F(X,Y): m(B) = m(a)}.

Proof. As in the proof of Corollary 4, if we replace p with the identity relation, then (ii) of Theorem 3
is as follows. If « € T(X, Y)\F(X,Y), then D, = {fe T(X,Y\F(X,Y) : m(B) = rt(a)}.

Now, we claim that the conditions ker(f) = ker(a); or there is a bijection ¢ : Xa — X such
that (R n Xa)¢ < R, (va)¢ — vB and vB — (+v)¢ in (i) of Theorem 3 is equivalent to |Xa| = |Xp|
foralla, B € F(X,Y). Itis clear that the above conditions imply |X«| = | XB|. Now, leta, B € F(X,Y)
and |Xa| = |XpB|. Then there is a bijection ¢ : Xa — Xp and (R n Xa)p < XB < Y = R. To see that
the remaining conditions hold, we observe that (Ya)¢ = (Xa)¢p = XB = YB, since &, € F(X,Y).
From (Xa)¢ = YB and p as the identity relation, we obtain (va)¢p = {{(xa)¢p} : x € X} = {{rB} : r e
Y} = v, hence, (va)¢ — v'B. Similarly, from (Ya)¢ = XB, we obtain vB < (vi)¢. Therefore, we have
our claim. O

To characterize the [J-relation on T, we need the terminology below. For each « € T, we define
R(a) ={reR:rpn Xa # J}.
The following example shows that R(«) is necessary.
Example 5. Let X = {1,2,3,4,5,6,7,8} and Y = {3,4,5,6,7,8}. Let
X/p=1{{1,2},{3,4},{5,6,7},{8}},Y/p = {{3,4},15,6,7},{8}} and R = {3,5,8}.

Define a, B € T as follows:

a_12345678andﬁ_12
~\4 4565 6 65 \7 7

NN
o oo
N———

W U1
= o



Mathematics 2018, 6, 134 90f12

Then R(x) = {3,5} &€ Xa and R(B) = {3,5,8} < XpB. Moreover,

v = ({4}, {5,6}, {5} and B = {{3,4}, (5,6}, {8})}.

We show further that « = ABu for some A,y € T, but there is no function ¢ : YB — Xa such that
(RNYB)p < Rand va < (v'B)¢p < Y/p. Define A,y € T by

/\*12345678and712345678
77343443 "' \33345653)
We see that & = ABu. Suppose that there is such a function ¢, which would imply {4} = {1,2}a <
Ap < {3,4} for some A € vB, and & # (RnA)¢p < ApnR = {3}, since J # RnA <

YB. Thus, 3e (Rn A)¢ < Xa, which is a contradiction. However, since 3 € R(a)\Xwa, we can define
¢ : YB — Xa U R(w) satisfying the conditions (R n YB)$ < R and va — (vB)¢p < Y/p as follows:

(3 4 5 6 8
P~ 456 5)

Note thatif Y = X or p is the identity relation, then R(a) € Xa foralla € T.

The following result is the key lemma in characterizing the [J-relation on T. The outline of the
proof is the same as Theorem 2.7 in [3], but there are differences in detail, for example, to prove the
“only if” part, the function ¢ has to be defined from Y into Xa U R(«) in order to make r,;p in (2)
well-defined. In addition, because of the restricted range of T, the function p defined in (3) of the

“if” part is greatly different from that defined in Theorem 2.7 [3]. Moreover, each step of the proof,
the restricted range is involved.

Lemma4. Letw,B € T. Then o = APy for some A, y € T if and only if there exists ¢ : Y — Xa U R(«) such
that (RN YB)p < R and va < (vB)¢p — Y/p.

Proof. Assume thata = AByu for some A,y € T. We define ¢ : YB — Xa U R(«) such that (RN YB)p < R
and va < (vB)¢ < Y/p as follows.
Fix ro € Xa n R. Let a € Y, and define ¢ in three steps.

(1) Ifae X(AB) € YB, we define a¢p = au € Xu.
(2) IfaeYB\X(AB)and ap n X(AB) # &, then define ap = r,p.
(B) IfaeYB\X(AB)and ap n X(AB) = &, then define a¢ = ry € Xa.

We observe that 7, in (2) belongs to R(«), since 7,y € Rand r,p p by € X for some b € ap n X(AB).

