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Abstract: This paper deals with an infective process of type SIS, taking place in a closed population
of moderate size that is inspected periodically. Our aim is to study the number of inspections that
find the epidemic process still in progress. As the underlying mathematical model involves a discrete
time Markov chain (DTMC) with a single absorbing state, the number of inspections in an outbreak
is a first-passage time into this absorbing state. Cumulative probabilities are numerically determined
from a recursive algorithm and expected values came from explicit expressions.
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1. Introduction

The spread of infectious diseases is a major concern for human populations. Disease control
by any therapy measure lies on the understanding of the disease itself. Epidemic modeling is an
interdisciplinary subject that can be addressed from deterministic applied mathematical models and
stochastic processes theory [1,2] to quantitative social and biological science and empirical analysis of
data [3]. Epidemic models are also used to describe spreading processes connected with technology,
business, marketing or sociology, where the interest is related to dissemination of news, rumors or
ideas among different groups [4–8]. Mathematical models provide an essential tool for understanding
and forecasting the spread of infectious diseases and also to suggest control policies.

There is a large variety of models for describing the spread of an infective process [1,2].
An essential distinction is done between deterministic and stochastic models. Deterministic models
constitute a vast majority of the existing literature and are formulated in terms of ordinary differential
equations (ODE); consequently they predict the same dynamic for an infective process given the same
initial conditions. However this is not what it is expected to happen in real world diseases, outbreaks
do not involve the same people becoming infected at the same time and uncertainty should be included
when modeling diseases. The stochastic models [2], analogous to those defined by ODE, take into
account the random nature of the events and, hence, they are mainly used to measure probabilities
of major outbreaks, disease extinction and, in general, to make statistical analysis of some relevant
epidemic descriptors.

In any case, both deterministic and stochastic frameworks are important but stochastic models
seems to be more appropriate to describe the evolution of an infective process evolving in a small
community, rather than their deterministic counterparts (e.g., [2,9]). In deterministic models,
persistence or extinction of the epidemic process is determined by the basic reproduction number,
R0 (see for instance [10,11]). Usually, stochastic models inherited the basic reproduction number from
their deterministic counterparts however, in stochastic epidemic where Markov chains model disease
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spread (see [12,13]), two alternative random variables (namely, the exact reproduction number and the
population transmission number) provide a real measurement of the spread of the disease at the initial
time or at any time during the epidemic process.

Most of the research works, both deterministic and stochastic, deal with continuous-time models.
However, one of the earliest works is the model studied by Reed and Frost in 1928, who formulate
an SIR model using a discrete-time Markov chain (DTMC) [1]. In recent years, literature shows an
increasing interest in using discrete-time models. Emmert and Allen, in [14], consider a discrete-time
model to investigate the spread of a disease within a structured host population. Allen and van den
Driessche [15] applied the next generation approach for calculating the basic reproduction number to
several models related to hantavirus and chytridiomycosis wildlife diseases. In [16], authors introduce
probabilities to formulate death, recovery and incidence rates of epidemic diseases on discrete-time SI
and SIS epidemic models with vital dynamics. Bistability of discrete-time SI and SIS epidemic models
with vertical transmission is the subject matter of [17]. An SIS model with a temporary vaccination
program is studied in [18]. D’Onofrio et al. [19] analyze a discrete-time SIR model where vaccination
coverage depends on the risk of infection. In [20,21], the Reed–Frost model is generalized by Markovian
models of SIR and SEIR types, where transition probabilities depend on the total number of diseased,
the number of daily encounters and the probability of transmission per contact. Under demographic
population dynamics, van den Driessche and Yakubu [22] use the next generation method to compute
R0 and to investigate disease extinction and persistence. An approximation of the deterministic
multiple infectious model by a Branching process is employed in [23] to extract information about
disease extinction. Accuracy of discrete-time approaches for studying continuous time contagion
dynamics is the topic developed in [24], who show potential limitations of this approach depending
on the time-step considered.

