
mathematics

Article

The Analytical Solution for the Black-Scholes
Equation with Two Assets in the Liouville-Caputo
Fractional Derivative Sense

Panumart Sawangtong 1 ID , Kamonchat Trachoo 2 ID , Wannika Sawangtong 2,3,* ID

and Benchawan Wiwattanapataphee 4 ID

1 Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology
North Bangkok, Bangkok 10800, Thailand; panumart.s@sci.kmutnb.ac.th

2 Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
kamonchat.kao@student.mahidol.ac.th

3 Centre of Excellence in Mathematics, Commission on Higher Education, Ministry of Education,
328 Sri Ayuthaya Road, Bangkok 10400, Thailand

4 School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University,
Perth, WA 6845, Australia; B.Wiwatanapataphee@curtin.edu.au

* Correspondence: wannika.saw@mahidol.ac.th; Tel.: +66-2-201-5432

Received: 6 July 2018; Accepted: 20 July 2018; Published: 25 July 2018

Abstract: It is well known that the Black-Scholes model is used to establish the behavior of the option
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with two assets based on the Liouville-Caputo fractional derivative. The analytical solution of the
proposed model is investigated by the Laplace transform homotopy perturbation method.

Keywords: Black-Scholes model; fractional derivatives; generalized Mittag-Leffer function; Laplace
transform homotopy perturbation method

1. Introduction

A derivative is one of the financial instruments promising payment at a certain time in the
future and the payoff amount depends upon the change of some underlying asset. Its value can be
derived from the various sorts of the underlying asset such as shares, bonds, interest rate, commodity,
currency, etc. It is unquestioned that options are the primary key of a derivative that is commonly
used in the financial market. Hence, the idea of option trading has been continuously developed.
The earliest research work was proposed by Corzo et al. [1] using the evidence of the Netherlands
having active involvement in trading option. Osborne [2] proposed an option pricing formula using
an arithmetic Brownian motion with drift. In the year 1973, Fischer Black and Myron Scholes [3]
proposed the Black-Scholes model to investigate the behaviour of the option pricing in a market.
Several Mathematical models based on the Black-Scholes equation with five-key components of the
strike price, the risk-free rate, the underlying security stock price, the volatility and the mature time
have been developed [4–7].

Several numerical and analytical methods have been studied and developed for finding the
solution of Black-Scholes model, for instance, the finite different method [8–11], finite element
method [12] for numerical solutions, and the Mellin transform method [13] and homotopy perturbation
method [14,15], Laplace homotopy perturbation method [16] for analytical solutions. Moreover, one of
the methods to solve the Black-Scholes equations is radial basis function partition of unity method
(RBF-PUM) [17,18] which widely uses to approximate the partial differential equation problem.
This method is composed of two methods these are partition of unity (PU) method and radial basis
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function (RBF) approximants [19,20]. RBF-PUM provides extremely accurate results when applied to
data with non-homogeneous density [19].

In general, the Black-Scholes model with 2 assets for option pricing can be written as follows:

∂C
∂τ

+
1
2

2

∑
i=1

2

∑
j=1

σiσjρijSiSj
∂2C

∂Si∂Sj
+

2

∑
i=1

(r− qi)Si
∂C
∂Si
− rC = 0,

S1, S2 ∈ [0, ∞), τ ∈ [0, T]

with the terminal condition:

C(S1, S2, T) = max(
2

∑
i=1

βiSi − K, 0),

where K = max{K1, K2}, and the boundary conditions:

C(S1, S2, τ) = 0 as (S1, S2)→ (0, 0)

C(S1, S2, τ) =
2

∑
i=1

βiSi − Ke−r(T−τ) as S1 → ∞ or S2 → ∞

where:
C is the call option depending on the underlying stock prices {S1, S2} at time τ,
qi is the dividend yield on the ith underlying stock,
ρij is the correlation between the ith and jth underlying stock prices,
T is the expiration date,
r is the risk-free interest rate to expiration,
σi is the volatility of the ith underlying stock,
Ki is the strike price of the ith underlying stock,
βi is a coefficient so that all risky asset prices are at the same level.