By the definition of ¢ and the fact that Ry < R, we obtain that (R n YB)¢ < R. To see that
va < (vB)@, let (xp)a € va. Then there exists 7 € R such that (xp)A < rp. We have (xp)a = (xp)ABu <
[(79)B ~ X(AB) |  [(r9)B1 € (W) Thus, va = (B)¢. To show that (B)g — Y/p, let (rp) < vB.
By the definition of ¢, either [(rp)B]l¢ = ((rp)B)u < sp for some s € R (if (rB)p n X(AB) # &) or
[(rp)B1 = {ro} < rop Gif (rB)p  X(AB) = ). Therefore, (VB)p — Y/p.

Conversely, assume that there exists ¢ : Y — Xa U R(«) such that (RN YB)$ < R and va —
(vB)¢ < Y/p. Let A € va. Then there is a unique 74 € R such that A  r4p (note that r4 may not
belong to Xa but 74 € R(a)). Since vat < (vB)¢ < Y/, there exists C4 € v!B such that A € C¢ < 7 4p.
From C4 € v'B, there is s4 € R such that C4 = (s40)B. Letta = saB. Then Cq = (sap)B < tap.
For every a € A, we choose u{{‘ € C4 such thata = ufrp (since t4¢ = r 4, we may assume that uf =iy
ifa =ry). LetC)y = {ufl : a € A}. Then C/; < Cy. For every b € C';, we choose vg‘ € sap such that
b= v?lB (since s4 B = t 4, we may assume that vg‘ =541fb =ty).

We aim to define A, u € T such that & = ABu. We first define A. Let x € X, A = (xp)a and a = xa.
Then xa = a € A, so there exists b = u4' such that b = v{} B, thus we define xA = v{. By the definition
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of A, (xp)A S sap. f pexpn R, thena = pa =ry e RnA,andso b/ = ”?’ = t4. Hence v;;‘, =54,
which implies that pA = v{} =s4 € R. Thus, A € T.
To define y, fix rg € R and let x € X.

(1) IfxeC) forsome A € va, define xp = x¢.
(2) Ifx¢ Cyforall Be vaand Cy < xp for some A € va, define xp = 7 4.
B IfxpnCux = Iforall Ae va, define xu = rg.

To see that the definition of y in (2) does not depend on the choice of A, we suppose that there
are A, B € va such that C4,Cp < xp. Since C4 = (540)B S tap < xp and Cg = (spp)B < tgp < xp,
we obtain t4 = tp, and thusr4 = t4¢ = tp¢ = rp. Next, we prove that j € T. By the definition of y,
we see that Ry € R. Now, if xo n C4 = ¢J for all A € va, then (xp)u = {ro} < rop. For C4 < xp for
some A € va, we have xy = x¢p € rpp = rp if x € Cf for some B € va and xp = r4 € rap if x ¢ C, for
all B € va. Thus, (xp)p S r4p.

To prove that & = ABp, let x € X, A = (xp)a and a = xa. Let b = uZ (note that uZ € C!, was
selected such that uZ'¢ = a). By the definitions of A and y, we have xA = v} (recall that v;' was chosen
so that vfﬁ =b)and by = ulu = ull¢ = a = xa. Thus, xABu = vgj‘ﬁy = by = xa, as required. O

If we take Y = X in Lemma 4, then T = T(X, p, R), which contains an identity element, the identity
map. Thus, we obtain the [J-relation on T(X, p, R).

Corollary 10. [3] [Theorem 2.8] Let &, € T(X, p, R). Then aJ B if and only if there exist ¢ : Xp — Xu and
¢ : Xao — X such that (R " XB)p S R, va — (vB)¢p — X/p; also (R n Xa)p € R, v — (va)p — X/p.

Now, we are ready to prove the J-relation on T.

Theorem 4. Let a, 5 € T. Then aJ B if and only if one of the following conditions holds:

(i) ker(a) = ker(B), va = vB and (RB~V)a, (Ra~1)B < R;
(i)  there exist ¢ : YB — Xa U R(«) such that (RN YB)p € R, va < (vB)p — Y/pand ¢ : Ya —
XB U R(B) such that (RN Ya)p S R, vB — (v&)@ — Y/p.

Proof. Assume that «7f. Then a = ¢ and B = ¢’wé’ for some 0,0’,5,8' € T'. If 0 = 1 = ¢/, then
a = Bé and B = ad’, which implies that aR B, and so ker(a) = ker(B), va = vBand (R 1)a, (Ra=1)B
R.If6 =1 = ¢, thena = 0B and B = ¢’a, which implies that «LB, and so & = ; or va <> v/8 and
vB — v If & = B, then (i) holds. If va < v}B and v < v, then we define ¢ and ¢ to be the identity
maps on Y and Ya, respectively. It follows that (R n YB)¢ < R, va < (vB)¢p — Y/p,(Rn Ya)p < R
and vB < (v&)¢ < Y/p. That is, (ii) holds. For the other cases, we can conclude that a« = Ay and
B = ANay' forsome A, A, u, 1’ € T (for example, if o = 1 and ¢’ € T, then « = B and B = ¢’aé’ imply
a =B = (0'ad")d =c'a('6) = 0’ (B6)6'6 = ' B(66'5)). Thus, Lemma 4 gives that (ii) holds in all the
remaining cases.