In this paper we deal with a stochastic SIS epidemic model, that describes diseases such as
tuberculosis, meningitis or some sexually transmitted diseases, in which infected individuals do not
present an exposed period and are recovered with no immunity. Hence, individuals have reoccurring
infections. The host population is divided into two groups: susceptible (S) or infected (I). We assume
that disease transmission depends on the number of infective individuals and also on a contact rate, α;
in addition individual recoveries depend on the recovery rate γ. For any event (in our model, either
contact or recovery), the event rate or intensity provides the mean number of events per unit time.
Hence, in case of recoveries 1/γ denotes the mean infectious time. To control the epidemic spread,
the population is observed at a fixed time interval.

The aim of this paper is to analyze, for a discrete-time SIS model, the number of inspections that
find an active epidemic. We remark that this quantity is the discrete-time analogous of the extinction
time that describes the length of the epidemic process.

The extinction time has been the subject of interest of many papers. Many of them focus on the
determination of the moments and a few also on whole distribution. In that sense, assuming a finite
birth-death process, Norden [25] first obtained an explicit expression for the mean time to extinction
and established that the extinction time, when the initial distribution equals the quasi-stationary
distribution, follows a simple exponential distribution. Allen and Burgin [26], for SIS and SIR models
in discrete-time, investigated numerically the expected duration. Stone et al. [27], for an SIS model
with external infection, determine also expressions for higher order moments. Artalejo et al. [28],
for general birth-death and SIR models, develop algorithmic schemes to analyze Laplace transforms
and moments of the extinction time and other continuous measures.

We model the evolution of the epidemics in terms of an absorbing DTMC providing the amount
of infective individuals at each stage or inspection point, that introduces in the model individual
variations coming from chance circumstances. As the extinction of the epidemic process is certain, we
will investigate both the distribution and expected values of the number of inspections taking place
prior the epidemic end, conditioned to the initial number of infected.
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The rest of the paper is organized as follows. In Section 2, we introduce the discrete-time SIS
model and the DTMC describing the evolution of the epidemic. In Section 3, we present recursive
results and develop algorithmic schemes for the distribution of the random variable representing
the number of inspections that find an active epidemic process. For any number of initial infected
individuals, the expected number of inspections will be explicitly determined. Finally, numerical
results regarding the effect of the model parameters are displayed in Section 4. That also includes an
application to evaluate cost and benefit per outbreak in such epidemics.

2. Model Description

Let us consider a closed population of N individuals that is affected by a communicable disease
transmitted by direct contact. In addition, it is assumed that there are no births or deaths during disease
outbreaks, therefore population size remains constant. Individuals in the population are classified
as susceptible, S, or infective, I, according to their health state regarding the disease. Transitions
from susceptible to infective depend on the contact rate between individuals and also on the quantity
of infective present in the population. Once recovered, individuals become again susceptible to the
disease. Consequently, individuals can be infected several times during an epidemic process but the
epidemic stops as soon as there are no infective individuals to transmit the contagious disease.

In a discrete-time study, time is discretized into time steps ∆t and transitions from states occur
during this time interval with certain probabilities. In chain-Binomial models [1,3] the time step
corresponds to the length of the incubation period, contact process depend on the Binomial distribution
and during a fixed time interval zero, one or even more infections may happen. In [16] time step is
one and probabilities depend on effective transmission through the time. In [23] a branching process
describes transitions and survival probabilities during any stage.

In our model, the population is observed periodically at time points n ∗ ∆t, with n ≥ 0, where
interval’s length ∆t is chosen as to guarantee that between consecutive inspections at most one
change—either an infection or a recovery—occurs. The underlying mathematical model is the
discrete-time SIS model described, for instance, in [26] assuming zero births or deaths per individual
in the time interval ∆t.

Due to the constant population hypothesis, the evolution of the disease can be represented by
a one-dimensional Markov chain, {In; n ≥ 0} where In is a random variable giving the number of
infective individuals in the population at the n−th inspection. State space is finite and contains a single
absorbing state, the state zero.