It is noted that the most existing models use the strict assumptions, for example, perfect markets,
constant values of both risk-free rate and volatility, log-normal distribution of share price dynamics,
no dividends, continuous delta hedging. A divisible number of shares has not adequately represented
the reality of the market [21–23].

More than three hundred years ago, the fractional differential equation was introduced.
Nowadays, fractional calculus could be better for explaining the complicated incidents in the real
situation than the traditional calculus. Fractional order models have been used to describe in many
areas such as sciences, finance, physics and engineering disciplines [11,12,24,25]. Fractional calculus of
the financial market was applied to the Black-Scholes model for expanding the theory of finance.

The time-fractional derivative which is considered in this paper is the Liouville-Caputo derivative
because the initial condition for the fractional derivative is similar to the traditional derivative [25].

The Liouville-Caputo-type fractional derivative of order α is defined as [25]:

Dα
τC(τ) =


1

Γ(1− α)

∫ τ

0

C′(ξ)
(τ − ξ)α

dξ, 0 < α < 1,

dC
dτ

, α = 1,

where Γ(·) is a gamma function.
There are many researches that studied the fractional Black-Scholes model with one

asset [11,26–31]. The fractional Black-Scholes model is the generalized version of the classical model
which extend the limitation of the model. Meng et al. [26] studied the fractional option pricing using
Black-Scholes model. They applied the fractional Black-Scholes model to call option price for bank
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foreign exchange in China. Their results show that the fractional Black-Scholes model is better than
the classical Black-Sholes model for estimating the effect in the market mechanism [26].

In this paper, we use the application of the Laplace transform Homotopy Perturbation Method
(LHPM) to obtain the explicit solution of the time fractional Black-Scholes model. The LHPM is a
method that combines with Homotopy Perturbation Method and Laplace transform. The LHPM
gives an explicit solution which is a convergent series. We focus on the time fractional Black-Scholes
model with two assets for the European call option. The LHPM is utilized for solving the problem.
The analytical solution is a valuable tool to study the behaviors of the solution which are difficult to
get the numerical solution especially fractional partial differential equations. The analytical solution
provides a useful tool for studying financial behavior.

The paper is organized as follows. We present the time fractional Black-Scholes model in Section 2.
The fractional derivatives are described in the sense of the Liouville-Caputo fractional derivative.
The LHPM is presented in Section 3. In Section 3.1, the explicit solution of this problem is carried
out by using LHPM. In addition, numerical examples and discussions are obtained in Section 4.
Finally, a conclusion is presented in Section 5.

2. Mathematical Model

We consider the standard Black-Scholes partial differential equation with two assets for
European-style option, efficient markets, perfect liquidity and no dividends during the option’s
life. Throughout this paper, we assume that σ1, σ2, ρ and r are constants.

∂c
∂τ

+
1
2

σ2
1 S2

1
∂2c
∂S2

1
+

1
2

σ2
2 S2

2
∂2c
∂S2

2
+ ρσ1σ2S1S2

∂c2

∂S1∂S2

+ r
[
S1

∂c
∂S1

+ S2
∂c

∂S2

]
− rc = 0, for S1, S2 ∈ [0, ∞), τ ∈ [0, T]

(1)

with the terminal condition:

c(S1, S2, T) = max {β1S1 + β2S2 − K, 0} ,

and boundary conditions:

c(S1, S2, τ) = 0 as (S1, S2)→ 0 and

c(S1, S2, τ) = β1S1 + β2S2 − Ke−r(T−τ) as S1 → ∞ or S2 → ∞.