Conversely, assume that the statement holds. If ker(«) = ker(8),va = vBand (RB~!)a, (Ra~1)B <
R, then aRB, and so a7 B. If there exist ¢ : YB — Xa U R(a) such that (R n YB)p S R, v < (vB)¢p —
Y/pand ¢ : Yo — XBu R(B) such that (RN Ya)p € R, v — (v)¢ — Y/p, then a« = ABu and
B = Nay' for some A, A, u, i’ € T by Lemma 4. Therefore, a7 B, as required. [

By setting p to be the identity relation in Theorem 4, we obtain the [J-relation on T(X, Y) as follows.

Corollary 11. [6] [Theorem 3.9] Let w, B € T(X,Y). Then aJ B if and only if m(a) = 7w (B) or | Xa| = |Ya| =
[YB| = [XBl.

Proof. If p in Theorem 4 is the identity relation, then T = T(X,Y). By the same proof as given
for Corollary 4, we have that (i) of Theorem 4 is equivalent to 7(a) = (). Now, we claim that
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(ii) is equivalent to |Xa| = |Ya| = |YB| = |XB|. If (ii) holds, then ¢ : YB — Xa is onto, since
va = {{xa} : x € X} = {{(rB)¢p} : r € Y} = (+v'B)¢ implies that for each xa € Xa, xa = (rf)¢ for some
r € Y. Similarly, from ¢ : Ya — XB with v < (v%)¢, we obtain that ¢ is onto. Thus, |Xa| < |YB
and |XB| < |Ya|, and so |Ya| < |Xa| < |YB| < |XB| < |Ya|. Therefore, |Xa| = |Ya| = |YB| = |XB|.
Conversely, if |Xa| = |Ya| = |YB| = | XB|, then there exist bijections ¢ : YB — Xa and ¢ : Yoo — XB.
Since ¢ is onto, it follows that va = {{xa} : x € X} — {{(rB)p} : € Y} = (+B)p — {{y} :y e Y} = Y/p.
Similarly, as ¢ is onto, we have v < (v)¢ < Y/p. Moreover, (RN YB)¢p < (YB)p = Xa € Y =R,
and in the same way, (R n Ya)¢ < R. Therefore, we have our claim. [J

Recall that D < J on any semigroup and D = J on T(X), butin T it is not always true, so we
end this section with an example showing that D # J on T.

Example 6. Let X be the set of all positive integers and Y = X\{1,2}. Let

X/p={{1,2},{3,4,5}}v{{2n +4,2n +5} : ne X},
Y/p={{3,4,5}} u{{2n+4,2n+5} : n € X} and
R =1{3,6,810,...}.

Then we define

12 13 16 17 20 21 24 25

ﬁ_12345678910111213...
" \9 96 773435 6 7 10 11 ...]°

Thus, a, p € T\F and

5678910111213...)
9 7

va = {{4},{8,9}, {12,13},{16,17}, {20,21}, {24,25},.. .},

Y = {{8,9},{12,13}, {16,17}, {20,21}, {24,25}, .. .},

B = {{9},{6,7},{3,4},{3,5},{10,11},{14,15},{18,19},.. .},
B = {{6,7},{3,4},{3,5},{10,11}, {14,15},{18,19},...}.

It is clear that ker(a) +# ker(p). Therefore, a and B are not D-related by Theorem 3. However, we can
define ¢ : YB — Xa v R(w) and ¢ : Yo — XB v R(B) as follows:

{3,5})¢ = {3,4}, ({6, 7})¢ = {8,9},
(14,15})¢ = {16,17}, ({18,19})¢ = {20,21}, ...
{12,13})¢ = {6,7}, ({16,17})¢ = {3,4},
(24,25})¢ = {10,11}, ({28,29})¢ = {14,15}, ...

{3/4})¢ = {3r4}/
{10,11})¢ = {12,13},
{8,9})¢ = {8,9},
{20,21})¢ = {3,5},

AA,_\/_\
~ o~ o~ o~

Both ¢ and ¢ satisfy the required properties of Theorem 4. Therefore, « and B are [J -related.

However, if X is a finite set, then T is a finite semigroup and it is periodic. Hence D = J in
this case.
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