Non-negative transition probabilities depend on the time interval and have the following form,
for 0 ≤ i ≤ N:

P{ In+1 = i− 1| In = i} = pi,i−1 = γi∆t,

P{ In+1 = i| In = i} = pi,i = 1− γi∆t− α

N
i(N − i)∆t, (1)

P{ In+1 = i + 1| In = i} = pi,i+1 =
α

N
i(N − i)∆t,

where α represents the contact rate and γ represents the recovery rate.
We need to fix an interval length, ∆t, providing that probabilities in (1) are well defined and

therefore that the chosen time step guarantees that at most one change occurs between successive
inspections. In particular, for any choice on the model parameters it is required that,

1− γi∆t− α

N
i(N − i)∆t ≥ 0, for 0 ≤ i ≤ N.
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Which, after some algebra, provides a bound for time step. Hence, in what follows ∆t will be
chosen small enough as to satisfy

∆t ≤
{

1
γN , if α ≤ γ,
4α

(α+γ)2 N , if α > γ.
(2)

Notice that the bound given in (2) can be written in terms of the basic reproduction number,
R0 = α/γ, as in [26].

As {In : n ≥ 0} is a reducible aperiodic DTMC, with a single absorbing state, the standard theory
of Markov chains (see for instance [29]) gives that

lim
n→∞

P{In = j |I0 = i} = δj0, for every 1 ≤ i, j ≤ N, (3)

where δab is the Kronecker’s delta, defined as one for a = b and 0, otherwise.
The limiting behavior result (3) states that in the long term, for any choice on model parameters,

there will be no infective individuals in the population. Hence, the end of any outbreak of the disease
occurs almost surely, but it may take a long number of inspections until the disease disappears from
the population; as it was observed in [27,28] for continuous-time models. Thus, a theoretical study of
this random variable is well supported.

3. Analysis of the Number of Inspections

We consider the random variable T that counts the number of inspections of the population that
find an active epidemic process; i.e., T is the number of steps that it takes, to the DTMC {In : n ≥ 0},
to reach the state zero. Thus, T can be seen as a first-passage time and we define it as

T = min{n ≥ 0 : In = 0}.

In this section we describe its probabilistic behavior in terms of distribution functions and expected
values. Theoretical discussion is based on the conditional first-passage times Ti, for 1 ≤ i ≤ N, defined
as the number of inspections that take place during an outbreak, given that at present population
contains I0 = i infected. Notice that, even for a finite population, Ti = (T|I0 = i) is a discrete random
variable with countable infinite mass points.

Next we introduced some notation for point and cumulative probabilities, and expected values
regarding random variables Ti, for 1 ≤ i ≤ N.

αi(n) = P{Ti = n} = P{T = n |I0 = i}, for n ≥ 0,

ui(n) = P{Ti ≤ n} = P{T ≤ n |I0 = i}, for n ≥ 0,

mi = E[Ti] = E[T |I0 = i ].

We want to point out some trivial facts. Notice that

αi(0) = ui(0) = 0, for 1 ≤ i ≤ N, (4)

ui(n) = 0, whenever 0 ≤ n < i, (5)

(4) is trivially true due to the definition of Ti as a first-passage time. On the other hand, condition (5)
follows from the fact that, starting with i infective individuals and as at each inspection we observe at
most one event, we need at least i inspections in order to observe that all initial infected have been
recovered. Because point probabilities, αi(n), can be determined from cumulative probabilities, ui(n),
with the help of the well-known relationship

αi(n) = ui(n)− ui(n− 1), for n ≥ 1 and 1 ≤ i ≤ N,
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we present results in order to deal with the cumulative ones.
Next theorem provides a recursive scheme for determining cumulative probabilities associated to

an initial number of infective individuals.

Theorem 1. For any initial number of infective individuals, I0 = i with 1 ≤ i ≤ N, the set of cumulative
probabilities satisfies the following recursive conditions, for n ≥ 1 :

ui(n) = pi,0 + (1− δi1)pi,i−1ui−1(n− 1) (6)

+pi,iui(n− 1) + (1− δiN)pi,i+1ui+1(n− 1).

Proof. The proof is an application of a first-step analysis by conditioning on the first transition out of
the current state.

Remark 1. Notice that P{Ti < ∞} = 1, for 1 ≤ i ≤ N, because states {1, 2, ..., N} are a non-decomposable
set of states. Consequently, Ti is a non-defective random variable and limn→∞ ui(n) = 1, for 1 ≤ i ≤ N.

Remark 2. The use of the iterative Equation (6) produces a sequence of increasing probabilities converging to one
but, for computational purposes, a stopping criteria should be provided in order to avoid longer computation runs.