By changing the variables [32]:

x = ln(S1)−
(

r− 1
2

σ2
1

)
τ and y = ln(S2)−

(
r− 1

2
σ2

2

)
τ,

Equation (1) can be written as:

∂c
∂τ

+
1
2

σ2
1

∂2c
∂x2 +

1
2

σ2
2

∂2c
∂y2 + ρσ1σ2

∂2c
∂x∂y

− rc = 0, (x, y, τ) ∈ R×R× [0, T] (2)

which satisfies the terminal condition:

c(x, y, T) = max
(

β1ex+(r− 1
2 σ2

1 )T + β2ey+(r− 1
2 σ2

2 )T − K, 0
)

,
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and boundary conditions:

c(x, y, τ) = 0, as (x, y)→ −∞ and

c(x, y, τ) = β1ex+(r− 1
2 σ2

1 )τ + β2ey+(r− 1
2 σ2

2 )τ − Ke−r(T−τ),

as x → ∞ or y→ ∞.

By changing again of variables for eliminating the last term on the left hand side of Equation (2),
we define v as:

c(x, y, τ) = e−r(T−τ)v(x, y, τ),

and substitute into Equation (2), we have

∂v
∂τ

+
1
2

σ2
1

∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2 + ρσ1σ2

∂2v
∂x∂y

= 0, (x, y, τ) ∈ R×R× [0, T] (3)

with the terminal condition:

v(x, y, T) = max
(

β1ex+(r− 1
2 σ2

1 )T + β2ey+(r− 1
2 σ2

2 )T − K, 0
)

, (4)

and the boundary conditions:

v(x, y, τ) = 0, as (x, y)→ −∞ and

v(x, y, τ) = β1ex+rT− 1
2 σ2

1 τ + β2ey+rT− 1
2 σ2

2 τ − K, as x → ∞ or y→ ∞.
(5)

To be able to solve the initial boundary value problem (3)–(5), a forward time coordinate

t = T − τ

is introduced and used in Equation (3). Hence, we obtain

∂v
∂t

=
1
2

σ2
1

∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2 + ρσ1σ2

∂2v
∂x∂y

, (x, y, τ) ∈ R×R× [0, T],

subject to the initial condition:

v(x, y, 0) = max
(

β̃1ex + β̃2ey − K, 0
)

, (6)

and the boundary conditions:

v(x, y, t) = 0, as (x, y)→ −∞ and

v(x, y, t) = β̃1ex+ 1
2 σ2

1 t + β̃2ey+ 1
2 σ2

2 t − K, as x → ∞ or y→ ∞.

where β̃1 = β1e(r−
1
2 σ2

1 )T and β̃2 = β2e(r−
1
2 σ2

2 )T .
By replacing the Liouville Caputo fractional derivative, we obtain the following fractional-time

order Black-Scholes model with α ∈ (0, 1] equipped with the initial and boundary conditions:

Dα
t v =

1
2

σ2
1

∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2 + ρσ1σ2

∂2v
∂x∂y

, (x, y, τ) ∈ R×R× [0, T], (7)

subject to the initial condition:

v(x, y, 0) = max
(

β̃1ex + β̃2ey − K, 0
)

, (8)
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and boundary conditions:

v(x, y, t) = 0, as (x, y)→ −∞ and

v(x, y, t) = β̃1ex+ 1
2 σ2

1 t + β̃2ey+ 1
2 σ2

2 t − K, as x → ∞ or y→ ∞.
(9)

where β̃1 = β1e(r−
1
2 σ2

1 )T and β̃2 = β2e(r−
1
2 σ2

2 )T .

3. Basic Ideas of Time Fractional Black-Scholes Model with LHPM

In this section, the general form of the time-dependent differential equation can be expressed in
the form of:

A(u(x, y, t))− f (x, y, t) = 0, (10)

where u(x, y, t) denotes an unknown function, f (x, y, t) denotes a known analytic function and A is
determined by:

A(u(x, y, t)) = Dα
t u(x, y, t) + Ñ(u(x, y, t)) for (x, y, t) ∈ R×R× [0, T].