For each number of inspections, n ≥ 0, Equation (6) is solved recursively, with the help of the
boundary conditions (4) and the trivial result (5). Numerical results appearing in the following section
have been obtained with the help of a recursive algorithm, that stops as soon as a certain percentile
value of the distribution is accumulated. For each initial number of infective individuals, I0 = i0 ,
cumulative probabilities are computed up to the q-th percentile, using the following pseudo-code.

Remark 3. For any appropriate time interval ∆t satisfying (2), point and cumulative probabilities are
determined numerically from Algorithm 1. Moreover, for n = 1, 2 inspections they present the following
explicit forms:

P{Ti = 1} = δi1γ∆t, for 1 ≤ i ≤ N,

P{Ti ≤ 2} =


γ∆t

(
2− 2α(N−2)

N ∆t− γ∆t
)

, for i = 1,

2 (γ∆t)2 , for i = 2,
0, for 3 ≤ i ≤ N.

Explicit values displayed in Remark 3 indicate that distribution of the random variable Ti depends
on rates α and γ not only through its ratio. Consequently, models sharing the same basic reproductive
number, R0, present different probabilistic characteristics.

Algorithm 1:
The sequence of cumulative probabilities conditioned to the current number of infective

individuals, {ui(n) : n ≥ 0}, for 1 ≤ i ≤ N, are determined as follows:

Step 0: Set q ∈ (0, 1) and i0 ≥ 1.
Step 1: Set n = 0 and ui(n) = 0, for 1 ≤ i ≤ N.
Step 2: Set n = n + 1 and i = 0.
Step 2a: Set i = i + 1 and ui(n) = 0.
Step 2b: If i ≤ n compute ui(n) using Equation (6).
Step 2c: If i = i0 and ui(n) ≥ q then Stop.
Step 2d: If i < N go to step 2a.
Step 3: Go to step 2.
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Expected values mi, for 1 ≤ i ≤ N, provide the long-run average value of inspections prior to
the epidemic end, given that the outbreak started with i infected. Typically, expected values can be
computed from mass distribution functions but, in our case, the use of the recursive procedure given in
Algorithm 1 produces a lower approximation of the true value. Instead of that, next theorem provides
a closed form expression for mi, given any initial number of infective individuals.

Theorem 2. Expected values mi = E[Ti], present the following form:

mi =
1

γ∆t

i

∑
k=1

Ak +
1

Nγ∆t

i

∑
k=1

(N − k)!
(

α

Nγ

)N−k
, for 1 ≤ i ≤ N − 1, (7)

mN =
1

γ∆t

N−1

∑
k=1

Ak +
1

Nγ∆t

N−1

∑
k=0

k!
(

α

Nγ

)k
. (8)

where Ak =
1
k + ∑N−1

j=k+1
(α/Nγ)j−k

j

j−1
∏

s=k
(N − s), for 1 ≤ k ≤ N − 1.

Proof. The proof is based on a first-step argument. By conditioning on the state visited by the
underlying Markov chain after first transition, we get the following set of equations that involve
expected values mi, for 1 ≤ i ≤ N initial infective.

mi = E[T |I0 = i ] = E[T |I0 = i, I1 = i− 1 ]pi,i−1 (9)

+E[T |I0 = i, I1 = i ]pi,i + (1− δiN)E[T |I0 = i, I1 = i + 1 ]pi,i+1.

But E[T |I0 = 1, I1 = 0 ] = 1 and E[T |I0 = i, I1 = j ] = 1 + E[T |I0 = j ] = 1 + mj, when j 6= 0.
Substituting in (9) yields

m1 = p1,0 + (1 + m1)p1,1 + (1 + m2)p1,2,

mi = (1 + mi−1)pi,i−1 + (1 + mi)pi,i + (1− δiN)(1 + mi,i+1)pi,i+1, for 1 < i ≤ N,

that is in accordance with results appearing in [26] (see Section 2.2.5).
Using the normalization condition pi,i−1 + pi,i + (1− δiN)pi.i+1 = 1, we get that conditioned

moments satisfy the following tridiagonal system:

(1− pi,i)mi = 1 + (1− δi0)pi,i−1mi−1 + (1− δiN)pi,i+1mi+1, (10)

that can be solved explicitly. Note that Equation (10) can be rewritten as

p1,0m1 = 1 + p1,2(m2 −m1), (11)

pi,i−1(mi −mi−1) = 1 + pi,i+1(mi+1 −mi), for 1 < i < N, (12)

pN,N−1(mN −mN−1) = 1. (13)