A general equation can be rewritten as:

Dα
t u(x, y, t) + Ñ(u(x, y, t)) = f (x, y, t), (x, y, t) ∈ R×R× [0, T], (11)

with the initial condition:

u(x, y, 0) = h(x, y) for any (x, y) ∈ R×R

and the boundary condition:

B
(

u,
∂u
∂x

,
∂u
∂y

,
∂u
∂t

)
= 0,

where B is a boundary operator.
Firstly, in Equation (11), taking the Laplace transform with respect to time variable t yields

L
{

Dα
t u(x, y, t)

}
+L

{
Ñ(u(x, y, t))

}
= L

{
f (x, y, t)

}
.

Using the Laplace transform of Liouville-Caputo fractional derivative [33], we then obtain

L
{

u(x, y, t)
}
=s−αh(x, y)− s−αL

{
Ñ(u(x, y, t))

}
+ s−αL

{
f (x, y, t)

}
. (12)

By taking the inverse Laplace transform on Equation (12), we have

u(x, y, t) = G(x, y, t)−L −1
{

s−αL
{

Ñ(u(x, y, t))
}}

,

where the function G(x, y, t) presents the term arising from the source term and the prescribed initial
conditions and boundary conditions.

We now using the technique of HPM [14,15] to construct the function ν(x, y, t; p). We set

H(ν(x, y, t; p), p) =(1− p)[ν(x, y, t; p)− ν̃0(x, y, t)]

+ p
[
ν(x, y, t; p)− G(x, y, t)

+L −1
{

s−αL
{

Ñ(ν(x, y, t; p))
}}]

= 0,

(13)
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where p ∈ [0, 1] denotes homotopy parameter or an embedding parameter and ν̃0(x, y, t) denotes the
initial approximation of Equation (13). Rearranging (13) gives

ν(x, y, t; p) =ν̃0(x, y, t)− p
[
ν̃0(x, y, t)− G(x, y, t)

+L −1
{

s−αL
{

Ñ(ν(x, y, t; p))
}}]

.
(14)

For p = 0 and p = 1, we have

H(ν(x, y, t; 0), 0) =ν(x, y, t; 0)− ν̃0(x, y, t) = 0,

H(ν(x, y, t; 1), 1) =ν(x, y, t; 1)− G(x, y, t)

+L −1
{

s−αL
{

Ñ(ν(x, y, t; 1))
}}

= 0.

Let

ν(x, y, t; p) =
∞

∑
n=0

pnνn(x, y, t). (15)

From Equations (14) and (15), we have

∞

∑
n=0

pnνn(x, y, t) = ν̃0(x, y, t)− p
[
ν̃0(x, y, t)− G(x, y, t)

+L −1
{

s−αL
{

Ñ(
∞

∑
n=0

pnνn(x, y, t))
}}]

. (16)

By equating the coefficients corresponding to the power of p on both sides of Equation (16),
the sequence νn is carried out as follows:

ν0(x, y, t) =ν̃0(x, y, t),

ν1(x, y, t) =G(x, y, t)− ν̃0(x, y, t)−L −1
{

s−αL
{

Ñ(ν̃0(x, y, t))
}}

,

νm(x, y, t) =−L −1
{

s−αL
{

Ñ(νm−1(x, y, t))
}}

when m ≥ 2.

(17)

When p converges to 1, the approximate solution of Equation (10) can be expressed in the form of:

u(x, y, t) =
∞

∑
n=0

νn(x, y, t), (18)

which leads to the explicit solution when infinite series converges.

3.1. A Solution of Time Fractional Black-Scholes Model by LHPM

In this section, we find the solution of time fractional Black-Scholes model (7) subjecting to the
terminal Condition (8) and boundary Condition (9) by LHPM techniques.

Firstly, we let

Ñ(v(x, y, t)) =
1
2

σ2
1

∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2 + ρσ1σ2

∂2v
∂x∂y

,

and express Equation (7) in the general form of:

Dα
t v(x, y, t) = Ñ(v(x, y, t)).
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By taking the Laplace transform with respect to time variable t, we get

L {Dα
t v(x, y, t)} = L

{
Ñ(v(x, y, t))

}
. (19)

It follows from Laplace transform of the Liouville-Caputo fractional derivative that
Equation (19) becomes,

L
{

v(x, y, t)
}
=

1
s

max(β̃1ex + β̃2ey − K, 0) +
1
sα

L
{1

2
σ2

1
∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2

+ ρσ1σ2
∂2v

∂x∂y

}
.

(20)

The inverse Laplace transform of an Equation (20) is obtained as:

v(x, y, t) =max(β̃1ex + β̃2ey − K, 0) +L −1
{ 1

sα
L
{1

2
σ2

1
∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2

+ ρσ1σ2
∂2v

∂x∂y

}}
.

By applying techniques of HPM, we can construct the function

v(x, y, t; p) : R×R× [0, T]× [0, 1]→ R

which satisfies the following equation

(1− p)(v(x, y, t; p)− ṽ0(x, y, t)) + p
[
v(x, y, t; p)−max(β̃1ex + β̃2ey − K, 0)

−L −1
{ 1

sα
L
{1

2
σ2

1
∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2 + ρσ1σ2

∂2v
∂x∂y

}}]
= 0

or
v(x, y, t; p) = ṽ0(x, y, t)− pṽ0(x, y, t) + p max(β̃1ex + β̃2ey − K, 0)

+ pL −1
{ 1

sα
L
{1

2
σ2

1
∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2 + ρσ1σ2

∂2v
∂x∂y

}}
,

(21)

where p ∈ [0, 1] is an embedded parameter and ṽ0(x, y, t) is an initial approximation of Equation (21)
which can be freely chosen [34].

For this model, we choose ṽ0(x, y, t) as:

ṽ0(x, y, t) = max(β̃1ex + β̃2ey − K, 0) + ex+ytα.

Next we substitute ṽ0(x, y, t) in Equation (21) to obtain

v(x, y, t; p) =max(β̃1ex + β̃2ey − K, 0) + ex+ytα + p

(
− ex+ytα

+L −1
{ 1

sα
L
{1

2
σ2

1
∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2 + ρσ1σ2

∂2v
∂x∂y

}})
.

(22)

For homotopy perturbation method, the solution of Equation (7) can be assumed that

v(x, y, t; p) =
∞

∑
i=0

pnφn(x, y, t). (23)



Mathematics 2018, 6, 129 8 of 14

By substituting Equation (23) into Equation (22), we obtain

∞

∑
n=0

pnφn(x, y, t) =max(β̃1ex + β̃2ey − K, 0) + ex+ytα + p
(
−ex+ytα

+L −1

{
1
sα

L
{1

2
σ2

1

∞

∑
n=0

pn ∂2φn

∂x2

+
1
2

σ2
2

∞

∑
n=0

pn ∂2φn

∂y2 +ρσ1σ2

∞

∑
n=0

pn ∂2φn

∂x∂y

}})
.

(24)

By equating the corresponding power of p on both sides of Equation (24), we have

φ0(x, y, t) =max(β̃1ex + β̃2ey − K, 0) + ex+ytα

φ1(x, y, t) =− ex+ytα +L −1

{
1
sα

L
{1

2
σ2

1
∂2φ0

∂x2 +
1
2

σ2
2

∂2φ0

∂y2 + ρσ1σ2
∂2φ0

∂x∂y

}}

φi(x, y, t) =− ex+ytα +L −1

{
1
sα

L
{1

2
σ2

1
∂2φi−1

∂x2 +
1
2

σ2
2

∂2φi−1

∂y2

+ ρσ1σ2
∂2φi−1

∂x∂y

}}
, for i ≥ 2.