Now we use a method of finite difference equations. First, we introduce differences di defined
as follows

di = mi − (1− δi1)mi−1, for 1 ≤ i ≤ N, (14)

and then substitute (14) in Equations (11)–(13). The tridiagonal system is reduced to a bidiagonal one

pi,i−1di = 1 + pi,i+1di, for 1 ≤ i < N, (15)

pN,N−1dN = 1. (16)
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Moreover, Equation (16) provides a closed expression for dN :

dN =
1

pN,N−1
=

1
Nγ∆t

(17)

and remainder differences can be expressed in terms of (17) by noticing that

di =
1

pi,i−1
+

pi,i+1

pi,i−1
di+1, for 1 ≤ i < N. (18)

Using backward substitution and the expressions for transition probabilities (1), we get that

di =
1

γ∆t
Ai + BidN , for 1 ≤ i < N, (19)

where Ai =
1
i + ∑N−1

j=i+1
(α/Nγ)j−i

j

j−1
∏
s=i

(N − s) and Bi = (N − i)!(α/Nγ)N−i.

On the other hand, from definition (14) and by noticing that mi = di + (1− δi1)mi−1, we can write

mi =
i

∑
k=1

dk, for 1 ≤ i ≤ N. (20)

Finally, using (19) repeatedly in combination with (20) gives the explicit expressions (7)–(8).

Remark 4. Notice that, from (7) and (8), expected values mi depend on contact and recovery rates not only
through its ratio R0. Hence, SIS models sharing the basic reproduction number can present different long run
average values for the number of inspections prior to the end of the infective process.

4. Numerical Results

The objective of this section is to reveal the main insights of the mathematical characteristic that is
the subject matter of this paper. In the previous section we have derived theoretical and algorithmic
results regarding the probabilistic behavior of the random variables Ti, for i ≤ i ≤ N. Probability
distribution, conditioned on the initial number of infected, is obtained as the solution of a system
of linear equations. But unfortunately, we have not reached a well-known, or even a closed form,
distribution for Ti and, in addition, the model relies on a group of parameters that varies over a fairly
broad range. Hence, we are going to examine and quantify the effect of changing one or more of the
parameter’s value in the possible outcomes of the number of inspections. In more details, numerical
results come from the application of Theorem 1 and Algorithm 1, when we focus on probabilities of
different outcomes, and from the explicit Equations (7)–(8) when the interest are expected values mi.

Our aim is two-fold: to investigate the influence of the model parameters in the probabilistic
behavior of these random variables and show a possible application in evaluating benefits associated
to the quantity of inspections conducted over an outbreak of a discrete-time SIS epidemic model.

4.1. Influence of Model Parameters

First we assume that we are able to detect the epidemics as soon as first infection appears, that is
I0 = 1. The objective is to characterize the random variable T1 that counts, from the very beginning
of the epidemic, the total number of periodic inspections taking place prior to the epidemics end.
We choose a contact rate α = 2.0 and a recovery rate γ = 1.0.

Figure 1 is a bar chart of P{T1 = n}, for n ≥ 1. We consider a population of N = 100 individuals
and time interval between inspections is ∆t = 0.01 time units. Mass function presents a decreasing
shape, with a single mode for n = 1. From numerical results, we get that 1% of the outbreaks end by
the time of the first inspection, but also 1% of the outbreaks will last more than 30,000 inspections.
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Figure 1. Mass function for N = 50.

Table 1 displays several cumulative probabilities up to 150 inspections and the expected value m1,
for a population of N = 5, 25, 50 and 75 individuals. We keep rates α = 2.0, γ = 1.0 and time interval
length as ∆t = 0.01. For each population, only 1% of the outbreaks are inspected once before extinction.
For a fixed number of inspections, cumulative probabilities are smaller when population size is larger.
During outbreaks, large populations are inspected more times, in average, than smaller ones. Even for
a small population of 5 individuals, we observe that the 48% of the outbreaks are still in progress at
the 150-th inspection and an average of around 295 inspections take place while the epidemic is active.

Table 1. Cumulative probabilities for different population sizes.

N = 5 N = 25 N = 50 N = 75

P{T1 ≤ 1} 0.01 0.01 0.01 0.01
P{T1 ≤ 10} 0.0894 0.0882 0.0880 0.0880
P{T1 ≤ 20} 0.1599 0.1558 0.1553 0.1552
P{T1 ≤ 30} 0.2172 0.2093 0.2083 0.2080
P{T1 ≤ 50} 0.3047 0.2879 0.2858 0.2852
P{T1 ≤ 75} 0.3827 0.3536 0.3501 0.3489
P{T1 ≤ 100} 0.4400 0.3983 0.3932 0.3916
P{T1 ≤ 125} 0.4856 0.4302 0.4236 0.4215
P{T1 ≤ 150} 0.5226 0.4539 0.4458 0.4431

m1 294.66 7094.24 582627.67 58366793.08

Next, we describe the distribution of T1 using a Box-Whiskers plot diagram. The objective is to
compare the patterns of the number of inspections when we vary the contact rate. The box encloses the
middle central part of the distribution, lower and upper edges of the box correspond to the lower and
the upper quartile, respectively, and the line drawn across the box shows the median of the distribution.
Finally, whiskers below start at 1 and whiskers above the boxes reach up to the 99% of the distribution.

Figure 2 shows the distribution of T1 for α = 0.5, 1.0 and 2.0. We consider a recovery rate γ = 2.0,
a population of N = 20 individuals and a time interval of ∆t = 0.01 units length between successive
inspections. The distribution of the random variable is skewed to the right and longer right tails are
observed for larger contact rates. Additional numerical results for γ = 5.0 show a similar shape for
box plot diagrams, with 99th quantile under 200 inspections. This fact is according to the intuition,
because large recovery rates give more chance to recoveries than to new infections and, consequently,
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outbreaks will involve lesser infective individuals and present shorter extinction times in comparison
with Figure 2’s scenario.

1 2 3

0

100

200

300

400

500

600

700

800

Figure 2. Box plot for T1.

In Table 2, we display the expected number of inspections for outbreaks starting from a single
infective case, we consider several values for contact and recovery rates. Population contains
20 individuals and time interval between inspections is ∆t = 0.01, for every pair of rates. As was stated
on Remark 4, results show that expected values are not a function of the basic reproductive number
R0 = α/γ. The expected number of inspections prior the end of the infective outbreak increases as a
function of contact rate α and decreases as a function of recovery rate. That remark is according to the
intuition too, because the epidemic length enlarges when contacts between individuals occur more
often and/or when individuals need longer times to be recovered.

Table 2. Expected inspections before extinction time.

α = 0.5 α = 1.0 α = 2.0 α = 5.0

γ = 0.5 444.73 6242.14 1.294× 107 1.917× 1013

γ = 1.0 134.19 222.36 3121.07 1.536× 108

γ = 2.0 56.99 67.09 111.18 11, 325.60
γ = 5.0 21.01 22.16 25.02 44.47

Next we focus on outbreaks that are first observed when the epidemic process involves i, not
necessarily one, infected. Our aim is to describe the expected values mi when varying the initial
number of infective individuals. Notice that Equation (20) guarantees that mi ≥ mi−1, for 1 < i ≤ N.
Thus, the expected number of inspections taking place prior to the epidemics end is a non-decreasing
function regarding the amount of initial infective.

Figure 3 provides a numerical illustration for a population of N = 20 , contact rate α = 1.8,
recovery rate γ = 0.8 and time interval between periodic inspections ∆t = 0.01. Pictured graph agrees
with theoretical results, it quantifies the growth of the number of inspections when infective rises and
it shows the importance of an early detection of such a epidemic process. More specifically, outbreaks
detected at the first infection will be active, in mean terms, about 4000 inspections while if the outbreak
is first checked when two infected are present in the population then, the expected inspections will
rise up to 6000 times or up to 8000 inspections when first checking shows five infected.
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Figure 3. Expected number of inspections versus initial infective.

Additional numerical results, not included here, report that when we choose intervals between
inspections with decreasing length ∆t, the mass distribution function of any Ti, for 1 ≤ i ≤ N, provides
an aproximation to the density function of the extinction time of an epidemic process starting with i
infected [28], that is the continuous counterpart of the number of periodic inspections taking place
while the epidemic process is active.