Then, we can write φ0, φ1, φ2, φ3, . . . in the general form, i.e.,

φ0(x, y, t) = max(β̃1ex + β̃2ey − K, 0) + ex+ytα

φn(x, y, t) =
tnα

Γ(nα + 1)

( 1
2n σ2n

1 max(β̃1ex, 0) +
1
2n σ2n

2 max(β̃2ey, 0)
)

+ ex+y t(n+1)αΓ(α + 1)
Γ((n + 1)α + 1)

(σ2
1

2
+

σ2
2

2
+ ρσ1σ2

)n

− ex+y tnαΓ(α + 1)
Γ(nα + 1)

(σ2
1

2
+

σ2
2

2
+ ρσ1σ2

)(n−1)
when n ≥ 1.

From (23), the solution v(x, y, t) of the Equation (7) can be written by:

v(x, y, t; p) = max(β̃1ex + β̃2ey − K, 0) + ex+ytα

+
∞

∑
n=0

pn+1

{
t(n+1)α

Γ((n + 1)α + 1)

( 1
2(n+1)

σ
2(n+1)
1 max(β̃1ex, 0)

+
1

2(n+1)
σ

2(n+1)
2 max(β̃2ey, 0)

)
+ ex+y t(n+2)αΓ(α + 1)

Γ((n + 2)α + 1)

(σ2
1

2
+

σ2
2

2
+ ρσ1σ2

)(n+1)

− ex+y t(n+1)αΓ(α + 1)
Γ((n + 1)α + 1)

(σ2
1

2
+

σ2
2

2
+ ρσ1σ2

)n
}

.
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By setting p converges to 1, we get

v(x, y, t; 1) = max(β̃1ex + β̃2ey − K, 0) + ex+ytα +
∞

∑
n=0

{
t(n+1)α

Γ((n + 1)α + 1)

×
( 1

2(n+1)
σ

2(n+1)
1 max(β̃1ex, 0) +

1
2(n+1)

σ
2(n+1)
2 max(β̃2ey, 0)

)
+ ex+y t(n+2)αΓ(α + 1)

Γ((n + 2)α + 1)

(σ2
1

2
+

σ2
2

2
+ ρσ1σ2

)(n+1)

− ex+y t(n+1)αΓ(α + 1)
Γ((n + 1)α + 1)

(σ2
1

2
+

σ2
2

2
+ ρσ1σ2

)n
}

Therefore, we get the explicit solution of Equation (7):

v(x, y, t) = max(β̃1ex + β̃2ey − K, 0) + ex+ytα

+ max(β̃1ex, 0)
tασ2

1
2

Eα,α+1(
tασ2

1
2

) + max(β̃2ey, 0)
tασ2

2
2

Eα,α+1(
tασ2

2
2

)

+

(
ex+y

(σ2
1

2
+

σ2
2

2
+ ρσ1σ2

)
Γ(α + 1)t2αEα,2α+1

(
tα
(σ2

1
2

+
σ2

2
2

+ ρσ1σ2

)))

− ex+yΓ(α + 1)tαEα,α+1
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(25)

where Ea,b(z) = ∑∞
k=0

zk

Γ(ak+b) is the Generalized Mittag-Leffler function [35] which a and b
are constants.

4. Numerical Examples

In this section, an series solution of European call option based on Black-Scholes model with two
assets as in Equation (25) is computed by using MATLAB programming. The simulations are carried
out using the financial parameters given in Table 1.

Table 1. Parameters of the numerical solution.

Parameters Value

strike price, K (dollars) 70
risk-free interest rate (per year), r 5%

maturity time, T (year) 1
volatility of the underlying first assets (per year), σ1 10%

volatility of the underlying second assets (per year), σ2 20%
correlation, ρ 0.5

β1 2
β2 1

The graphs of the transformed explicit solution v and original explicit solution c in the case of
call option are plotted in Figures 1–5. In Figure 1, the solutions v and c are plotted at a day before
an expiration date over a range of 0 ≤ S1 ≤ 200 and 0 ≤ S2 ≤ 200 surrounding at the strike price
with order α = 0.9. The results show that the option values increase significantly when the stock
prices increase.

By setting S2 = 10, the solutions v and c with order α = 0.9 are plotted in Figure 2a,b.
With increasing S1 from 0 to 50, the option price c reaches to zero. It is similar to c, v also reaches to
zero when x increases from 2 to 4. The option price c increases linearly when the stock price is greater
than 50. The solution v increases exponentially when x is greater than 4.
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Figure 3 shows the surface plot of call option with S1 = 10 over a range of stock price 0 ≤ S2 ≤ 200
and time 0 ≤ t ≤ 1. With increasing S2 from 0 to 40, the option price c reaches to zero. v also reaches
to zero when x increase from 2 to 3.8. After that the option price c increases linearly when stock price
is greater than 40. The solution v increases exponentially when x is greater than 3.8.
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Figure 1. (a) Transformed explicit solution, v, and (b) call option price, c, for α = 0.9 at a day before an
expiration date.
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Figure 2. (a) Transformed explicit solution, v, and (b) call option price, c, for all time of order α = 0.9
with S2 = 10.
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Figure 3. (a) Transformed explicit solution, v, and (b) call option price, c, for all time of order α = 0.9
with S1 = 10.
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At a day before an expiration date, the European call option price over the stock price S1 and
S2 for various order α = 0.5, 0.7 and 0.9 is investigate. Effects of fractional order α on c for different
orders when S2 = 5 and S1 = 10 are shown in Figure 4a,b, respectively. The comparison indicates that
a higher order α gives a lower call option price. In Figure 5, the solution plot of v is similar trend to c.
It is noted that a higher order α gives a lower option price v. Moreover, the option prices v increases
rapidly after x = 4.2452 and y = 3.4589 as shown in Figure 5a,b, respectively. Consequently, we can
conclude that the effect of time derivative order α has a small effect on the option price.
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Figure 4. Solution plots of European call option obtained from the model with different orders
α = 0.5, 0.7, 0.9 at a day before an expiration date: (a) S2 = 5; (b) S1 = 10.
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Figure 5. Solution v plots obtained from the model with different orders α = 0.5, 0.7, 0.9 at a day before
an expiration date: (a) y = 1.6093; (b) x = 2.3024.

The values of European call option with the correlation varying from −1 to 1 is presented in
Figure 6 at a day before an expiration date. The effects of stock price S2 with some fixed stock prices
S1 and y with some fixed value x are investigated. Three values of S1 including 50, 80 and 100 and
three values of x including 3.8671, 4.3371 and 4.6556 are chosen for S2 = 5 and y = 1.6093. The result
shows that the relationship between the European call option and the correlation is the increasing
linear pattern. In addition, the rate of change of European call options v and c with respect to ρ are
also similar to each other as shown in Figure 6a,b.
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Figure 6. Relationship between the European call option and the correlation ρ for time derivative order
α = 0.9 at a day before the expiration date: (a) v for y = 1.6093 and (b) c for S2 = 5.

5. Conclusions

The fractional Black-Scholes equations is a generalized version of the classical model which
extend the restriction of using the model for finding the option price. As shown in the result, you
can see that if parameters were not changed in the model, we obtain the difference value of option
price with the different order. As a result, the fractional Black-Scholes model is more practical than
the integer order model. This work introduced the Laplace homotopy perturbation method in order
to find the explicit solution in time-fractional Black-Scholes model with two assets. By using the
LHPM, the explicit solution can be written in the form of a special function, generalized Mittag-Leffer
function. The benefit of the explicit solution form is easy to use for finding the European call option
which depends on two stock price. Moreover, the numerical examples of the solution are presented to
illustrate the explicit solution.
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