In the following section we present a possible use of the probabilistic behavior of Ti = (T|I0 = i).

4.2. Application to Evaluate Outbreak Benefits

Let us assume that every inspection has a travel or approaching cost c1 and, whenever there is
a change in the population regarding the immediate previous inspection, we get a profit in terms
of information that depends on the type of event. Let gR and gI represent recovery and infection
detection’s gain, respectively.

Associated to every outbreak, the random variable Ti provides the total number of inspections
conducted during an outbreak that starts from I0 = i infective individuals. On the other hand, for
outbreaks starting with I0 = i infective individuals, Artalejo et al. introduced in [30] the random
variables NR

i and N I
i defined as the number of recoveries and infections per outbreak, respectively.

By noticing that the number of recoveries in an outbreak agrees with the total number of infections in
the same outbreak, we get

NR
i = i + N I

i , for i ≥ 1. (21)

With the help of the above random variables and its relationship (21), we can determine outbreak’s
benefit, for instance, just by defining a benefit function conditioned to the initial number of infective,
as follows

B(T, R|I0 = i) = (gR + gI)NR
i − igI − c1Ti. (22)

The expected benefit per outbreak will depend on the mean values of NR
i and Ti, but also on the

choice of travel cost and information profits.
Figure 4 represents expected benefit when the initial number of infective varies in 1 ≤ i ≤ 11,

for a population of N = 25, with contact rate α = 2.5, recovery rate of γ = 1.0 and a time interval
of ∆t = 0.01 units. We fixed a unitary travel cost per the inspection; i.e. c1 = 1, and gain values
per recovery or infection have been chosen as gR = gI = c2. Several graphs are drawn by fixing
c2 > c1. We notice first that, for a fixed number of infective and in order to obtain a positive benefit,
recovery gain c2 must satisfy c2 > c1E[Ti]/(2E[NR

i ]− i). Hence, the trivial restriction c2 > c1 does
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not guarantee a positive expected benefit per outbreak. In any case, the expected benefit is a linear
increasing function of the gain value c2.
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Figure 4. Expected Benefit versus initial infective.

As we can see in Figure 4, depending on the choice for c2, expected benefit functions present
different shape as a function of the initial number of infective individuals. Numerical results show
that, for c2 ≤ 1.125, expected benefit decreases as the initial infected increases. For c2 = 1.15 we obtain
a minimum expected benefit at I0 = 9 infective. When we set c2 = 1.175 the minimum corresponds
to the value I0 = 2 but we obtain expected values close to 0. For c2 ≥ 1.2, expected benefit remains
almost constant for I0 ≥ 5. These facts illustrate that a deep knowledge on E[NR

i ] or E[Ti] will help in
decision making process regarding travel cost and gain values.

5. Discussion and Conclusions

Literature in mathematical modelization of epidemics includes both continuous and discrete-time
models. Continuous-time models are more accurate but more difficult to implement than discrete-time
ones. On the other hand, discrete-time models fit better with real information; data related to real-world
epidemic processes are often given by unit time, so it is natural to preserve dynamic features by
modeling a dynamical system from observations at discrete times which are adapted to time step.

This paper focuses on the discrete-time SIS model, where transition probabilities for event
occurring during time-steps are described in terms of an absorbing DTMC. The population is observed
at periodic time points assuming that at most one event takes in a time-step. The discrete-time
stochastic epidemic SIS models are formulated as DTMC which may be considered approximations to
the continuous-time Markov jump processes. The size of the time step must be controlled to assure
that the model gives genuine probability distributions.

Our purpose is to study the extinction time counterpart in discrete-time, that is the random
variable that counts the total number of inspections that find an active epidemic process.

Subject to the initial number of infective individuals, mass probability function of the number
of inspections, Ti, is numerically determined through a recursive scheme; complementing the
probabilistic knowledge of this variable provided by its expected value, that comes directly from
an explicit expression.

A really interesting extension of this work arises when considering equidistant time inspections
relaxing the requirement about the maximum number of events observed during inspections.
This problem, that appears to be analytically intractable, is the aim of the paper [31], where authors
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tackle this difficulty via the total area between the sample paths of the numbers of infective individuals
in the continuous-time process and its discrete-time counterpart.
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